Skip directly to search Skip directly to A to Z list Skip directly to navigation Skip directly to page options Skip directly to site content

Search PHGKB:

Last Posted: Mar 24, 2023
spot light Highlights

Top advances of the year: Precision oncology.
Aakash Desai et al. Cancer 2023 3

In this review, recent major developments in precision oncology that have affected outcomes for patients with cancer are discussed. Rapid clinical development was seen of targeted agents across various mutational profiles such as KRASG12C (which was considered “undruggable” for almost 4 decades), Exon 20 insertions, and RET mutations. Approaches to precision chemotherapy delivery by the introduction of antibody drug conjugates in the armamentarium against lung cancer has been appreciated.

Towards the molecular era of discriminating multiple lung cancers
Z Wang, Ebiomedicine, March 21, 2023

This review summarizes recent advances in the molecular identification of multiple lung cancers and compares various methods based on somatic mutations, chromosome alterations, microRNAs, and tumor microenvironment markers. The paper also discusses current challenges at the forefront of genomics-based discrimination, including the selection of detection technology, application of next-generation sequencing, and intratumoral heterogeneity.

A Comprehensive Analysis of Programmed Cell Death-Associated Genes for Tumor Microenvironment Evaluation Promotes Precise Immunotherapy in Patients with Lung Adenocarcinoma
Y Huang et al, J Per Med, March 7, 2023

We used LASSO algorithm and multiple-cox regression to establish a programmed cell death-associated gene prognostic model. Further, we explored whether this model could evaluate the sensitivity of patients to anti-PD-1/PD-L1. In total, 1342 patients were included. We constructed a programmed cell death model in TCGA cohorts, and the overall survival (OS) was significantly different between the high- and low-risk score groups (HR 2.70; 95% CI 1.94–3.75; p < 0.0001; 3-year OS AUC 0.71). Specifically, this model was associated with immunotherapy progression-free survival benefit in the validation cohort (HR 2.42; 95% CI 1.59–3.68; p = 0.015; 12-month AUC 0.87).

Rare molecular subtypes of lung cancer.
Guilherme Harada et al. Nature reviews. Clinical oncology 2023 2

Oncogenes that occur in =5% of non-small-cell lung cancers have been defined as ‘rare’; nonetheless, this frequency can correspond to a substantial number of patients diagnosed annually. Within rare oncogenes, less commonly identified alterations (such as HRAS, NRAS, RIT1, ARAF, RAF1 and MAP2K1 mutations, or ERBB family, LTK and RASGRF1 fusions) can share certain structural or oncogenic features with more commonly recognized alterations (such as KRAS, BRAF, MET and ERBB family mutations, or ALK, RET and ROS1 fusions). Over the past 5 years, a surge in the identification of rare-oncogene-driven lung cancers has challenged the boundaries of traditional clinical grade diagnostic assays and profiling algorithms.

Disclaimer: Articles listed in the Public Health Genomics and Precision Health Knowledge Base are selected by the CDC Office of Public Health Genomics to provide current awareness of the literature and news. Inclusion in the update does not necessarily represent the views of the Centers for Disease Control and Prevention nor does it imply endorsement of the article's methods or findings. CDC and DHHS assume no responsibility for the factual accuracy of the items presented. The selection, omission, or content of items does not imply any endorsement or other position taken by CDC or DHHS. Opinion, findings and conclusions expressed by the original authors of items included in the update, or persons quoted therein, are strictly their own and are in no way meant to represent the opinion or views of CDC or DHHS. References to publications, news sources, and non-CDC Websites are provided solely for informational purposes and do not imply endorsement by CDC or DHHS.