Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-30 (of 34 Records) |
Query Trace: Winn A[original query] |
---|
Genomic surveillance for SARS-CoV-2 variants: Circulation of Omicron XBB and JN.1 lineages - United States, May 2023-September 2024
Ma KC , Castro J , Lambrou AS , Rose EB , Cook PW , Batra D , Cubenas C , Hughes LJ , MacCannell DR , Mandal P , Mittal N , Sheth M , Smith C , Winn A , Hall AJ , Wentworth DE , Silk BJ , Thornburg NJ , Paden CR . MMWR Morb Mortal Wkly Rep 2024 73 (42) 938-945 CDC continues to track the evolution of SARS-CoV-2, including the Omicron variant and its descendants, using national genomic surveillance. This report summarizes U.S. trends in variant proportion estimates during May 2023-September 2024, a period when SARS-CoV-2 lineages primarily comprised descendants of Omicron variants XBB and JN.1. During summer and fall 2023, multiple descendants of XBB with immune escape substitutions emerged and reached >10% prevalence, including EG.5-like lineages by June 24, FL.1.5.1-like lineages by August 5, HV.1 lineage by September 30, and HK.3-like lineages by November 11. In winter 2023, the JN.1 variant emerged in the United States and rapidly attained predominance nationwide, representing a substantial genetic shift (>30 spike protein amino acid differences) from XBB lineages. Descendants of JN.1 subsequently circulated and reached >10% prevalence, including KQ.1-like and KP.2-like lineages by April 13, KP.3 and LB.1-like lineages by May 25, and KP.3.1.1 by July 20. Surges in COVID-19 cases occurred in winter 2024 during the shift to JN.1 predominance, as well as in summer 2023 and 2024 during circulation of multiple XBB and JN.1 descendants, respectively. The ongoing evolution of the Omicron variant highlights the importance of continued genomic surveillance to guide medical countermeasure development, including the selection of antigens for updated COVID-19 vaccines. |
Database derived from an electronic medical record-based surveillance network of US emergency department patients with acute respiratory illness
Kline JA , Reed B , Frost A , Alanis N , Barshay M , Melzer A , Galbraith JW , Budd A , Winn A , Pun E , Camargo CA Jr . BMC Med Inform Decis Mak 2023 23 (1) 224 BACKGROUND: For surveillance of episodic illness, the emergency department (ED) represents one of the largest interfaces for generalizable data about segments of the US public experiencing a need for unscheduled care. This protocol manuscript describes the development and operation of a national network linking symptom, clinical, laboratory and disposition data that provides a public database dedicated to the surveillance of acute respiratory infections (ARIs) in EDs. METHODS: The Respiratory Virus Laboratory Emergency Department Network Surveillance (RESP-LENS) network includes 26 academic investigators, from 24 sites, with 91 hospitals, and the Centers for Disease Control and Prevention (CDC) to survey viral infections. All data originate from electronic medical records (EMRs) accessed by structured query language (SQL) coding. Each Tuesday, data are imported into the standard data form for ARI visits that occurred the prior week (termed the index file); outcomes at 30 days and ED volume are also recorded. Up to 325 data fields can be populated for each case. Data are transferred from sites into an encrypted Google Cloud Platform, then programmatically checked for compliance, parsed, and aggregated into a central database housed on a second cloud platform prior to transfer to CDC. RESULTS: As of August, 2023, the network has reported data on over 870,000 ARI cases selected from approximately 5.2 million ED encounters. Post-contracting challenges to network execution have included local shifts in testing policies and platforms, delays in ICD-10 coding to detect ARI cases, and site-level personnel turnover. The network is addressing these challenges and is poised to begin streaming weekly data for dissemination. CONCLUSIONS: The RESP-LENS network provides a weekly updated database that is a public health resource to survey the epidemiology, viral causes, and outcomes of ED patients with acute respiratory infections. |
Seasonality of Common Human Coronaviruses in the United States, 2014-2021 (preprint)
Shah MM , Winn A , Dahl RM , Kniss KL , Silk BJ , Killerby ME . medRxiv 2022 22 (10) 1970-1976 The four common human coronaviruses (HCoVs), including two alpha (HCoV-NL63 and HCoV-229E) and two beta (HCoV-HKU1 and HCoV-OC43) types, generally cause mild, upper respiratory illness. HCoVs are known to have seasonal patterns and variation in predominant types each year, but defined measures of seasonality are needed. We defined seasonality of HCoVs during July 2014 to November 2021 in the United States using a retrospective method applied to National Respiratory and Enteric Virus Surveillance System (NREVSS) data. In the six HCoV seasons prior to 2020-2021, onsets ranged from October to November, peaks from January to February, and offsets from April to June; most (>93%) HCoV detections occurred within the defined seasonal onsets and offsets. The 2020-2021 HCoV season onset was delayed by 11 weeks compared to prior seasons, likely due to COVID-19 mitigation efforts. Better defining HCoV seasonality can inform clinical preparedness and the expected patterns of emerging HCoVs. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Genomic surveillance for SARS-CoV-2 variants: Circulation of Omicron lineages - United States, January 2022-May 2023
Ma KC , Shirk P , Lambrou AS , Hassell N , Zheng XY , Payne AB , Ali AR , Batra D , Caravas J , Chau R , Cook PW , Howard D , Kovacs NA , Lacek KA , Lee JS , MacCannell DR , Malapati L , Mathew S , Mittal N , Nagilla RR , Parikh R , Paul P , Rambo-Martin BL , Shepard SS , Sheth M , Wentworth DE , Winn A , Hall AJ , Silk BJ , Thornburg N , Kondor R , Scobie HM , Paden CR . MMWR Morb Mortal Wkly Rep 2023 72 (24) 651-656 CDC has used national genomic surveillance since December 2020 to monitor SARS-CoV-2 variants that have emerged throughout the COVID-19 pandemic, including the Omicron variant. This report summarizes U.S. trends in variant proportions from national genomic surveillance during January 2022-May 2023. During this period, the Omicron variant remained predominant, with various descendant lineages reaching national predominance (>50% prevalence). During the first half of 2022, BA.1.1 reached predominance by the week ending January 8, 2022, followed by BA.2 (March 26), BA.2.12.1 (May 14), and BA.5 (July 2); the predominance of each variant coincided with surges in COVID-19 cases. The latter half of 2022 was characterized by the circulation of sublineages of BA.2, BA.4, and BA.5 (e.g., BQ.1 and BQ.1.1), some of which independently acquired similar spike protein substitutions associated with immune evasion. By the end of January 2023, XBB.1.5 became predominant. As of May 13, 2023, the most common circulating lineages were XBB.1.5 (61.5%), XBB.1.9.1 (10.0%), and XBB.1.16 (9.4%); XBB.1.16 and XBB.1.16.1 (2.4%), containing the K478R substitution, and XBB.2.3 (3.2%), containing the P521S substitution, had the fastest doubling times at that point. Analytic methods for estimating variant proportions have been updated as the availability of sequencing specimens has declined. The continued evolution of Omicron lineages highlights the importance of genomic surveillance to monitor emerging variants and help guide vaccine development and use of therapeutics. |
COVID-19 surveillance after expiration of the public health emergency declaration - United States, May 11, 2023
Silk BJ , Scobie HM , Duck WM , Palmer T , Ahmad FB , Binder AM , Cisewski JA , Kroop S , Soetebier K , Park M , Kite-Powell A , Cool A , Connelly E , Dietz S , Kirby AE , Hartnett K , Johnston J , Khan D , Stokley S , Paden CR , Sheppard M , Sutton P , Razzaghi H , Anderson RN , Thornburg N , Meyer S , Womack C , Weakland AP , McMorrow M , Broeker LR , Winn A , Hall AJ , Jackson B , Mahon BE , Ritchey MD . MMWR Morb Mortal Wkly Rep 2023 72 (19) 523-528 On January 31, 2020, the U.S. Department of Health and Human Services (HHS) declared, under Section 319 of the Public Health Service Act, a U.S. public health emergency because of the emergence of a novel virus, SARS-CoV-2.* After 13 renewals, the public health emergency will expire on May 11, 2023. Authorizations to collect certain public health data will expire on that date as well. Monitoring the impact of COVID-19 and the effectiveness of prevention and control strategies remains a public health priority, and a number of surveillance indicators have been identified to facilitate ongoing monitoring. After expiration of the public health emergency, COVID-19-associated hospital admission levels will be the primary indicator of COVID-19 trends to help guide community and personal decisions related to risk and prevention behaviors; the percentage of COVID-19-associated deaths among all reported deaths, based on provisional death certificate data, will be the primary indicator used to monitor COVID-19 mortality. Emergency department (ED) visits with a COVID-19 diagnosis and the percentage of positive SARS-CoV-2 test results, derived from an established sentinel network, will help detect early changes in trends. National genomic surveillance will continue to be used to estimate SARS-CoV-2 variant proportions; wastewater surveillance and traveler-based genomic surveillance will also continue to be used to monitor SARS-CoV-2 variants. Disease severity and hospitalization-related outcomes are monitored via sentinel surveillance and large health care databases. Monitoring of COVID-19 vaccination coverage, vaccine effectiveness (VE), and vaccine safety will also continue. Integrated strategies for surveillance of COVID-19 and other respiratory viruses can further guide prevention efforts. COVID-19-associated hospitalizations and deaths are largely preventable through receipt of updated vaccines and timely administration of therapeutics (1-4). |
Correction: A collaborative translational research framework for evaluating and implementing the appropriate use of human genome sequencing to improve health.
Khoury MJ , Feero WG , Chambers DA , Brody LC , Aziz N , Green RC , Janssens Acjw , Murray MF , Rodriguez LL , Rutter JL , Schully SD , Winn DM , Mensah GA . PLoS Med 2018 15 (8) e1002650 The fourth author’s name is incorrect. The correct name is Lawrence C. Brody. The correct citation is: Khoury MJ, Feero WG, Chambers DA, Brody LC, Aziz N, Green RC, et al. (2018) A collaborative translational research framework for evaluating and implementing the appropriate use of human genome sequencing to improve health. PLoS Med 15(8): e1002631. https://doi.org/10.1371/journal.pmed.1002631. |
Changes in influenza and other respiratory virus activity during the COVID-19 pandemic-United States, 2020-2021.
Olsen SJ , Winn AK , Budd AP , Prill MM , Steel J , Midgley CM , Kniss K , Burns E , Rowe T , Foust A , Jasso G , Merced-Morales A , Davis CT , Jang Y , Jones J , Daly P , Gubareva L , Barnes J , Kondor R , Sessions W , Smith C , Wentworth DE , Garg S , Havers FP , Fry AM , Hall AJ , Brammer L , Silk BJ . Am J Transplant 2021 21 (10) 3481-3486 The COVID-19 pandemic and subsequent implementation of nonpharmaceutical interventions (e.g., cessation of global travel, mask use, physical distancing, and staying home) reduced the transmission of some viral respiratory pathogens.1 In the United States, influenza activity decreased in March 2020, was historically low through the summer of 2020,2 and remained low during October 2020–May 2021 (<0.4% of respiratory specimens with positive test results for each week of the season). Circulation of other respiratory pathogens, including respiratory syncytial virus (RSV), common human coronaviruses (HCoVs) types OC43, NL63, 229E, and HKU1, and parainfluenza viruses (PIVs) types 1–4 also decreased in early 2020 and did not increase until spring 2021. Human metapneumovirus (HMPV) circulation decreased in March 2020 and remained low through May 2021. Respiratory adenovirus (RAdV) circulated at lower levels throughout 2020 and as of early May 2021. Rhinovirus and enterovirus (RV/EV) circulation decreased in March 2020, remained low until May 2020, and then increased to near prepandemic seasonal levels. Circulation of respiratory viruses could resume at prepandemic levels after COVID-19 mitigation practices become less stringent. Clinicians should be aware of increases in some respiratory virus activity and remain vigilant for off-season increases. In addition to the use of everyday preventive actions, fall influenza vaccination campaigns are an important component of prevention as COVID-19 mitigation measures are relaxed and schools and workplaces resume in-person activities. |
Seasonality of respiratory syncytial virus - United States, 2017-2023
Hamid S , Winn A , Parikh R , Jones JM , McMorrow M , Prill MM , Silk BJ , Scobie HM , Hall AJ . MMWR Morb Mortal Wkly Rep 2023 72 (14) 355-361 In the United States, respiratory syncytial virus (RSV) infections cause an estimated 58,000-80,000 hospitalizations among children aged <5 years (1,2) and 60,000-160,000 hospitalizations among adults aged ≥65 years each year (3-5). U.S. RSV epidemics typically follow seasonal patterns, peaking in December or January (6,7), but the COVID-19 pandemic disrupted RSV seasonality during 2020-2022 (8). To describe U.S. RSV seasonality during prepandemic and pandemic periods, polymerase chain reaction (PCR) test results reported to the National Respiratory and Enteric Virus Surveillance System (NREVSS)* during July 2017-February 2023 were analyzed. Seasonal RSV epidemics were defined as the weeks during which the percentage of PCR test results that were positive for RSV was ≥3% (9). Nationally, prepandemic seasons (2017-2020) began in October, peaked in December, and ended in April. During 2020-21, the typical winter RSV epidemic did not occur. The 2021-22 season began in May, peaked in July, and ended in January. The 2022-23 season started (June) and peaked (November) later than the 2021-22 season, but earlier than prepandemic seasons. In both prepandemic and pandemic periods, epidemics began earlier in Florida and the Southeast and later in regions further north and west. With several RSV prevention products in development,(†) ongoing monitoring of RSV circulation can guide the timing of RSV immunoprophylaxis and of clinical trials and postlicensure effectiveness studies. Although the timing of the 2022-23 season suggests that seasonal patterns are returning toward those observed in prepandemic years, clinicians should be aware that off-season RSV circulation might continue. |
Seasonality of Common Human Coronaviruses, United States, 2014-2021.
Shah MM , Winn A , Dahl RM , Kniss KL , Silk BJ , Killerby ME . Emerg Infect Dis 2022 28 (10) 1970-1976 The 4 common types of human coronaviruses (HCoVs)-2 alpha (HCoV-NL63 and HCoV-229E) and 2 beta (HCoV-HKU1 and HCoV-OC43)-generally cause mild upper respiratory illness. Seasonal patterns and annual variation in predominant types of HCoVs are known, but parameters of expected seasonality have not been defined. We defined seasonality of HCoVs during July 2014-November 2021 in the United States by using a retrospective method applied to National Respiratory and Enteric Virus Surveillance System data. In the 6 HCoV seasons before 2020-21, season onsets occurred October 21-November 12, peaks January 6-February 13, and offsets April 18-June 27; most (>93%) HCoV detection was within the defined seasonal onsets and offsets. The 2020-21 HCoV season onset was 11 weeks later than in prior seasons, probably associated with COVID-19 mitigation efforts. Better definitions of HCoV seasonality can be used for clinical preparedness and for determining expected patterns of emerging coronaviruses. |
Increase in Acute Respiratory Illnesses Among Children and Adolescents Associated with Rhinoviruses and Enteroviruses, Including Enterovirus D68 - United States, July-September 2022.
Ma KC , Winn A , Moline HL , Scobie HM , Midgley CM , Kirking HL , Adjemian J , Hartnett KP , Johns D , Jones JM , Lopez A , Lu X , Perez A , Perrine CG , Rzucidlo AE , McMorrow ML , Silk BJ , Stein Z , Vega E , Hall AJ . MMWR Morb Mortal Wkly Rep 2022 71 (40) 1265-1270 Increases in severe respiratory illness and acute flaccid myelitis (AFM) among children and adolescents resulting from enterovirus D68 (EV-D68) infections occurred biennially in the United States during 2014, 2016, and 2018, primarily in late summer and fall. Although EV-D68 annual trends are not fully understood, EV-D68 levels were lower than expected in 2020, potentially because of implementation of COVID-19 mitigation measures (e.g., wearing face masks, enhanced hand hygiene, and physical distancing) (1). In August 2022, clinicians in several geographic areas notified CDC of an increase in hospitalizations of pediatric patients with severe respiratory illness and positive rhinovirus/enterovirus (RV/EV) test results.* Surveillance data were analyzed from multiple national data sources to characterize reported trends in acute respiratory illness (ARI), asthma/reactive airway disease (RAD) exacerbations, and the percentage of positive RV/EV and EV-D68 test results during 2022 compared with previous years. These data demonstrated an increase in emergency department (ED) visits by children and adolescents with ARI and asthma/RAD in late summer 2022. The percentage of positive RV/EV test results in national laboratory-based surveillance and the percentage of positive EV-D68 test results in pediatric sentinel surveillance also increased during this time. Previous increases in EV-D68 respiratory illness have led to substantial resource demands in some hospitals and have also coincided with increases in cases of AFM (2), a rare but serious neurologic disease affecting the spinal cord. Therefore, clinicians should consider AFM in patients with acute flaccid limb weakness, especially after respiratory illness or fever, and ensure prompt hospitalization and referral to specialty care for such cases. Clinicians should also test for poliovirus infection in patients suspected of having AFM because of the clinical similarity to acute flaccid paralysis caused by poliovirus. Ongoing surveillance for EV-D68 is critical to ensuring preparedness for possible future increases in ARI and AFM. |
Notes from the Field: School-Based and Laboratory-Based Reporting of Positive COVID-19 Test Results Among School-Aged Children - New York, September 11, 2021-April 29, 2022.
Shircliff EJ , Rosenberg ES , Collens LM , Hoefer D , Lutterloh E , Silk BJ , Winn AK , O'Donnell TT . MMWR Morb Mortal Wkly Rep 2022 71 (32) 1029-1031 By April 29, 2022, a total of 702,686 COVID-19 cases were reported among children and adolescents aged 5–17 years in the state of New York.* Pediatric COVID-19 cases and hospitalizations increased during the 2021–22 school year, driven by transmission of the Omicron variant† (1). In late 2021, during the surge in Omicron BA.1 variant cases, state§ and federal¶ authorities expanded access to self-administered, at-home rapid antigen tests, which can increase a person’s knowledge of their COVID-19 status and guide risk-reduction behaviors. New York government agencies sent millions of these tests to schools for distribution to teachers, students, and staff members. Because results of self-administered, at-home tests are not captured by electronic laboratory reporting (in contrast to health care provider–administered tests at a physician’s office or laboratory that are reported through electronic health records or other means), expanded use of these tests might affect interpretation of trends in reported COVID-19 cases; however, this has yet to be assessed** (2). Furthermore, understanding changes in testing behavior before and after the Omicron variant surge might help public health officials better use available COVID-19 data to guide future policy. |
The measurement of intimate partner violence using International Classification of Diseases diagnostic codes: A systematic review
Rebbe R , Adhia A , Eastman AL , Chen M , Winn J . Trauma Violence Abuse 2022 24 (4) 15248380221090977 Intimate partner violence (IPV) is challenging to measure yet systematic surveillance of IPV is critical to informing public health prevention and response efforts. Administrative medical data provide opportunities for such surveillance, and often use the International Classification of Diseases (ICD). The primary purpose of this systematic review was to document which ICD codes have been used in empirical literature to identify IPV, understand the justification used to select specific codes to develop IPV case definitions, and identify the data sources and types of research questions addressed by the existing literature. We searched 11 databases and of the initial 2182 results, 21 empirical studies from 2000 to 2020 met the study inclusion criteria including using ICD codes to measure IPV. The majority of these studies (90.5%) used either national samples of data or population-based administrative data from emergency departments (52.4%) or inpatient hospitalizations (38.1%). We found wide variation of ICD diagnostic codes to measure IPV and categorized the sets of codes used based on the number of codes. The most commonly used ICD-9 codes were E967.3, 995.81, 995.80, 995.85 and the most common ICD-10 codes were T74.1 and Z63.0. Few studies validated the ICD codes used to measure IPV. Most included studies (81.0%) answered epidemiological research questions. The current study provides suggestions for future research, including justifying the selection of ICD codes and providing a range of estimates based on narrow and broad sets of codes. Implications for policy and practice, including enhanced training for healthcare professionals in documenting IPV, are discussed. |
Major changes in spatiotemporal trends of US rotavirus laboratory detections after rotavirus vaccine introduction-2009-2021
Burnett E , Parashar UD , Winn A , Curns AT , Tate JE . Pediatr Infect Dis J 2022 41 (9) 759-763 For the 15 years before rotavirus vaccine introduction in 2006, annual rotavirus activity in the United States showed a distinct spatiotemporal pattern, peaking first in the Southwest and last in the Northeast. We modeled spatiotemporal trends in rotavirus laboratory detections from 2009 to 2021. Laboratories reporting to the National Respiratory and Enteric Virus Surveillance System were eligible for inclusion in a given surveillance year (July to June) if ≥1 polymerase chain reaction or enzyme immunoassay rotavirus test per week was reported during ≥26 weeks and totaling ≥100 annual tests. For each laboratory, the season peak was the week with the highest 7-week moving average of the number of rotavirus positive tests during the national season, defined as the period with a 3-week moving average of >10% rotavirus positivity lasting ≥2 consecutive weeks. We input peak week as a continuous variable and the geospatial coordinates of each laboratory into a spherical variogram model for Kriging spatial interpolation. We also created a state-level bivariate choropleth map using tertiles of the 2010-2019 average birth rates and rotavirus vaccine coverage. Following the established biennial trend, the 2010-2011, 2012-2013, 2014-2015, 2016-2017, and 2018-2019 surveillance years had >10% rotavirus positivity for ≥2 weeks and were included in the geospatial analysis. During all 5 seasons included in the geospatial analysis, the earliest peak week occurred in Oklahoma, Arkansas, and the western Gulf coast, a pattern markedly different from prevaccine seasons. These states also had the average lowest rotavirus vaccine coverage and highest birth rate, suggesting that more rapid accumulation of susceptible children drives annual rotavirus season activity. Increasing vaccine coverage remains a key tool in reducing rotavirus burden. |
Pediatric Emergency Department Visits Associated with Mental Health Conditions Before and During the COVID-19 Pandemic - United States, January 2019-January 2022.
Radhakrishnan L , Leeb RT , Bitsko RH , Carey K , Gates A , Holland KM , Hartnett KP , Kite-Powell A , DeVies J , Smith AR , van Santen KL , Crossen S , Sheppard M , Wotiz S , Lane RI , Njai R , Johnson AG , Winn A , Kirking HL , Rodgers L , Thomas CW , Soetebier K , Adjemian J , Anderson KN . MMWR Morb Mortal Wkly Rep 2022 71 (8) 319-324 In 2021, a national emergency* for children's mental health was declared by several pediatric health organizations, and the U.S. Surgeon General released an advisory(†) on mental health among youths. These actions resulted from ongoing concerns about children's mental health in the United States, which was exacerbated by the COVID-19 pandemic (1,2). During March-October 2020, among all emergency department (ED) visits, the proportion of mental health-related visits increased by 24% among U.S. children aged 5-11 years and 31% among adolescents aged 12-17 years, compared with 2019 (2). CDC examined changes in U.S. pediatric ED visits for overall mental health conditions (MHCs) and ED visits associated with specific MHCs (depression; anxiety; disruptive behavioral and impulse-control disorders; attention-deficit/hyperactivity disorder; trauma and stressor-related disorders; bipolar disorders; eating disorders; tic disorders; and obsessive-compulsive disorders [OCD]) during 2019 through January 2022 among children and adolescents aged 0-17 years, overall and by sex and age. After declines in weekly visits associated with MHCs among those aged 0-17 years during 2020, weekly numbers of ED visits for MHCs overall and for specific MHCs varied by age and sex during 2021 and January 2022, when compared with corresponding weeks in 2019. Among adolescent females aged 12-17 years, weekly visits increased for two of nine MHCs during 2020 (eating disorders and tic disorders), for four of nine MHCs during 2021 (depression, eating disorders, tic disorders, and OCD), and for five of nine MHCs during January 2022 (anxiety, trauma and stressor-related disorders, eating disorders, tic disorders, and OCD), and overall MHC visits during January 2022, compared with 2019. Early identification and expanded evidence-based prevention and intervention strategies are critical to improving children's and adolescents' mental health (1-3), especially among adolescent females, who might have increased need. |
Pediatric Emergency Department Visits Before and During the COVID-19 Pandemic - United States, January 2019-January 2022.
Radhakrishnan L , Carey K , Hartnett KP , Kite-Powell A , Zwald M , Anderson KN , Leeb RT , Holland KM , Gates A , DeVies J , Smith AR , van Santen KL , Crossen S , Sheppard M , Wotiz S , Johnson AG , Winn A , Kirking HL , Lane RI , Njai R , Rodgers L , Thomas CW , Soetebier K , Adjemian J . MMWR Morb Mortal Wkly Rep 2022 71 (8) 313-318 Emergency departments (EDs) in the United States remain a frontline resource for pediatric health care emergencies during the COVID-19 pandemic; however, patterns of health-seeking behavior have changed during the pandemic (1,2). CDC examined changes in U.S. ED visit trends to assess the continued impact of the pandemic on visits among children and adolescents aged 0-17 years (pediatric ED visits). Compared with 2019, pediatric ED visits declined by 51% during 2020, 22% during 2021, and 23% during January 2022. Although visits for non-COVID-19 respiratory illnesses mostly declined, the proportion of visits for some respiratory conditions increased during January 2022 compared with 2019. Weekly number and proportion of ED visits increased for certain types of injuries (e.g., drug poisonings, self-harm, and firearm injuries) and some chronic diseases, with variation by pandemic year and age group. Visits related to behavioral concerns increased across pandemic years, particularly among older children and adolescents. Health care providers and families should remain vigilant for potential indirect impacts of the COVID-19 pandemic, including health conditions resulting from delayed care, and increasing emotional distress and behavioral health concerns among children and adolescents. |
Trends in rotavirus laboratory detections and internet search volume before and after rotavirus vaccine introduction and in the context of the COVID-19 pandemic-- United States 2000-2021.
Burnett E , Parashar UD , Winn A , Tate JE . J Infect Dis 2022 226 (6) 967-974 BACKGROUND: Since rotavirus vaccines became available in the United States in 2006, there have been reductions in rotavirus hospitalizations, changes in seasonality, and the emergence of a biennial trend of rotavirus activity. Reductions in other pathogens have been associated with COVID-19 mitigation measures. We assessed ongoing rotavirus disease trends during the COVID-19 pandemic. METHODS: We report a 3-week moving average of the number of rotavirus tests, positive tests, and the percent positivity from laboratories reporting to the National Respiratory and Enteric Virus Surveillance System (NREVSS) from July 2000-June 2021. To complement NREVSS data, we analyzed Google internet search interest in "rotavirus" from July 2004 to June 2021. RESULTS: Declines in rotavirus activity following vaccine introduction and the biennial trend are evident through the 2018-2019 surveillance year. In 2019-2021, rotavirus test positivity was below the historic ranges during the months of typically high rotavirus activity and precipitous declines were noted in March 2020. CONCLUSIONS: In the 15 years since rotavirus vaccine was introduced, the number of laboratory-detected rotavirus infections has been consistently lower than during the pre-vaccine era. During the COVID-19 pandemic, rotavirus activity was suppressed. There may be many rotavirus susceptible children during the 2021-2022 rotavirus season. |
Respiratory syncytial virus-associated deaths in the United States according to death certificate data, 2005 to 2016
Prill MM , Langley GE , Winn A , Gerber SI . Health Sci Rep 2021 4 (4) e428 BACKGROUND AND AIMS: In the United States, respiratory infections due to respiratory syncytial virus (RSV) cause an estimated 57 000 hospitalizations annually among children aged <5 years and 177 000 hospitalizations among adults aged ≥65 years. RSV-associated deaths are less well described. It will be important to establish a baseline of RSV-coded deaths prior to the introduction of vaccines, immunoprophylaxis products, and anti-viral therapies currently in development. METHODS: US death certificate data for all ages from 2005 through 2016 were compiled through the National Center for Health Statistics. Deaths with International Classification of Diseases codes of J12.1 (RSV-pneumonia), J20.5 (RSV-bronchitis), or J21.0 (RSV-bronchiolitis) assigned as either the underlying cause of death or a contributing cause of death were considered "RSV-associated" for this analysis. RESULTS: Among 30.5 million deaths, 1001 (.003%) were assigned an RSV-associated cause of death as follows: 697 (69.6%) RSV-pneumonia, 277 (27.7%) RSV-bronchiolitis, 17 (1.7%) RSV-bronchitis, and 10 (1.0%) with multiple RSV-associated causes. Most deaths were among children <5 (47.8%) and adults ≥50 (40.4%) years of age. Almost half (46.8%) had an RSV-associated cause as the primary underlying cause of death. The average annual number of RSV-associated deaths did not significantly change among those aged <5 and 5 to 49 years. However, RSV-pneumonia deaths among adults aged ≥50 years increased from 17.6 in 2005 to 2012 to 57.3 in 2013 to 2016 (P value <.0001). CONCLUSIONS: From 2005 to 2016, the number of recorded RSV-associated deaths increased, primarily due to greater RSV-associated pneumonia deaths among older adults since 2013. The reasons for this increase are not clear but likely reflect increased testing for RSV among adults. The number of RSV-associated deaths according to death certificates compared with estimates derived from active, laboratory-confirmed surveillance and models using hospital administrative data suggests that counts from death certificates are a large underestimation, particularly among adults. |
Changes in Influenza and Other Respiratory Virus Activity During the COVID-19 Pandemic - United States, 2020-2021.
Olsen SJ , Winn AK , Budd AP , Prill MM , Steel J , Midgley CM , Kniss K , Burns E , Rowe T , Foust A , Jasso G , Merced-Morales A , Davis CT , Jang Y , Jones J , Daly P , Gubareva L , Barnes J , Kondor R , Sessions W , Smith C , Wentworth DE , Garg S , Havers FP , Fry AM , Hall AJ , Brammer L , Silk BJ . MMWR Morb Mortal Wkly Rep 2021 70 (29) 1013-1019 The COVID-19 pandemic and subsequent implementation of nonpharmaceutical interventions (e.g., cessation of global travel, mask use, physical distancing, and staying home) reduced transmission of some viral respiratory pathogens (1). In the United States, influenza activity decreased in March 2020, was historically low through the summer of 2020 (2), and remained low during October 2020-May 2021 (<0.4% of respiratory specimens with positive test results for each week of the season). Circulation of other respiratory pathogens, including respiratory syncytial virus (RSV), common human coronaviruses (HCoVs) types OC43, NL63, 229E, and HKU1, and parainfluenza viruses (PIVs) types 1-4 also decreased in early 2020 and did not increase until spring 2021. Human metapneumovirus (HMPV) circulation decreased in March 2020 and remained low through May 2021. Respiratory adenovirus (RAdV) circulated at lower levels throughout 2020 and as of early May 2021. Rhinovirus and enterovirus (RV/EV) circulation decreased in March 2020, remained low until May 2020, and then increased to near prepandemic seasonal levels. Circulation of respiratory viruses could resume at prepandemic levels after COVID-19 mitigation practices become less stringent. Clinicians should be aware of increases in some respiratory virus activity and remain vigilant for off-season increases. In addition to the use of everyday preventive actions, fall influenza vaccination campaigns are an important component of prevention as COVID-19 mitigation measures are relaxed and schools and workplaces resume in-person activities. |
Pulmonary and systemic toxicity in rats following inhalation exposure of 3-D printer emissions from acrylonitrile butadiene styrene (ABS) filament
Farcas MT , McKinney W , Qi C , Mandler KW , Battelli L , Friend SA , Stefaniak AB , Jackson M , Orandle M , Winn A , Kashon M , LeBouf RF , Russ KA , Hammond DR , Burns D , Ranpara A , Thomas TA , Matheson J , Qian Y . Inhal Toxicol 2020 32 1-16 BACKGROUND: Fused filament fabrication 3-D printing with acrylonitrile butadiene styrene (ABS) filament emits ultrafine particulates (UFPs) and volatile organic compounds (VOCs). However, the toxicological implications of the emissions generated during 3-D printing have not been fully elucidated. AIM AND METHODS: The goal of this study was to investigate the in vivo toxicity of ABS-emissions from a commercial desktop 3-D printer. Male Sprague Dawley rats were exposed to a single concentration of ABS-emissions or air for 4 hours/day, 4 days/week for five exposure durations (1, 4, 8, 15, and 30 days). At 24 hours after the last exposure, rats were assessed for pulmonary injury, inflammation, and oxidative stress as well as systemic toxicity. RESULTS AND DISCUSSION: 3-D printing generated particulate with average particle mass concentration of 240 ± 90 µg/m³, with an average geometric mean particle mobility diameter of 85 nm (geometric standard deviation = 1.6). The number of macrophages increased significantly at day 15. In bronchoalveolar lavage, IFN-γ and IL-10 were significantly higher at days 1 and 4, with IL-10 levels reaching a peak at day 15 in ABS-exposed rats. Neither pulmonary oxidative stress responses nor histopathological changes of the lungs and nasal passages were found among the treatments. There was an increase in platelets and monocytes in the circulation at day 15. Several serum biomarkers of hepatic and kidney functions were significantly higher at day 1. CONCLUSIONS: At the current experimental conditions applied, it was concluded that the emissions from ABS filament caused minimal transient pulmonary and systemic toxicity. |
Adverse effects profile of dicycloplatin (DCP) offers chemotherapeutic advantage over cisplatin and carboplatin
Yu JJ , Hogan T , Morley C , Crigger C , Jiao S , Williams DJ , Salkini MW , Yang X , Liang X , Yan B , Cecil C , Winn AC , Zheng J , Guo YI , Jiang BH , Washington IM . Anticancer Res 2019 39 (8) 4455-4462 BACKGROUND/AIM: Platinum-based chemotherapy often fails due to its severe adverse effects. The aim of this study was to examine the adverse effects profile and efficacy of dicycloplatin and compare them to those of cisplatin and carboplatin. MATERIALS AND METHODS: Cystoscopy surveillance of the first American cancer patient treated with dicycloplatin was performed quarterly. In vitro and in vivo studies were conducted using immunoblotting and flow cytometry to assess immune status of spleen and bone marrow of mice treated with dicycloplatin, cisplatin and carboplatin. RESULTS: The American patient did not suffer clinically significant myelosuppression; dicycloplatin has sustained remission in this patient to date. Experimental studies showed that dicycloplatin is less toxic to bone marrow and spleen of mice than cisplatin and carboplatin. CONCLUSION: Dicycloplatin is a promising drug in cancer chemotherapy with less aggressive side-effects than those typically associated with cisplatin and carboplatin. This is an important therapeutic advantage in cancer chemotherapy. Clinical investigation of dicycloplatin as an alternative to cisplatin or carboplatin is warranted. |
A collaborative translational research framework for evaluating and implementing the appropriate use of human genome sequencing to improve health
Khoury MJ , Feero WG , Chambers DA , Brody LE , Aziz N , Green RC , Janssens Acjw , Murray MF , Rodriguez LL , Rutter JL , Schully SD , Winn DM , Mensah GA . PLoS Med 2018 15 (8) e1002631 In a Policy Forum, Muin Khoury and colleagues discuss research on the clinical application of genome sequencing data. |
Vital Signs: Disparities in tobacco-related cancer incidence and mortality - United States, 2004-2013
Henley SJ , Thomas CC , Sharapova SR , Momin B , Massetti GM , Winn DM , Armour BS , Richardson LC . MMWR Morb Mortal Wkly Rep 2016 65 (44) 1212-1218 BACKGROUND: Tobacco use causes at least 12 types of cancer and is the leading preventable cause of cancer. METHODS: Data from the United States Cancer Statistics dataset for 2004-2013 were used to assess incidence and death rates and trends for cancers that can be caused by tobacco use (tobacco-related cancers: oral cavity and pharynx; esophagus; stomach; colon and rectum; liver; pancreas; larynx; lung, bronchus, and trachea; kidney and renal pelvis; urinary bladder; cervix; and acute myeloid leukemia) by sex, age, race, ethnicity, state, county-level poverty and educational attainment, and cancer site. RESULTS: Each year during 2009-2013, on average, 660,000 persons in the United States received a diagnosis of a tobacco-related cancer, and 343,000 persons died from these cancers. Tobacco-related cancer incidence and death rates were higher among men than women; highest among black men and women; higher in counties with low proportion of college graduates or high level of poverty; lowest in the West; and differed two-fold among states. During 2004-2013, incidence of tobacco-related cancer decreased 1.3% per year and mortality decreased 1.6% per year, with decreases observed across most groups, but not at the same rate. CONCLUSIONS: Tobacco-related cancer declined during 2004-2013. However, the burden remains high, and disparities persist among certain groups with higher rates or slower declines in rates. IMPLICATIONS FOR PUBLIC HEALTH PRACTICE: The burden of tobacco-related cancers can be reduced through efforts to prevent and control tobacco use and other comprehensive cancer control efforts focused on reducing cancer risk, detecting cancer early, improving cancer treatments, helping more persons survive cancer, improving cancer survivors' quality of life, and better assisting communities disproportionately impacted by cancer. |
Population-Based Precision Cancer Screening: A Symposium on Evidence, Epidemiology, and Next Steps.
Marcus PM , Pashayan N , Church TR , Doria-Rose VP , Gould MK , Hubbard RA , Marrone M , Miglioretti DL , Pharoah PD , Pinsky PF , Rendle KA , Robbins HA , Roberts MC , Rolland B , Schiffman M , Tiro JA , Zauber AG , Winn DM , Khoury MJ . Cancer Epidemiol Biomarkers Prev 2016 25 (11) 1449-1455 Precision medicine, an emerging approach for disease treatment that takes into account individual variability in genes, environment, and lifestyle, is under consideration for preventive interventions, including cancer screening. On September 29, 2015, the National Cancer Institute sponsored a symposium entitled "Precision Cancer Screening in the General Population: Evidence, Epidemiology, and Next Steps". The goal was two-fold: to share current information on the evidence, practices, and challenges surrounding precision screening for breast, cervical, colorectal, lung, and prostate cancers, and to allow for in-depth discussion among experts in relevant fields regarding how epidemiology and other population sciences can be used to generate evidence to inform precision screening strategies. Attendees concluded that the strength of evidence for efficacy and effectiveness of precision strategies varies by cancer site, that no one research strategy or methodology would be able or appropriate to address the many knowledge gaps in precision screening, and that issues surrounding implementation must be researched as well. Additional discussion needs to occur to identify the high priority research areas in precision cancer screening for pertinent organs and to gather the necessary evidence to determine whether further implementation of precision cancer screening strategies in the general population would be feasible and beneficial. |
Cost-utility analysis of cancer prevention, treatment, and control: a systematic review
Winn AN , Ekwueme DU , Guy GP Jr , Neumann PJ . Am J Prev Med 2015 50 (2) 241-8 CONTEXT: Substantial innovation related to cancer prevention and treatment has occurred in recent decades. However, these innovations have often come at a significant cost. Cost-utility analysis provides a useful framework to assess if the benefits from innovation are worth the additional cost. This systematic review on published cost-utility analyses related to cancer care is from 1988 through 2013. Analyses were conducted in 2013-2015. EVIDENCE ACQUISITION: This review analyzed data from the Tufts Medical Center Cost-Effectiveness Analysis Registry (www.cearegistry.org), a comprehensive registry with detailed information on 4,339 original cost-utility analyses published in the peer-reviewed medical and economic literature through 2013. EVIDENCE SYNTHESIS: There were 721 cancer-related cost-utility analyses published from 1998 through 2013, with roughly 12% of studies focused on primary prevention and 17% focused on secondary prevention. The most often studied cancers were breast cancer (29%); colorectal cancer (11%); and prostate cancer (8%). The median reported incremental cost-effectiveness ratios (in 2014 U.S. dollars) were $25,000 for breast cancer, $24,000 for colorectal cancer, and $34,000 for prostate cancer. CONCLUSIONS: The current evidence indicates that there are many interventions that are cost effective across cancer sites and levels of prevention. However, the results highlight the relatively small number of cancer cost-utility analyses devoted to primary prevention compared with secondary or tertiary prevention. |
Epigenetic research in cancer epidemiology: trends, opportunities, and challenges.
Verma M , Rogers S , Divi RL , Schully SD , Nelson S , Joseph Su L , Ross SA , Pilch S , Winn DM , Khoury MJ . Cancer Epidemiol Biomarkers Prev 2014 23 (2) 223-33 Epigenetics is emerging as an important field in cancer epidemiology that promises to provide insights into gene regulation and facilitate cancer control throughout the cancer care continuum. Increasingly, investigators are incorporating epigenetic analysis into the studies of etiology and outcomes. To understand current progress and trends in the inclusion of epigenetics in cancer epidemiology, we evaluated the published literature and the National Cancer Institute (NCI)-supported research grant awards in this field to identify trends in epigenetics research. We present a summary of the epidemiologic studies in NCI's grant portfolio (from January 2005 through December 2012) and in the scientific literature published during the same period, irrespective of support from the NCI. Blood cells and tumor tissue were the most commonly used biospecimens in these studies, although buccal cells, cervical cells, sputum, and stool samples were also used. DNA methylation profiling was the focus of the majority of studies, but several studies also measured microRNA profiles. We illustrate here the current status of epidemiologic studies that are evaluating epigenetic changes in large populations. The incorporation of epigenomic assessments in cancer epidemiology studies has and is likely to continue to provide important insights into the field of cancer research. |
Transforming epidemiology for 21st century medicine and public health.
Khoury MJ , Lam TK , Ioannidis JP , Hartge P , Spitz MR , Buring JE , Chanock SJ , Croyle R , Goddard KA , Ginsburg GS , Herceg Z , Hiatt RA , Hoover RN , Hunter DJ , Kramer BS , Lauer MS , Meyerhardt JA , Olopade OI , Palmer JR , Sellers TA , Seminara D , Ransohoff DF , Rebbeck TR , Tourassi G , Zauber AG , Winn DM , Schully SD . Cancer Epidemiol Biomarkers Prev 2013 22 (4) 508-16 In 2012, the National Cancer Institute (NCI) engaged the scientific community to provide a vision for cancer epidemiology in the 21st century. Eight overarching thematic recommendations, with proposed corresponding actions for consideration by funding agencies, professional societies, and the research community emerged from the collective intellectual discourse. The themes are (i) extending the reach of epidemiology beyond discovery and etiologic research to include multilevel analysis, intervention evaluation, implementation, and outcomes research; (ii) transforming the practice of epidemiology by moving towards more access and sharing of protocols, data, metadata, and specimens to foster collaboration, to ensure reproducibility and replication, and accelerate translation; (iii) expanding cohort studies to collect exposure, clinical and other information across the life course and examining multiple health-related endpoints; (iv) developing and validating reliable methods and technologies to quantify exposures and outcomes on a massive scale, and to assess concomitantly the role of multiple factors in complex diseases; (v) integrating "big data" science into the practice of epidemiology; (vi) expanding knowledge integration to drive research, policy and practice; (vii) transforming training of 21st century epidemiologists to address interdisciplinary and translational research; and (viii) optimizing the use of resources and infrastructure for epidemiologic studies. These recommendations can transform cancer epidemiology and the field of epidemiology in general, by enhancing transparency, interdisciplinary collaboration, and strategic applications of new technologies. They should lay a strong scientific foundation for accelerated translation of scientific discoveries into individual and population health benefits. |
Recommendations and proposed guidelines for assessing the cumulative evidence on joint effects of genes and environments on cancer occurrence in humans.
Boffetta P , Winn DM , Ioannidis JP , Thomas DC , Little J , Davey Smith G , Cogliano VJ , Hecht SS , Seminara D , Vineis P , Khoury MJ . Int J Epidemiol 2012 41 (3) 686-704 We propose guidelines to evaluate the cumulative evidence of gene-environment (G x E) interactions in the causation of human cancer. Our approach has its roots in the HuGENet and IARC Monographs evaluation processes for genetic and environmental risk factors, respectively, and can be applied to common chronic diseases other than cancer. We first review issues of definitions of G x E interactions, discovery and modelling methods for G x E interactions, and issues in systematic reviews of evidence for G x E interactions, since these form the foundation for appraising the credibility of evidence in this contentious field. We then propose guidelines that include four steps: (i) score the strength of the evidence for main effects of the (a) environmental exposure and (b) genetic variant; (ii) establish a prior score category and decide on the pattern of interaction to be expected; (iii) score the strength of the evidence for interaction between the environmental exposure and the genetic variant; and (iv) examine the overall plausibility of interaction by combining the prior score and the strength of the evidence and interpret results. We finally apply the scheme to the interaction between NAT2 polymorphism and tobacco smoking in determining bladder cancer risk. |
Strengthening the reporting of genetic risk prediction studies (GRIPS): explanation and elaboration.
Janssens AC , Ioannidis JP , Bedrosian S , Boffetta P , Dolan SM , Dowling N , Fortier I , Freedman AN , Grimshaw JM , Gulcher J , Gwinn M , Hlatky MA , Janes H , Kraft P , Melillo S , O'Donnell CJ , Pencina MJ , Ransohoff D , Schully SD , Seminara D , Winn DM , Wright CF , van Duijn CM , Little J , Khoury MJ . Eur J Hum Genet 2011 19 (5) 18 p preceding 494 The rapid and continuing progress in gene discovery for complex diseases is fueling interest in the potential application of genetic risk models for clinical and public health practice. The number of studies assessing the predictive ability is steadily increasing, but they vary widely in completeness of reporting and apparent quality. Transparent reporting of the strengths and weaknesses of these studies is important to facilitate the accumulation of evidence on genetic risk prediction. A multidisciplinary workshop sponsored by the Human Genome Epidemiology Network developed a checklist of 25 items recommended for strengthening the reporting of Genetic RIsk Prediction Studies (GRIPS), building on the principles established by previous reporting guidelines. These recommendations aim to enhance the transparency, quality and completeness of study reporting, and thereby to improve the synthesis and application of information from multiple studies that might differ in design, conduct or analysis. |
Strengthening the reporting of genetic risk prediction studies (GRIPS): explanation and elaboration.
Janssens AC , Ioannidis JP , Bedrosian S , Boffetta P , Dolan SM , Dowling N , Fortier I , Freedman AN , Grimshaw JM , Gulcher J , Gwinn M , Hlatky MA , Janes H , Kraft P , Melillo S , O'Donnell CJ , Pencina MJ , Ransohoff D , Schully SD , Seminara D , Winn DM , Wright CF , van Duijn CM , Little J , Khoury MJ . Eur J Epidemiol 2011 26 (4) 313-37 The rapid and continuing progress in gene discovery for complex diseases is fuelling interest in the potential application of genetic risk models for clinical and public health practice. The number of studies assessing the predictive ability is steadily increasing, but they vary widely in completeness of reporting and apparent quality. Transparent reporting of the strengths and weaknesses of these studies is important to facilitate the accumulation of evidence on genetic risk prediction. A multidisciplinary workshop sponsored by the Human Genome Epidemiology Network developed a checklist of 25 items recommended for strengthening the reporting of Genetic RIsk Prediction Studies (GRIPS), building on the principles established by prior reporting guidelines. These recommendations aim to enhance the transparency, quality and completeness of study reporting, and thereby to improve the synthesis and application of information from multiple studies that might differ in design, conduct or analysis. |
Strengthening the reporting of Genetic RIsk Prediction Studies (GRIPS): explanation and elaboration.
Janssens AC , Ioannidis JP , Bedrosian S , Boffetta P , Dolan SM , Dowling N , Fortier I , Freedman AN , Grimshaw JM , Gulcher J , Gwinn M , Hlatky MA , Janes H , Kraft P , Melillo S , O'Donnell CJ , Pencina MJ , Ransohoff D , Schully SD , Seminara D , Winn DM , Wright CF , van Duijn CM , Little J , Khoury MJ . J Clin Epidemiol 2011 64 (8) e1-e22 The rapid and continuing progress in gene discovery for complex diseases is fuelling interest in the potential application of genetic risk models for clinical and public health practice. The number of studies assessing the predictive ability is steadily increasing, but they vary widely in completeness of reporting and apparent quality. Transparent reporting of the strengths and weaknesses of these studies is important to facilitate the accumulation of evidence on genetic risk prediction. A multidisciplinary workshop sponsored by the Human Genome Epidemiology Network developed a checklist of 25 items recommended for strengthening the reporting of Genetic RIsk Prediction Studies (GRIPS), building on the principles established by prior reporting guidelines. These recommendations aim to enhance the transparency, quality and completeness of study reporting, and thereby to improve the synthesis and application of information from multiple studies that might differ in design, conduct or analysis. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure