Last data update: Nov 04, 2024. (Total: 48056 publications since 2009)
Records 1-30 (of 98 Records) |
Query Trace: Wassilak S[original query] |
---|
Update on vaccine-derived poliovirus outbreaks - worldwide, January 2023-June 2024
Namageyo-Funa A , Greene SA , Henderson E , Traoré MA , Shaukat S , Bigouette JP , Jorba J , Wiesen E , Bolu O , Diop OM , Burns CC , Wassilak SGF . MMWR Morb Mortal Wkly Rep 2024 73 (41) 909-916 Circulating vaccine-derived polioviruses (cVDPVs) can emerge and lead to outbreaks of paralytic polio as well as asymptomatic transmission in communities with a high percentage of undervaccinated children. Using data from the World Health Organization Polio Information System and Global Polio Laboratory Network, this report describes global polio outbreaks due to cVDPVs during January 2023-June 2024 and updates previous reports. During the reporting period, 74 cVDPV outbreaks were detected in 39 countries or areas (countries), predominantly in Africa. Among these 74 cVDPV outbreaks, 47 (64%) were new outbreaks, detected in 30 (77%) of the 39 countries. Three countries reported cVDPV type 1 (cVDPV1) outbreaks and 38 countries reported cVDPV type 2 (cVDPV2) outbreaks; two of these countries reported cocirculating cVDPV1 and cVDPV2. In the 38 countries with cVDPV2 transmission, 70 distinct outbreaks were reported. In 15 countries, cVDPV transmission has lasted >1 year into 2024. In Nigeria and Somalia, both countries with security-compromised areas, persistent cVDPV2 transmission has spread to neighboring countries. Delayed implementation of outbreak response campaigns and low-quality campaigns have resulted in further international spread. Countries can control cVDPV outbreaks with timely allocation of resources to implement prompt, high-quality responses after outbreak confirmation. Stopping all cVDPV transmission requires effectively increasing population immunity by overcoming barriers to reaching children. |
Increasing population immunity prior to globally-coordinated cessation of bivalent oral poliovirus vaccine (bOPV)
Badizadegan ND , Wassilak SGF , Estívariz CF , Wiesen E , Burns CC , Bolu O , Thompson KM . Pathogens 2024 13 (9) In 2022, global poliovirus modeling suggested that coordinated cessation of bivalent oral poliovirus vaccine (bOPV, containing Sabin-strain types 1 and 3) in 2027 would likely increase the risks of outbreaks and expected paralytic cases caused by circulating vaccine-derived polioviruses (cVDPVs), particularly type 1. The analysis did not include the implementation of planned, preventive supplemental immunization activities (pSIAs) with bOPV to achieve and maintain higher population immunity for types 1 and 3 prior to bOPV cessation. We reviewed prior published OPV cessation modeling studies to support bOPV cessation planning. We applied an integrated global poliovirus transmission and OPV evolution model after updating assumptions to reflect the epidemiology, immunization, and polio eradication plans through the end of 2023. We explored the effects of bOPV cessation in 2027 with and without additional bOPV pSIAs prior to 2027. Increasing population immunity for types 1 and 3 with bOPV pSIAs (i.e., intensification) could substantially reduce the expected global risks of experiencing cVDPV outbreaks and the number of expected polio cases both before and after bOPV cessation. We identified the need for substantial increases in overall bOPV coverage prior to bOPV cessation to achieve a high probability of successful bOPV cessation. |
Progress toward poliomyelitis eradication - worldwide, January 2022-December 2023
Geiger K , Stehling-Ariza T , Bigouette JP , Bennett SD , Burns CC , Quddus A , Wassilak SGF , Bolu O . MMWR Morb Mortal Wkly Rep 2024 73 (19) 441-446 In 1988, poliomyelitis (polio) was targeted for eradication. Global efforts have led to the eradication of two of the three wild poliovirus (WPV) serotypes (types 2 and 3), with only WPV type 1 (WPV1) remaining endemic, and only in Afghanistan and Pakistan. This report describes global polio immunization, surveillance activities, and poliovirus epidemiology during January 2022-December 2023, using data current as of April 10, 2024. In 2023, Afghanistan and Pakistan identified 12 total WPV1 polio cases, compared with 22 in 2022. WPV1 transmission was detected through systematic testing for poliovirus in sewage samples (environmental surveillance) in 13 provinces in Afghanistan and Pakistan, compared with seven provinces in 2022. The number of polio cases caused by circulating vaccine-derived polioviruses (cVDPVs; circulating vaccine virus strains that have reverted to neurovirulence) decreased from 881 in 2022 to 524 in 2023; cVDPV outbreaks (defined as either a cVDPV case with evidence of circulation or at least two positive environmental surveillance isolates) occurred in 32 countries in 2023, including eight that did not experience a cVDPV outbreak in 2022. Despite reductions in paralytic polio cases from 2022, cVDPV cases and WPV1 cases (in countries with endemic transmission) were more geographically widespread in 2023. Renewed efforts to vaccinate persistently missed children in countries and territories where WPV1 transmission is endemic, strengthen routine immunization programs in countries at high risk for poliovirus transmission, and provide more effective cVDPV outbreak responses are necessary to further progress toward global polio eradication. |
Modeling the spread of circulating vaccine-derived poliovirus type 2 outbreaks and interventions: A case study of Nigeria
Sun Y , Keskinocak P , Steimle LN , Kovacs SD , Wassilak SG . Vaccine X 2024 18 100476 BACKGROUND: Despite the successes of the Global Polio Eradication Initiative, substantial challenges remain in eradicating the poliovirus. The Sabin-strain (live-attenuated) virus in oral poliovirus vaccine (OPV) can revert to circulating vaccine-derived poliovirus (cVDPV) in under-vaccinated communities, regain neurovirulence and transmissibility, and cause paralysis outbreaks. Since the cessation of type 2-containing OPV (OPV2) in 2016, there have been cVDPV type 2 (cVDPV2) outbreaks in four out of six geographical World Health Organization regions, making these outbreaks a significant public health threat. Preparing for and responding to cVDPV2 outbreaks requires an updated understanding of how different factors, such as outbreak responses with the novel type of OPV2 (nOPV2) and the existence of under-vaccinated areas, affect the disease spread. METHODS: We built a differential-equation-based model to simulate the transmission of cVDPV2 following reversion of the Sabin-strain virus in prolonged circulation. The model incorporates vaccinations by essential (routine) immunization and supplementary immunization activities (SIAs), the immunity induced by different poliovirus vaccines, and the reversion process from Sabin-strain virus to cVDPV. The model's outcomes include weekly cVDPV2 paralytic case counts and the die-out date when cVDPV2 transmission stops. In a case study of Northwest and Northeast Nigeria, we fit the model to data on the weekly cVDPV2 case counts with onset in 2018-2021. We then used the model to test the impact of different outbreak response scenarios during a prediction period of 2022-2023. The response scenarios included no response, the planned response (based on Nigeria's SIA calendar), and a set of hypothetical responses that vary in the dates at which SIAs started. The planned response scenario included two rounds of SIAs that covered almost all areas of Northwest and Northeast Nigeria except some under-vaccinated areas (e.g., Sokoto). The hypothetical response scenarios involved two, three, and four rounds of SIAs that covered the whole Northwest and Northeast Nigeria. All SIAs in tested outbreak response scenarios used nOPV2. We compared the outcomes of tested outbreak response scenarios in the prediction period. RESULTS: Modeled cVDPV2 weekly case counts aligned spatiotemporally with the data. The prediction results indicated that implementing the planned response reduced total case counts by 79% compared to no response, but did not stop the transmission, especially in under-vaccinated areas. Implementing the hypothetical response scenarios involving two rounds of nOPV2 SIAs that covered all areas further reduced cVDPV2 case counts in under-vaccinated areas by 91-95% compared to the planned response, with greater impact from completing the two rounds at an earlier time, but it did not stop the transmission. When the first two rounds were completed in early April 2022, implementing two additional rounds stopped the transmission in late January 2023. When the first two rounds were completed six weeks earlier (i.e., in late February 2022), implementing one (two) additional round stopped the transmission in early February 2023 (late November 2022). The die out was always achieved last in the under-vaccinated areas of Northwest and Northeast Nigeria. CONCLUSIONS: A differential-equation-based model of poliovirus transmission was developed and validated in a case study of Northwest and Northeast Nigeria. The results highlighted (i) the effectiveness of nOPV2 in reducing outbreak case counts; (ii) the need for more rounds of outbreak response SIAs that covered all of Northwest and Northeast Nigeria in 2022 to stop the cVDPV2 outbreaks; (iii) that persistent transmission in under-vaccinated areas delayed the progress towards stopping outbreaks; and (iv) that a quicker outbreak response would avert more paralytic cases and require fewer SIA rounds to stop the outbreaks. |
Poliovirus type 1 systemic humoral and intestinal mucosal immunity induced by monovalent oral poliovirus vaccine, fractional inactivated poliovirus vaccine, and bivalent oral poliovirus vaccine: A randomized controlled trial
Snider CJ , Zaman K , Wilkinson AL , Binte Aziz A , Yunus M , Haque W , Jones KAV , Wei L , Estivariz CF , Konopka-Anstadt JL , Mainou BA , Patel JC , Lickness JS , Pallansch MA , Wassilak SGF , Steven Oberste M , Anand A . Vaccine 2023 41 (41) 6083-6092 BACKGROUND: To inform response strategies, we examined type 1 humoral and intestinal immunity induced by 1) one fractional inactivated poliovirus vaccine (fIPV) dose given with monovalent oral poliovirus vaccine (mOPV1), and 2) mOPV1 versus bivalent OPV (bOPV). METHODS: We conducted a randomized, controlled, open-label trial in Dhaka, Bangladesh. Healthy infants aged 5 weeks were block randomized to one of four arms: mOPV1 at age 6-10-14 weeks/fIPV at 6 weeks (A); mOPV1 at 6-10-14 weeks/fIPV at 10 weeks (B); mOPV1 at 6-10-14 weeks (C); and bOPV at 6-10-14 weeks (D). Immune response at 10 weeks and cumulative response at 14 weeks was assessed among the modified intention-to-treat population, defined as seroconversion from seronegative (<1:8 titers) to seropositive (≥1:8) or a four-fold titer rise among seropositive participants sustained to age 18 weeks. We examined virus shedding after two doses of mOPV1 with and without fIPV, and after the first mOPV1 or bOPV dose. The trial is registered at ClinicalTrials.gov (NCT03722004). FINDINGS: During 18 December 2018 - 23 November 2019, 1,192 infants were enrolled (arms A:301; B:295; C:298; D:298). Immune responses at 14 weeks did not differ after two mOPV1 doses alone (94% [95% CI: 91-97%]) versus two mOPV1 doses with fIPV at 6 weeks (96% [93-98%]) or 10 weeks (96% [93-98%]). Participants who received mOPV1 and fIPV at 10 weeks had significantly lower shedding (p < 0·001) one- and two-weeks later compared with mOPV1 alone. Response to one mOPV1 dose was significantly higher than one bOPV dose (79% versus 67%; p < 0·001) and shedding two-weeks later was significantly higher after mOPV1 (76% versus 56%; p < 0·001) indicating improved vaccine replication. Ninety-nine adverse events were reported, 29 serious including two deaths; none were attributed to study vaccines. INTERPRETATION: Given with the second mOPV1 dose, fIPV improved intestinal immunity but not humoral immunity. One mOPV1 dose induced higher humoral and intestinal immunity than bOPV. FUNDING: U.S. Centers for Disease Control and Prevention. |
Assessing the mucosal intestinal and systemic humoral immunity of sequential schedules of inactivated poliovirus vaccine and bivalent oral poliovirus vaccine for essential immunization in Bangladesh: An open-label, randomized controlled trial
Snider CJ , Zaman K , Estivariz CF , Aziz AB , Yunus M , Haque W , Hendley WS , Weldon WC , Oberste MS , Pallansch MA , Wassilak SGF , Anand A . Vaccine 2024 42 (22) 126216 In 2012, the Strategic Advisory Group of Experts on Immunization (SAGE) recommended introduction of at least one inactivated poliovirus vaccine (IPV) dose in essential immunization programs. We evaluated systemic humoral and intestinal mucosal immunity of a sequential IPV-bivalent oral poliovirus vaccine (bOPV) schedule compared with a co-administration IPV + bOPV schedule in an open-label, randomized, controlled, non-inferiority, inequality trial in Dhaka, Bangladesh. Healthy infants aged 6 weeks were randomized to either: (A) IPV and bOPV at 6 and bOPV at 10 and 14 weeks (IPV + bOPV-bOPV-bOPV); or (B) IPV at 6 and bOPV at 10 and 14 weeks (IPV-bOPV-bOPV). Of 456 participants enrolled and randomly assigned during May-August 2015, 428 (94%) were included in the modified intention-to-treat analysis (arm A: 211, arm B: 217). Humoral immune responses did not differ at 18 weeks between study arms: type 1 (98% versus 96%; p = 0.42), type 2 (37% versus 39%; p = 0.77), and type 3 (97% versus 93%; p = 0.07). Virus shedding one week after the bOPV challenge dose in arm B was non-inferior to arm A (type 1 difference = -3% [90% confidence interval: -6 - 0.4%]; type 3 difference: -3% [-6 to -0.2%]). Twenty-six adverse events including seven serious adverse events were reported among 25 participants including one death; none were attributed to study vaccines. An IPV-bOPV-bOPV sequential schedule induced comparable systemic humoral immunity to all poliovirus types and types 1 and 3 intestinal mucosal immunity as an IPV + bOPV-bOPV-bOPV co-administration schedule. |
Complexity of options related to restarting oral poliovirus vaccine (OPV) in national immunization programs after OPV cessation
Kalkowska DA , Wassilak SG , Wiesen E , FEstivariz C , Burns CC , Badizadegan K , Thompson KM . Gates Open Res 2023 7 55 Background: The polio eradication endgame continues to increase in complexity. With polio cases caused by wild poliovirus type 1 and circulating vaccine-derived polioviruses of all three types (1, 2 and 3) reported in 2022, the number, formulation, and use of poliovirus vaccines poses challenges for national immunization programs and vaccine suppliers. Prior poliovirus transmission modeling of globally-coordinated type-specific cessation of oral poliovirus vaccine (OPV) assumed creation of Sabin monovalent OPV (mOPV) stockpiles for emergencies and explored the potential need to restart OPV if the world reached a specified cumulative threshold number of cases after OPV cessation. Methods: We document the actual experience of type 2 OPV (OPV2) cessation and reconsider prior modeling assumptions related to OPV restart. We develop updated decision trees of national immunization options for poliovirus vaccines considering different possibilities for OPV restart. Results: While OPV restart represented a hypothetical situation for risk management and contingency planning to support the 2013-2018 Global Polio Eradication Initiative (GPEI) Strategic Plan, the actual epidemiological experience since OPV2 cessation raises questions about what, if any, trigger(s) could lead to restarting the use of OPV2 in routine immunization and/or plans for potential future restart of type 1 and 3 OPV after their respective cessation. The emergency use listing of a genetically stabilized novel type 2 OPV (nOPV2) and continued evaluation of nOPV for types 1 and/or 3 add further complexity by increasing the combinations of possible OPV formulations for OPV restart. Conclusions: Expanding on a 2019 discussion of the logistical challenges and implications of restarting OPV, we find a complex structure of the many options and many issues related to OPV restart decisions and policies as of early 2023. We anticipate many challenges for forecasting prospective vaccine supply needs during the polio endgame due to increasing potential combinations of poliovirus vaccine choices. |
Coordinated global cessation of oral poliovirus vaccine use: Options and potential consequences
Kalkowska DA , Wassilak SGF , Wiesen E , Burns CC , Pallansch MA , Badizadegan K , Thompson KM . Risk Anal 2023 Due to the very low, but nonzero, paralysis risks associated with the use of oral poliovirus vaccine (OPV), eradicating poliomyelitis requires ending all OPV use globally. The Global Polio Eradication Initiative (GPEI) coordinated cessation of Sabin type 2 OPV (OPV2 cessation) in 2016, except for emergency outbreak response. However, as of early 2023, plans for cessation of bivalent OPV (bOPV, containing types 1 and 3 OPV) remain undefined, and OPV2 use for outbreak response continues due to ongoing transmission of type 2 polioviruses and reported type 2 cases. Recent development and use of a genetically stabilized novel type 2 OPV (nOPV2) leads to additional potential vaccine options and increasing complexity in strategies for the polio endgame. Prior applications of integrated global risk, economic, and poliovirus transmission modeling consistent with GPEI strategic plans that preceded OPV2 cessation explored OPV cessation dynamics and the evaluation of options to support globally coordinated risk management efforts. The 2022-2026 GPEI strategic plan highlighted the need for early bOPV cessation planning. We review the published modeling and explore bOPV cessation immunization options as of 2022, assuming that the GPEI partners will not support restart of the use of any OPV type in routine immunization after a globally coordinated cessation of such use. We model the potential consequences of globally coordinating bOPV cessation in 2027, as anticipated in the 2022-2026 GPEI strategic plan. We do not find any options for bOPV cessation likely to succeed without a strategy of bOPV intensification to increase population immunity prior to cessation. |
Worst-case scenarios: Modeling uncontrolled type 2 polio transmission
Kalkowska DA , Wiesen E , Wassilak SGF , Burns CC , Pallansch MA , Badizadegan K , Thompson KM . Risk Anal 2023 In May 2016, the Global Polio Eradication Initiative (GPEI) coordinated the cessation of all use of type 2 oral poliovirus vaccine (OPV2), except for emergency outbreak response. Since then, paralytic polio cases caused by type 2 vaccine-derived polioviruses now exceed 3,000 cases reported by 39 countries. In 2022 (as of April 25, 2023), 20 countries reported detection of cases and nine other countries reported environmental surveillance detection, but no reported cases. Recent development of a genetically modified novel type 2 OPV (nOPV2) may help curb the generation of neurovirulent vaccine-derived strains; its use since 2021 under Emergency Use Listing is limited to outbreak response activities. Prior modeling studies showed that the expected trajectory for global type 2 viruses does not appear headed toward eradication, even with the best possible properties of nOPV2 assuming current outbreak response performance. Continued persistence of type 2 poliovirus transmission exposes the world to the risks of potentially high-consequence events such as the importation of virus into high-transmission areas of India or Bangladesh. Building on prior polio endgame modeling and assuming current national and GPEI outbreak response performance, we show no probability of successfully eradicating type 2 polioviruses in the near term regardless of vaccine choice. We also demonstrate the possible worst-case scenarios could result in rapid expansion of paralytic cases and preclude the goal of permanently ending all cases of poliomyelitis in the foreseeable future. Avoiding such catastrophic scenarios will depend on the development of strategies that raise population immunity to type 2 polioviruses. |
Progress toward poliomyelitis eradication - worldwide, January 2021-March 2023
Lee SE , Greene SA , Burns CC , Tallis G , Wassilak SGF , Bolu O . MMWR Morb Mortal Wkly Rep 2023 72 (19) 517-522 Since the World Health Assembly established the Global Polio Eradication Initiative (GPEI) in 1988, two of the three wild poliovirus (WPV) serotypes (types 2 and 3) have been eradicated, and global WPV cases have decreased by more than 99.9%. Afghanistan and Pakistan remain the only countries where indigenous WPV type 1 (WPV1) transmission has not been interrupted. This report summarizes progress toward global polio eradication during January 1, 2021-March 31, 2023, and updates previous reports (1,2). In 2022, Afghanistan and Pakistan reported 22 WPV1 cases, compared with five in 2021; as of May 5, 2023, a single WPV1 case was reported in Pakistan in 2023. A WPV1 case was reported on the African continent for the first time since 2016, when officials in Malawi confirmed a WPV1 case in a child with paralysis onset in November 2021; neighboring Mozambique subsequently reported eight genetically linked cases. Outbreaks of polio caused by circulating vaccine-derived polioviruses (cVDPVs) can occur when oral poliovirus vaccine (OPV) strains circulate for a prolonged time in underimmunized populations, allowing reversion to neurovirulence (3). A total of 859 cVDPV cases occurred during 2022, an increase of 23% from 698 cases in 2021. cVDPVs were detected in areas where poliovirus transmission had long been eliminated (including in Canada, Israel, the United Kingdom, and the United States). In addition, cocirculation of multiple poliovirus types occurred in multiple countries globally (including Democratic Republic of the Congo [DRC], Israel, Malawi, Mozambique, Republic of the Congo, and Yemen). The 2022-2026 GPEI strategic plan targeted the goal of detecting the last cases of WPV1 and cVDPV in 2023 (4). The current global epidemiology of poliovirus transmission makes the likelihood of meeting this target date unlikely. The detections of poliovirus (WPV1 and cVDPVs) in areas where it had been previously eliminated underscore the threat of continued poliovirus spread to any area where there is insufficient vaccination to poliovirus (3). Mass vaccination and surveillance should be further enhanced in areas of transmission to interrupt poliovirus transmission and to end the global threat of paralytic polio in children. |
Immunogenicity of novel oral poliovirus vaccine type 2 administered concomitantly with bivalent oral poliovirus vaccine: an open-label, non-inferiority, randomised, controlled trial
Wilkinson AL , Zaman K , Hoque M , Estivariz CF , Burns CC , Konopka-Anstadt JL , Mainou BA , Kovacs SD , An Q , Lickness JS , Yunus M , Snider CJ , Zhang Y , Coffee E , Abid T , Wassilak SGF , Pallansch MA , Oberste MS , Vertefeuille JF , Anand A . Lancet Infect Dis 2023 23 (9) 1062-1071 BACKGROUND: Novel oral poliovirus vaccine type 2 (nOPV2) was developed by modifying the Sabin strain to increase genetic stability and reduce risk of seeding new circulating vaccine-derived poliovirus type 2 outbreaks. Bivalent oral poliovirus vaccine (bOPV; containing Sabin types 1 and 3) is the vaccine of choice for type 1 and type 3 outbreak responses. We aimed to assess immunological interference between nOPV2 and bOPV when administered concomitantly. METHODS: We conducted an open-label, non-inferiority, randomised, controlled trial at two clinical trial sites in Dhaka, Bangladesh. Healthy infants aged 6 weeks were randomly assigned (1:1:1) using block randomisation, stratified by site, to receive nOPV2 only, nOPV2 plus bOPV, or bOPV only, at the ages of 6 weeks, 10 weeks, and 14 weeks. Eligibility criteria included singleton and full term (≥37 weeks' gestation) birth and parents intending to remain in the study area for the duration of study follow-up activities. Poliovirus neutralising antibody titres were measured at the ages of 6 weeks, 10 weeks, 14 weeks, and 18 weeks. The primary outcome was cumulative immune response for all three poliovirus types at the age of 14 weeks (after two doses) and was assessed in the modified intention-to-treat population, which was restricted to participants with adequate blood specimens from all study visits. Safety was assessed in all participants who received at least one dose of study product. A non-inferiority margin of 10% was used to compare single and concomitant administration. This trial is registered with ClinicalTrials.gov, NCT04579510. FINDINGS: Between Feb 8 and Sept 26, 2021, 736 participants (244 in the nOPV2 only group, 246 in the nOPV2 plus bOPV group, and 246 in the bOPV only group) were enrolled and included in the modified intention-to-treat analysis. After two doses, 209 (86%; 95% CI 81-90) participants in the nOPV2 only group and 159 (65%; 58-70) participants in the nOPV2 plus bOPV group had a type 2 poliovirus immune response; 227 (92%; 88-95) participants in the nOPV2 plus bOPV group and 229 (93%; 89-96) participants in the bOPV only group had a type 1 response; and 216 (88%; 83-91) participants in the nOPV2 plus bOPV group and 212 (86%; 81-90) participants in the bOPV only group had a type 3 response. Co-administration was non-inferior to single administration for types 1 and 3, but not for type 2. There were 15 serious adverse events (including three deaths, one in each group, all attributable to sudden infant death syndrome); none were attributed to vaccination. INTERPRETATION: Co-administration of nOPV2 and bOPV interfered with immunogenicity for poliovirus type 2, but not for types 1 and 3. The blunted nOPV2 immunogenicity we observed would be a major drawback of using co-administration as a vaccination strategy. FUNDING: The US Centers for Disease Control and Prevention. |
Update on Vaccine-Derived Poliovirus Outbreaks - Worldwide, January 2021-December 2022.
Bigouette JP , Henderson E , Traoré MA , Wassilak SGF , Jorba J , Mahoney F , Bolu O , Diop OM , Burns CC . MMWR Morb Mortal Wkly Rep 2023 72 (14) 366-371 Circulating vaccine-derived poliovirus (cVDPV) outbreaks* can occur when oral poliovirus vaccine (OPV, containing one or more Sabin-strain serotypes 1, 2, and 3) strains undergo prolonged circulation in under-vaccinated populations, resulting in genetically reverted neurovirulent virus (1,2). Following declaration of the eradication of wild poliovirus type 2 in 2015 and the global synchronized switch from trivalent OPV (tOPV, containing Sabin-strain types 1, 2, and 3) to bivalent OPV (bOPV, containing types 1 and 3 only) for routine immunization activities(†) in April 2016 (3), cVDPV type 2 (cVDPV2) outbreaks have been reported worldwide (4). During 2016-2020, immunization responses to cVDPV2 outbreaks required use of Sabin-strain monovalent OPV2, but new VDPV2 emergences could occur if campaigns did not reach a sufficiently high proportion of children. Novel oral poliovirus vaccine type 2 (nOPV2), a more genetically stable vaccine than Sabin OPV2, was developed to address the risk for reversion to neurovirulence and became available in 2021. Because of the predominant use of nOPV2 during the reporting period, supply replenishment has frequently been insufficient for prompt response campaigns (5). This report describes global cVDPV outbreaks during January 2021-December 2022 (as of February 14, 2023) and updates previous reports (4). During 2021-2022, there were 88 active cVDPV outbreaks, including 76 (86%) caused by cVDPV2. cVDPV outbreaks affected 46 countries, 17 (37%) of which reported their first post-switch cVDPV2 outbreak. The total number of paralytic cVDPV cases during 2020-2022 decreased by 36%, from 1,117 to 715; however, the proportion of all cVDPV cases that were caused by cVDPV type 1 (cVDPV1) increased from 3% in 2020 to 18% in 2022, including the occurrence of cocirculating cVDPV1 and cVDPV2 outbreaks in two countries. The increased proportion of cVDPV1 cases follows a substantial decrease in global routine immunization coverage and suspension of preventive immunization campaigns during the COVID-19 pandemic (2020-2022) (6); outbreak responses in some countries were also suboptimal. Improving routine immunization coverage, strengthening poliovirus surveillance, and conducting timely and high-quality supplementary immunization activities (SIAs) in response to cVDPV outbreaks are needed to interrupt cVDPV transmission and reach the goal of no cVDPV isolations in 2024. |
Outbreak response strategies with type 2-containing oral poliovirus vaccines
Kalkowska DA , Wassilak SGF , Pallansch MA , Burns CC , Wiesen E , Durry E , Badizadegan K , Thompson KM . Vaccine 2022 41 Suppl 1 A142-A152 Despite exhaustive and fully-financed plans to manage the risks of globally coordinated cessation of oral poliovirus vaccine (OPV) containing type 2 (OPV2) prior to 2016, as of 2022, extensive, continued transmission of circulating vaccine-derived polioviruses (cVDPVs) type 2 (cVDPV2) remains. Notably, cumulative cases caused by cVDPV2 since 2016 now exceed 2,500. Earlier analyses explored the implications of using different vaccine formulations to respond to cVDPV2 outbreaks and demonstrated how different properties of novel OPV2 (nOPV2) might affect its performance compared to Sabin monovalent OPV2 (mOPV2). These prior analyses used fixed assumptions for how outbreak response would occur, but outbreak response implementation can change. We update an existing global poliovirus transmission model to explore different options for responding with different vaccines and assumptions about scope, delays, immunization intensity, target age groups, and number of rounds. Our findings suggest that in order to successfully stop all cVDPV2 transmission globally, countries and the Global Polio Eradication Initiative need to address the deficiencies in emergency outbreak response policy and implementation. The polio program must urgently act to substantially reduce response time, target larger populations - particularly in high transmission areas - and achieve high coverage with improved access to under-vaccinated subpopulations. Given the limited supplies of nOPV2 at the present, using mOPV2 intensively immediately, followed by nOPV2 intensively if needed and when sufficient quantities become available, substantially increases the probability of ending cVDPV2 transmission globally. |
Progress toward polio eradication - worldwide, January 2020-April 2022
Rachlin A , Patel JC , Burns CC , Jorba J , Tallis G , O'Leary A , Wassilak SGF , Vertefeuille JF . MMWR Morb Mortal Wkly Rep 2022 71 (19) 650-655 In 1988, the World Health Assembly established the Global Polio Eradication Initiative (GPEI). Since then, wild poliovirus (WPV) cases have decreased approximately 99.99%, and WPV types 2 and 3 have been declared eradicated. Only Afghanistan and Pakistan have never interrupted WPV type 1 (WPV1) transmission. This report describes global progress toward polio eradication during January 1, 2020-April 30, 2022, and updates previous reports (1,2). This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy.* Five WPV1 cases were reported from Afghanistan and Pakistan in 2021, compared with 140 in 2020. In 2022 (as of May 5), three WPV1 cases had been reported: one from Afghanistan and two from Pakistan. WPV1 genetically linked to virus circulating in Pakistan was identified in Malawi in a child with paralysis onset in November 2021. Circulating vaccine-derived polioviruses (cVDPVs), with neurovirulence and transmissibility similar to that of WPV, emerge in populations with low immunity following prolonged circulation of Sabin strain oral poliovirus vaccine (OPV) (3). During January 2020-April 30, 2022, a total of 1,856 paralytic cVDPV cases were reported globally: 1,113 in 2020 and 688 in 2021, including cases in Afghanistan and Pakistan. In 2022 (as of May 5), 55 cVDPV cases had been reported. Intensified programmatic actions leading to more effective outbreak responses are needed to stop cVDPV transmission. The 2022-2026 GPEI Strategic Plan objective of ending WPV1 transmission by the end of 2023 is attainable (4). However, the risk for children being paralyzed by polio remains until all polioviruses, including WPV and cVDPV, are eradicated. |
Update on Vaccine-Derived Poliovirus Outbreaks - Worldwide, January 2020-June 2021.
Alleman MM , Jorba J , Henderson E , Wiesen E , Wassilak SGF , Burns CC . MMWR Morb Mortal Wkly Rep 2021 70 (49) 1691-1699 As of May 1, 2016, use of oral poliovirus vaccine (OPV) type 2 for routine and supplementary immunization activities ceased after a synchronized global switch from trivalent OPV (tOPV; containing Sabin strain types 1, 2, and 3) to bivalent OPV (bOPV; containing Sabin strain types 1 and 3) subsequent to the certified eradication of wild type poliovirus (WPV) type 2 in 2015 (1-3). Circulating vaccine-derived poliovirus (cVDPV) outbreaks* occur when transmission of Sabin strain poliovirus is prolonged in underimmunized populations, allowing viral genetic reversion to neurovirulence, resulting in cases of paralytic polio (1-3). Since the switch, monovalent OPV type 2 (mOPV2, containing Sabin strain type 2) has been used for response to cVDPV type 2 (cVDPV2) outbreaks; tOPV is used if cVDPV2 co-circulates with WPV type 1, and bOPV is used for cVDPV type 1 (cVDPV1) or type 3 (cVDPV3) outbreaks (1-4). In November 2020, the World Health Organization (WHO) Emergency Use Listing procedure authorized limited use of type 2 novel OPV (nOPV2), a vaccine modified to be more genetically stable than the Sabin strain, for cVDPV2 outbreak response (3,5). In October 2021, the Strategic Advisory Group of Experts on Immunization (WHO's principal advisory group) permitted wider use of nOPV2; however, current nOPV2 supply is limited (6). This report updates that of July 2019-February 2020 to describe global cVDPV outbreaks during January 2020-June 2021 (as of November 9, 2021)(†) (3). During this period, there were 44 cVDPV outbreaks of the three serotypes affecting 37 countries. The number of cVDPV2 cases increased from 366 in 2019 to 1,078 in 2020 (7). A goal of the Global Polio Eradication Initiative's (GPEI) 2022-2026 Strategic Plan is to better address the challenges to early CVDPV2 outbreak detection and initiate prompt and high coverage outbreak responses with available type 2 OPV to interrupt transmission by the end of 2023 (8). |
Progress Toward Polio Eradication - Worldwide, January 2019-June 2021.
Bigouette JP , Wilkinson AL , Tallis G , Burns CC , Wassilak SGF , Vertefeuille JF . MMWR Morb Mortal Wkly Rep 2021 70 (34) 1129-1135 In 1988, when the Global Polio Eradication Initiative (GPEI) began, polio paralyzed >350,000 children across 125 countries. Today, only one of three wild poliovirus serotypes, type 1 (WPV1), remains in circulation in only two countries, Afghanistan and Pakistan. This report summarizes progress toward global polio eradication during January 1, 2019-June 30, 2021 and updates previous reports (1,2). In 2020, 140 cases of WPV1 were reported, including 56 in Afghanistan (a 93% increase from 29 cases in 2019) and 84 in Pakistan (a 43% decrease from 147 cases in 2019). As GPEI focuses on the last endemic WPV reservoirs, poliomyelitis outbreaks caused by circulating vaccine-derived poliovirus (cVDPV) have emerged as a result of attenuated oral poliovirus vaccine (OPV) virus regaining neurovirulence after prolonged circulation in underimmunized populations (3). In 2020, 32 countries reported cVDPV outbreaks (four type 1 [cVDPV1], 26 type 2 [cVDPV2] and two with outbreaks of both); 13 of these countries reported new outbreaks. The updated GPEI Polio Eradication Strategy 2022-2026 (4) includes expanded use of the type 2 novel oral poliovirus vaccine (nOPV2) to avoid new emergences of cVDPV2 during outbreak responses (3). The new strategy deploys other tactics, such as increased national accountability, and focused investments for overcoming the remaining barriers to eradication, including program disruptions and setbacks caused by the COVID-19 pandemic. |
Serotype 2 oral poliovirus vaccine (OPV2) choices and the consequences of delaying outbreak response.
Kalkowska DA , Pallansch MA , Wassilak SGF , Cochi SL , Thompson KM . Vaccine 2021 41 Suppl 1 A136-A141 The Global Polio Eradication Initiative (GPEI) faces substantial challenges with managing outbreaks of serotype 2 circulating vaccine-derived polioviruses (cVDPV2s) in 2021. A full five years after the globally coordinated removal of serotype 2 oral poliovirus vaccine (OPV2) from trivalent oral poliovirus vaccine (tOPV) for use in national immunization programs, cVDPV2s did not die out. Since OPV2 cessation, responses to outbreaks caused by cVDPV2s mainly used serotype 2 monovalent OPV (mOPV2) from a stockpile. A novel vaccine developed from a genetically stabilized OPV2 strain (nOPV2) promises to potentially facilitate outbreak response with lower prospective risks, although its availability and properties in the field remain uncertain. Using an established global poliovirus transmission model and building on a related analysis that characterized the impacts of disruptions in GPEI activities caused by the COVID-19 pandemic, we explore the implications of trade-offs associated with delaying outbreak response to avoid using mOPV2 by waiting for nOPV2 availability (or equivalently, delayed responses waiting for national validation of meeting the criteria for nOPV2 initial use). Consistent with prior modeling, responding as quickly as possible with available mOPV2 promises to reduce the expected burden of disease in the outbreak population and to reduce the chances for the outbreak virus to spread to other areas. Delaying cVDPV2 outbreak response (e.g., modeled as no response January-June 2021) to wait for nOPV2 can considerably increase the total expected cases (e.g., by as many as 1,300 cVDPV2 cases in the African region during 2021-2023) and increases the likelihood of triggering the need to restart widescale preventive use of an OPV2-containing vaccine in national immunization programs that use OPV. Countries should respond to any cVDPV2 outbreaks quickly with rounds that achieve high coverage using any available OPV2, and plan to use nOPV2, if needed, once it becomes widely available based on evidence that it is as effective but safer in populations than mOPV2. |
The impact of disruptions caused by the COVID-19 pandemic on global polio eradication.
Kalkowska DA , Voorman A , Pallansch MA , Wassilak SGF , Cochi SL , Badizadegan K , Thompson KM . Vaccine 2021 41 Suppl 1 A12-A18 In early 2020, the COVID-19 pandemic led to substantial disruptions in global activities. The disruptions also included intentional and unintentional reductions in health services, including immunization campaigns against the transmission of wild poliovirus (WPV) and persistent serotype 2 circulating vaccine-derived poliovirus (cVDPV2). Building on a recently updated global poliovirus transmission and Sabin-strain oral poliovirus vaccine (OPV) evolution model, we explored the implications of immunization disruption and restrictions of human interactions (i.e., population mixing) on the expected incidence of polio and on the resulting challenges faced by the Global Polio Eradication Initiative (GPEI). We demonstrate that with some resumption of activities in the fall of 2020 to respond to cVDPV2 outbreaks and full resumption on January 1, 2021 of all polio immunization activities to pre-COVID-19 levels, the GPEI could largely mitigate the impact of COVID-19 to the delays incurred. The relative importance of reduced mixing (leading to potentially decreased incidence) and reduced immunization (leading to potentially increased expected incidence) depends on the timing of the effects. Following resumption of immunization activities, the GPEI will likely face similar barriers to eradication of WPV and elimination of cVDPV2 as before COVID-19. The disruptions from the COVID-19 pandemic may further delay polio eradication due to indirect effects on vaccine and financial resources. |
Updated Characterization of Outbreak Response Strategies for 2019-2029: Impacts of Using a Novel Type 2 Oral Poliovirus Vaccine Strain.
Kalkowska DA , Pallansch MA , Wilkinson A , Bandyopadhyay AS , Konopka-Anstadt JL , Burns CC , Oberste MS , Wassilak SGF , Badizadegan K , Thompson KM . Risk Anal 2020 41 (2) 329-348 Delays in achieving the global eradication of wild poliovirus transmission continue to postpone subsequent cessation of all oral poliovirus vaccine (OPV) use. Countries must stop OPV use to end all cases of poliomyelitis, including vaccine-associated paralytic polio (VAPP) and cases caused by vaccine-derived polioviruses (VDPVs). The Global Polio Eradication Initiative (GPEI) coordinated global cessation of all type 2 OPV (OPV2) use in routine immunization in 2016 but did not successfully end the transmission of type 2 VDPVs (VDPV2s), and consequently continues to use type 2 OPV (OPV2) for outbreak response activities. Using an updated global poliovirus transmission and OPV evolution model, we characterize outbreak response options for 2019-2029 related to responding to VDPV2 outbreaks with a genetically stabilized novel OPV (nOPV2) strain or with the currently licensed monovalent OPV2 (mOPV2). Given uncertainties about the properties of nOPV2, we model different assumptions that appear consistent with the evidence on nOPV2 to date. Using nOPV2 to respond to detected cases may reduce the expected VDPV and VAPP cases and the risk of needing to restart OPV2 use in routine immunization compared to mOPV2 use for outbreak response. The actual properties, availability, and use of nOPV2 will determine its effects on type 2 poliovirus transmission in populations. Even with optimal nOPV2 performance, countries and the GPEI would still likely need to restart OPV2 use in routine immunization in OPV-using countries if operational improvements in outbreak response to stop the transmission of cVDPV2s are not implemented effectively. |
Progress toward poliovirus containment implementation - worldwide, 2019-2020
Moffett DB , Llewellyn A , Singh H , Saxentoff E , Partridge J , Boualam L , Pallansch M , Wassilak S , Asghar H , Roesel S , Grabovac V , Rey-Benito G , Barnor J , Theo A , Swan J , Iakovenko M , Baig N , Gurung S , Pandel E , Zaffran M . MMWR Morb Mortal Wkly Rep 2020 69 (37) 1330-1333 Since 1988, when World Health Organization (WHO) Member States and partners launched the Global Polio Eradication Initiative, the number of wild poliovirus (WPV) cases has declined from 350,000 in 125 countries to 176 in only two countries in 2019 (1). The Global Commission for the Certification of Poliomyelitis Eradication (GCC) declared two of the three WPV types, type 2 (WPV2) and type 3 (WPV3), eradicated globally in 2015 and 2019, respectively (1). Wild poliovirus type 1 (WPV1) remains endemic in Afghanistan and Pakistan (1). Containment under strict biorisk management measures is vital to prevent reintroduction of eradicated polioviruses into communities from poliovirus facilities. In 2015, Member States committed to contain type 2 polioviruses (PV2) in poliovirus-essential facilities (PEFs) certified in accordance with a global standard (2). Member states agreed to report national PV2 inventories annually, destroy unneeded PV2 materials, and, if retaining PV2 materials, establish national authorities for containment (NACs) and a PEF auditing process. Since declaration of WPV3 eradication in October 2019, these activities are also required with WPV3 materials. Despite challenges faced during 2019-2020, including the coronavirus disease 2019 (COVID-19) pandemic, the global poliovirus containment program continues to work toward important milestones. To maintain progress, all WHO Member States are urged to adhere to the agreed containment resolutions, including officially establishing legally empowered NACs and submission of PEF Certificates of Participation. |
Updated Characterization of Post-OPV Cessation Risks: Lessons from 2019 Serotype 2 Outbreaks and Implications for the Probability of OPV Restart.
Kalkowska DA , Pallansch MA , Cochi SL , Kovacs SD , Wassilak SGF , Thompson KM . Risk Anal 2020 41 (2) 320-328 After the globally coordinated cessation of any serotype of oral poliovirus vaccine (OPV), some risks remain from undetected, existing homotypic OPV-related transmission and/or restarting transmission due to several possible reintroduction risks. The Global Polio Eradication Initiative (GPEI) coordinated global cessation of serotype 2-containing OPV (OPV2) in 2016. Following OPV2 cessation, the GPEI and countries implemented activities to withdraw all the remaining trivalent OPV, which contains all three poliovirus serotypes (i.e., 1, 2, and 3), from the supply chain and replace it with bivalent OPV (containing only serotypes 1 and 3). However, as of early 2020, monovalent OPV2 use for outbreak response continues in many countries. In addition, outbreaks observed in 2019 demonstrated evidence of different types of risks than previously modeled. We briefly review the 2019 epidemiological experience with serotype 2 live poliovirus outbreaks and propose a new risk for unexpected OPV introduction for inclusion in global modeling of OPV cessation. Using an updated model of global poliovirus transmission and OPV evolution with and without consideration of this new risk, we explore the implications of the current global situation with respect to the likely need to restart preventive use of OPV2 in OPV-using countries. Simulation results without this new risk suggest OPV2 restart will likely need to occur (81% of 100 iterations) to manage the polio endgame based on the GPEI performance to date with existing vaccine tools, and with the new risk of unexpected OPV introduction the expected OPV2 restart probability increases to 89%. Contingency planning requires new OPV2 bulk production, including genetically stabilized OPV2 strains. |
Progress toward polio eradication - worldwide, January 2018-March 2020
Chard AN , Datta SD , Tallis G , Burns CC , Wassilak SGF , Vertefeuille JF , Zaffran M . MMWR Morb Mortal Wkly Rep 2020 69 (25) 784-789 Since the Global Polio Eradication Initiative (GPEI) was established in 1988, two of the three wild poliovirus (WPV) serotypes (types 2 and 3) have been eradicated.* Transmission of WPV type 1 (WPV1) remains uninterrupted only in Afghanistan and Pakistan. This report summarizes progress toward global polio eradication during January 1, 2018-March 31, 2020 and updates previous reports (1,2). In 2019, Afghanistan and Pakistan reported the highest number of WPV1 cases (176) since 2014. During January 1-March 31, 2020 (as of June 19), 54 WPV1 cases were reported, an approximate fourfold increase from 12 cases during the corresponding period in 2019. Paralytic poliomyelitis can also be caused by circulating vaccine-derived poliovirus (cVDPV), which emerges when attenuated oral poliovirus vaccine (OPV) virus reverts to neurovirulence following prolonged circulation in underimmunized populations (3). Since the global withdrawal of type 2-containing OPV (OPV2) in April 2016, cVDPV type 2 (cVDPV2) outbreaks have increased in number and geographic extent (4). During January 2018-March 2020, 21 countries reported 547 cVDPV2 cases. Complicating increased poliovirus transmission during 2020, the coronavirus disease 2019 (COVID-19) pandemic and mitigation efforts have resulted in suspension of immunization activities and disruptions to poliovirus surveillance. When the COVID-19 emergency subsides, enhanced support will be needed to resume polio eradication field activities. |
Surveillance to track progress toward polio eradication - worldwide, 2018-2019
Lickness JS , Gardner T , Diop OM , Chavan S , Jorba J , Ahmed J , Gumede N , Johnson T , Butt O , Asghar H , Saxentoff E , Grabovac V , Avagyan T , Joshi S , Rey-Benito G , Iber J , Henderson E , Wassilak SGF , Anand A . MMWR Morb Mortal Wkly Rep 2020 69 (20) 623-629 Since the Global Polio Eradication Initiative (GPEI) was launched in 1988, the number of polio cases worldwide has declined approximately 99.99%; only two countries (Afghanistan and Pakistan) have never interrupted wild poliovirus (WPV) transmission (1). The primary means of detecting poliovirus circulation is through surveillance for acute flaccid paralysis (AFP) among children aged <15 years with testing of stool specimens for WPV and vaccine-derived polioviruses (VDPVs) (genetically reverted strains of the vaccine virus that regain neurovirulence) in World Health Organization (WHO)-accredited laboratories (2,3). In many locations, AFP surveillance is supplemented by environmental surveillance, the regular collection and testing of sewage to provide awareness of the extent and duration of poliovirus circulation (3). This report presents 2018-2019 poliovirus surveillance data, focusing on 40 priority countries* with WPV or VDPV outbreaks or at high risk for importation because of their proximity to a country with an outbreak. The number of priority countries rose from 31 in 2018 to 40 in 2019 because of a substantial increase in the number of VDPV outbreaks(dagger) (2,4). In areas with low poliovirus immunity, VDPVs can circulate in the community and cause outbreaks of paralysis; these are known as circulating vaccine derived polioviruses (cVDPVs) (4). In 2019, only 25 (63%) of the 40 designated priority countries met AFP surveillance indicators nationally; subnational surveillance performance varied widely and indicated focal weaknesses. High quality, sensitive surveillance is important to ensure timely detection and response to cVDPV and WPV transmission. |
Modeling poliovirus transmission in Borno and Yobe, Northeast Nigeria
Kalkowska DA , Franka R , Higgins J , Kovacs SD , Forbi JC , Wassilak SGF , Pallansch MA , Thompson KM . Risk Anal 2020 41 (2) 289-302 Beginning in 2013, multiple local government areas (LGAs) in Borno and Yobe in northeast Nigeria and other parts of the Lake Chad basin experienced a violent insurgency that resulted in substantial numbers of isolated and displaced people. Northeast Nigeria represents the last known reservoir country of wild poliovirus (WPV) transmission in Africa, with detection of paralytic cases caused by serotype 1 WPV in 2016 in Borno and serotype 3 WPV in late 2012. Parts of Borno and Yobe are also problematic areas for transmission of serotype 2 circulating vaccine-derived polioviruses, and they continue to face challenges associated with conflict and inadequate health services in security-compromised areas that limit both immunization and surveillance activities. We model poliovirus transmission of all three serotypes for Borno and Yobe using a deterministic differential equation-based model that includes four subpopulations to account for limitations in access to immunization services and dynamic restrictions in population mixing. We find that accessibility issues and insufficient immunization allow for prolonged poliovirus transmission and potential undetected paralytic cases, although as of the end of 2019, including responsive program activities in the modeling suggest die out of indigenous serotypes 1 and 3 WPVs prior to 2020. Specifically, recent and current efforts to access isolated populations and provide oral poliovirus vaccine continue to reduce the risks of sustained and undetected transmission, although some uncertainty remains. Continued improvement in immunization and surveillance in the isolated subpopulations should minimize these risks. Stochastic modeling can build on this analysis to characterize the implications for undetected transmission and confidence about no circulation. |
Update on vaccine-derived poliovirus outbreaks - worldwide, July 2019-February 2020
Alleman MM , Jorba J , Greene SA , Diop OM , Iber J , Tallis G , Goel A , Wiesen E , Wassilak SGF , Burns CC . MMWR Morb Mortal Wkly Rep 2020 69 (16) 489-495 Circulating vaccine-derived polioviruses (cVDPVs) can emerge in areas with low poliovirus immunity and cause outbreaks* of paralytic polio (1-5). Among the three types of wild poliovirus, type 2 was declared eradicated in 2015 (1,2). The use of trivalent oral poliovirus vaccine (tOPV; types 1, 2, and 3 Sabin strains) ceased in April 2016 via a 1-month-long, global synchronized switch to bivalent OPV (bOPV; types 1 and 3 Sabin strains) in immunization activities (1-4). Monovalent type 2 OPV (mOPV2; type 2 Sabin strain) is available for cVDPV type 2 (cVDPV2) outbreak response immunization (1-5). The number and geographic breadth of post-switch cVDPV2 outbreaks have exceeded forecasts that trended toward zero outbreaks 4 years after the switch and assumed rapid and effective control of any that occurred (4). New cVDPV2 outbreaks have been seeded by mOPV2 use, by both suboptimal mOPV2 coverage within response zones and recently mOPV2-vaccinated children or contacts traveling outside of response zones, where children born after the global switch are fully susceptible to poliovirus type 2 transmission (2-4). In addition, new emergences can develop by inadvertent exposure to Sabin OPV2-containing vaccine (i.e., residual response mOPV2 or tOPV) (4). This report updates the January 2018-June 2019 report with information on global cVDPV outbreaks during July 2019-February 2020 (as of March 25, 2020)(dagger) (2). Among 33 cVDPV outbreaks reported during July 2019-February 2020, 31 (94%) were cVDPV2; 18 (58%) of these followed new emergences. In mid-2020, the Global Polio Eradication Initiative (GPEI) plans to introduce a genetically stabilized, novel OPV type 2 (nOPV2) that has a lower risk for generating VDPV2 than does Sabin mOPV2; if nOPV2 is successful in limiting new VDPV2 emergences, GPEI foresees the replacement of Sabin mOPV2 with nOPV2 for cVDPV2 outbreak responses during 2021 (2,4,6). |
New analytic approaches for analyzing and presenting polio surveillance data to supplement standard performance indicators
VanderEnde K , Voorman A , Khan S , Anand A , Snider CJ , Goel A , Wassilak S . Vaccine X 2020 4 100059 Background: Sensitive surveillance for acute flaccid paralysis (AFP) allows for rapid detection of polio outbreaks and provides essential evidence to support certification of the eradication of polio. However, accurately assessing the sensitivity of surveillance systems can be difficult due to limitations in the reliability of available performance indicators, including the rate of detection of non-polio AFP and the proportion of adequate stool sample collection. Recent field reviews have found evidence of surveillance gaps despite indicators meeting expected targets. Methods: We propose two simple new approaches for AFP surveillance performance indicator analysis to supplement standard indicator analysis approaches commonly used by the Global Polio Eradication Initiative (GPEI): (1) using alternative groupings of low population districts in the country (spatial binning) and (2) flagging unusual patterns in surveillance data (surveillance flags analysis). Using GPEI data, we systematically compare AFP surveillance performance using standard indicator analysis and these new approaches. Results: Applying spatial binning highlights areas meeting surveillance indicator targets that do not when analyzing performance of low population districts. Applying the surveillance flags we find several countries with unusual data patterns, in particular age groups which are not well-covered by the surveillance system, and countries with implausible rates of adequate stool specimen collection. Conclusions: Analyzing alternate groupings of administrative units is a simple method to find areas where traditional AFP surveillance indicator targets are not reliably met. For areas where AFP surveillance indicator targets are met, systematic assessment of unusual patterns ('flags') can be a useful prompt for further investigation and field review. |
Global transmission of live polioviruses: Updated dynamic modeling of the polio endgame
Kalkowska DA , Pallansch MA , Wassilak SGF , Cochi SL , Thompson KM . Risk Anal 2020 41 (2) 248-265 Nearly 20 years after the year 2000 target for global wild poliovirus (WPV) eradication, live polioviruses continue to circulate with all three serotypes posing challenges for the polio endgame. We updated a global differential equation-based poliovirus transmission and stochastic risk model to include programmatic and epidemiological experience through January 2020. We used the model to explore the likely dynamics of poliovirus transmission for 2019-2023, which coincides with a new Global Polio Eradication Initiative Strategic Plan. The model stratifies the global population into 72 blocks, each containing 10 subpopulations of approximately 10.7 million people. Exported viruses go into subpopulations within the same block and within groups of blocks that represent large preferentially mixing geographical areas (e.g., continents). We assign representative World Bank income levels to the blocks along with polio immunization and transmission assumptions, which capture some of the heterogeneity across countries while still focusing on global poliovirus transmission dynamics. We also updated estimates of reintroduction risks using available evidence. The updated model characterizes transmission dynamics and resulting polio cases consistent with the evidence through 2019. Based on recent epidemiological experience and prospective immunization assumptions for the 2019-2023 Strategic Plan, the updated model does not show successful eradication of serotype 1 WPV by 2023 or successful cessation of oral poliovirus vaccine serotype 2-related viruses. |
Update on vaccine-derived poliovirus outbreaks - worldwide, January 2018-June 2019
Jorba J , Diop OM , Iber J , Henderson E , Zhao K , Quddus A , Sutter R , Vertefeuille JF , Wenger J , Wassilak SGF , Pallansch MA , Burns CC . MMWR Morb Mortal Wkly Rep 2019 68 (45) 1024-1028 Certification of global eradication of indigenous wild poliovirus type 2 occurred in 2015 and of type 3 in 2019. Since the launch of the Global Polio Eradication Initiative (GPEI) in 1988 and broad use of live, attenuated oral poliovirus vaccine (OPV), the number of wild poliovirus cases has declined >99.99% (1). Genetically divergent vaccine-derived poliovirus* (VDPV) strains can emerge during vaccine use and spread in underimmunized populations, becoming circulating VDPV (cVDPV) strains, and resulting in outbreaks of paralytic poliomyelitis.(dagger) In April 2016, all oral polio vaccination switched from trivalent OPV (tOPV; containing vaccine virus types 1, 2, and 3) to bivalent OPV (bOPV; containing types 1 and 3) (2). Monovalent type 2 OPV (mOPV2) is used in response campaigns to control type 2 cVDPV (cVDPV2) outbreaks. This report presents data on cVDPV outbreaks detected during January 2018-June 2019 (as of September 30, 2019). Compared with January 2017-June 2018 (3), the number of reported cVDPV outbreaks more than tripled, from nine to 29; 25 (86%) of the outbreaks were caused by cVDPV2. The increase in the number of outbreaks in 2019 resulted from VDPV2 both inside and outside of mOPV2 response areas. GPEI is planning future use of a novel type 2 OPV, stabilized to decrease the likelihood of reversion to neurovirulence. However, all countries must maintain high population immunity to decrease the risk for cVDPV emergence. Cessation of all OPV use after certification of polio eradication will eliminate the risk for VDPV emergence. |
Progress toward poliovirus containment implementation - worldwide, 2018-2019
Moffett DB , Llewellyn A , Singh H , Saxentoff E , Partridge J , Iakovenko M , Roesel S , Asghar H , Baig N , Grabovac V , Gurung S , Gumede-Moeletsi N , Barnor J , Theo A , Rey-Benito G , Villalobos A , Boualam L , Swan J , Sutter RW , Pandel E , Wassilak S , Oberste MS , Lewis I , Zaffran M . MMWR Morb Mortal Wkly Rep 2019 68 (38) 825-829 Among the three wild poliovirus (WPV) types, type 2 (WPV2) was declared eradicated globally by the Global Commission for the Certification of Poliomyelitis Eradication (GCC) in 2015. Subsequently, in 2016, a global withdrawal of Sabin type 2 oral poliovirus vaccine (OPV2) from routine use, through a synchronized switch from the trivalent formulation of oral poliovirus vaccine (tOPV, containing vaccine virus types 1, 2, and 3) to the bivalent form (bOPV, containing types 1 and 3), was implemented. WPV type 3 (WPV3), last detected in 2012 (1), will possibly be declared eradicated in late 2019.* To ensure that polioviruses are not reintroduced to the human population after eradication, World Health Organization (WHO) Member States committed in 2015 to containing all polioviruses in poliovirus-essential facilities (PEFs) that are certified to meet stringent containment criteria; implementation of containment activities began that year for facilities retaining type 2 polioviruses (PV2), including type 2 oral poliovirus vaccine (OPV) materials (2). As of August 1, 2019, 26 countries have nominated 74 PEFs to retain PV2 materials. Twenty-five of these countries have established national authorities for containment (NACs), which are institutions nominated by ministries of health or equivalent bodies to be responsible for poliovirus containment certification. All designated PEFs are required to be enrolled in the certification process by December 31, 2019 (3). When GCC certifies WPV3 eradication, WPV3 and vaccine-derived poliovirus (VDPV) type 3 materials will also be required to be contained, leading to a temporary increase in the number of designated PEFs. When safer alternatives to wild and OPV/Sabin strains that do not require containment conditions are available for diagnostic and serologic testing, the number of PEFs will decrease. Facilities continuing to work with polioviruses after global eradication must minimize the risk for reintroduction into communities by adopting effective biorisk management practices. |
Progress toward poliomyelitis eradication - Nigeria, January 2018-May 2019
Adamu US , Archer WR , Braka F , Damisa E , Siddique A , Baig S , Higgins J , Sume GE , Banda R , Korir CK , Waziri N , Gidado S , Bammeke P , Edukugo A , Nganda GW , Forbi JC , Burns CC , Liu H , Jorba J , Asekun A , Franka R , Wassilak SGF , Bolu O . MMWR Morb Mortal Wkly Rep 2019 68 (29) 642-646 The number of wild poliovirus (WPV) cases in Nigeria decreased from 1,122 in 2006 to six WPV type 1 (WPV1) in 2014 (1). During August 2014-July 2016, no WPV cases were detected; during August-September 2016, four cases were reported in Borno State. An insurgency in northeastern Nigeria had resulted in 468,800 children aged <5 years deprived of health services in Borno by 2016. Military activities in mid-2016 freed isolated families to travel to camps, where the four WPV1 cases were detected. Oral poliovirus vaccine (OPV) campaigns were intensified during August 2016-December 2017; since October 2016, no WPV has been detected (2). Vaccination activities in insurgent-held areas are conducted by security forces; however, 60,000 unvaccinated children remain in unreached settlements. Since 2018, circulating vaccine-derived poliovirus type 2 (cVDPV2) has emerged and spread from Nigeria to Niger and Cameroon; outbreak responses to date have not interrupted transmission. This report describes progress in Nigeria polio eradication activities during January 2018-May 2019 and updates the previous report (2). Interruption of cVDPV2 transmission in Nigeria will need increased efforts to improve campaign quality and include insurgent-held areas. Progress in surveillance and immunization activities will continue to be reviewed, potentially allowing certification of interruption of WPV transmission in Africa in 2020. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 04, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure