Last data update: Oct 07, 2024. (Total: 47845 publications since 2009)
Records 1-26 (of 26 Records) |
Query Trace: Parise ME[original query] |
---|
Geographic variation in the distribution of Anaplasma phagocytophilum variants in host-seeking Ixodes scapularis nymphs and adults in the eastern United States elucidated using next generation sequencing
Hojgaard A , Foster E , Maes SE , Osikowicz LM , Parise CM , Villalpando J , Eisen RJ . Ticks Tick Borne Dis 2024 15 (5) 102360 Human anaplasmosis cases, caused by Anaplasma phagocytophilum, are increasing in the United States. This trend is explained, in part, by expansion in the geographic range of the primary vector, Ixodes scapularis. Multiple variants of A. phagocytophilum have been identified in field collected ticks, but only a single variant (human active, or "Ap-ha," variant) has been shown to be pathogenic in humans. Until recently, laboratory methods used to differentiate variants were cumbersome and seldomly used in large scale assessments of the pathogen's geographic distribution. As a result, many surveys reported A. phagocytophilum without segregating variants. Lack of discrimination among A. phagocytophilum variants could lead to overestimation of anaplasmosis risk to humans. Next Generation Sequencing (NGS) assays were recently developed to efficiently detect multiple Ixodes scapularis-borne human pathogens including Ap-ha. In this study, we utilized NGS to detect and differentiate A. phagocytophilum variants (Ap-ha vs. non ha) in host-seeking I. scapularis nymphs and adults collected across 23 states in the eastern United States from 2012 to 2023 as part of national tick surveillance efforts and research studies. Many of the included ticks were tested previously using a TaqMan PCR assay that could detect A. phagocytophilum but could not differentiate variants. We retested A. phagocytophilum infected ticks with NGS to differentiate variants. Anaplasma phagocytophilum (any variant) was identified in 165 (35 %) of 471 counties from which ticks were tested, whereas Ap-ha was detected in 70 (15 %) of 469 counties where variants were differentiated. Both variants were identified in 32 % (n = 40) of 126 counties with either variant detected. Among states where A. phagocytophilum (any variant) was detected, prevalence ranged from 2 % to 19 % in unfed adults and from 0.2 % to 7.8 % in unfed nymphs; prevalence of Ap-ha variant ranged from 0.0 % to 16 % in adults, and 0.0 % to 4.6 % in nymphs. |
Efficacy of unregulated minimum risk tick repellent products evaluated with Ixodes scapularis nymphs in a human skin bioassay
Burtis JC , Ford SL , Parise CM , Eisen RJ , Eisen L . Parasit Vectors 2024 17 (1) 50 BACKGROUND: The majority of vector-borne disease cases in the USA are caused by pathogens spread by ticks, most commonly the blacklegged tick, Ixodes scapularis. Personal protection against tick bites, including use of repellents, is the primary defense against tick-borne diseases. Tick repellents registered by the Environmental Protection Agency (EPA) are well documented to be safe as well as effective against ticks. Another group of tick repellent products, 25(b) exempt or minimum risk products, use alternative, mostly botanically derived, active ingredients. These are considered to pose minimal risk to human health and therefore are exempt from EPA registration; efficacy testing is not mandated for these products. METHODS: We used a finger bioassay to evaluate the repellency against I. scapularis nymphs for 11 formulated 25(b) exempt products together with two positive control DEET-based EPA registered products. Repellency was assessed hourly from 0.5 to 6.5 h after product application. RESULTS: The DEET-based products showed ≥ 97% repellency for all examined timepoints. By contrast, an average of 63% of ticks were repelled in the first 1.5 h after application across the 11 25(b) exempt products, and the average fell to 3% repelled between 2.5 and 6.5 h. Ten of the 11 25(b) exempt products showed statistically similar efficacy to DEET-based products at 30 min after application (repellency of 79-97%). However, only four 25(b) exempt products maintained a level of repellency similar to DEET-based products (> 72%) at the 1.5-h mark, and none of these products were effective in repelling ticks at the timepoints from 2.5 to 6.5 h after application. CONCLUSIONS: Neither the claims on the labels nor specific active ingredients and their concentrations appeared to predict the duration of efficacy we observed for the 25(b) exempt products. These products are not registered with the EPA, so the methods used to determine the application guidelines on their labels are unclear. Consumers should be aware that both the level of efficacy and the duration of repellency may differ among unregulated 25(b) exempt repellent products labeled for use against ticks. We encourage more research on these products and the 25(b) exempt active ingredients they contain to help determine and improve their efficacy as repellents under different conditions. |
Reported Cases of Multisystem Inflammatory Syndrome in Children (MIS-C) Aged 12-20 Years in the United States Who Received COVID-19 Vaccine, December 2020 through August 2021 (preprint)
Yousaf AR , Cortese MM , Taylor AW , Broder KR , Oster ME , Wong JM , Guh AY , McCormick DW , Kamidani S , Schlaudecker EP , Edwards K , Creech CB , Staat MA , Belay ED , Marquez P , Su JR , Salzman MB , Thompson D , Campbell AP , Museru O , Howard LM , Parise M , Finn LE , Kim M , Raman KV , Komatsu KK , Spiker BL , Burkholder CP , Lang SM , Soslow JH . medRxiv 2022 05 Background: Multisystem inflammatory syndrome in children (MIS-C) is a hyperinflammatory condition associated with antecedent SARS-CoV-2 infection. In the United States, reporting of MIS-C after vaccination is required under COVID-19 vaccine emergency use authorizations. This case series describes persons aged 12-20 years with MIS-C following COVID-19 vaccination reported to passive surveillance systems or through clinician outreach to CDC. Method(s): We investigated potential cases of MIS-C after COVID-19 vaccination reported to CDC's health department-based national MIS-C surveillance, the Vaccine Adverse Event Reporting System (VAERS, co-administered by CDC and the U.S. FDA), and CDC's Clinical Immunization Safety Assessment Project (CISA) from December 14, 2020, to August 31, 2021. We describe cases meeting the CDC MIS-C case definition. Any positive SARS-CoV-2 serology test satisfied the case criteria although anti-nucleocapsid antibody indicates SARS-CoV-2 infection, while anti-spike protein antibody indicates either infection or COVID-19 vaccination. Finding(s): We identified 21 persons with MIS-C after COVID-19 vaccination. Of these 21 persons, median age was 16 years (range, 12-20 years); 13 (62%) were male. All were hospitalized; 12 (57%) had intensive care unit admission, and all were discharged home. Fifteen (71%) of the 21 had laboratory evidence of past or recent SARS-CoV-2 infection, and six (29%) did not. Through August 2021, 21,335,331 persons aged 12-20 years had received >=1 dose of COVID-19 vaccine, making the overall reporting rate for MIS-C following vaccination 1.0 case per million persons receiving >=1 vaccine dose in this age group. The reporting rate for those without evidence of SARS-CoV-2 infection was 0.3 cases per million vaccinated persons. Interpretation(s): In our case series, we describe a small number of persons with MIS-C who had received >=1 COVID-19 vaccine dose before illness onset. Continued reporting of potential cases and surveillance for MIS-C illnesses after COVID-19 vaccination is warranted. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. |
Comparison of in vitro and in vivo repellency bioassay methods for Ixodes scapularis nymphs
Burtis JC , Ford SL , Parise CM , Foster E , Eisen RJ , Eisen L . Parasit Vectors 2023 16 (1) 228 BACKGROUND: Numerous bioassay methods have been used to test the efficacy of repellents for ticks, but the comparability of results across different methods has only been evaluated in a single study. Of particular interest are comparisons between bioassays that use artificial containers (in vitro) with those conducted on a human subject (in vivo) for efficacy testing of new potential unregistered active ingredients, which most commonly use in vitro methods. METHODS: We compared four different bioassay methods and evaluated three ingredients (DEET [N,N-Diethyl-meta-toluamide], peppermint oil and rosemary oil) and a negative control (ethanol) over a 6-h period. Two of the methods tested were in vivo bioassay methods in which the active ingredient was applied to human skin (finger and forearm bioassays), and the other two methods were in vitro methods using artificial containers (jar and petri dish bioassays). All four bioassays were conducted using Ixodes scapularis nymphs. We compared the results using nymphs from two different tick colonies that were derived from I. scapularis collected in the US states of Connecticut and Rhode Island (northern origin) and Oklahoma (southern origin), expecting that ticks of different origin would display differences in host-seeking behavior. RESULTS: The results between bioassay methods did not differ significantly, even when comparing those that provide the stimulus of human skin with those that do not. We also found that tick colony source can impact the outcome of repellency bioassays due to differences in movement speed; behavioral differences were incorporated into the assay screening. DEET effectively repelled nymphs for the full 6-h duration of the study. Peppermint oil showed a similar repellent efficacy to DEET during the first hour, but it decreased sharply afterwards. Rosemary oil did not effectively repel nymphs across any of the time points. CONCLUSIONS: The repellency results did not differ significantly between the four bioassay methods tested. The results also highlight the need to consider the geographic origin of ticks used in repellency bioassays in addition to species and life stage. Finally, our results indicate a limited repellent efficacy of the two essential oils tested, which highlights the need for further studies on the duration of repellency for similar botanically derived active ingredients and for evaluation of formulated products. |
Deer management generally reduces densities of nymphal Ixodes scapularis, but not prevalence of infection with Borrelia burgdorferi sensu stricto
Martin AM , Buttke D , Raphael J , Taylor K , Maes S , Parise CM , Ginsberg HS , Cross PC . Ticks Tick Borne Dis 2023 14 (5) 102202 Human Lyme disease-primarily caused by the bacterium Borrelia burgdorferi sensu stricto (s.s.) in North America-is the most common vector-borne disease in the United States. Research on risk mitigation strategies during the last three decades has emphasized methods to reduce densities of the primary vector in eastern North America, the blacklegged tick (Ixodes scapularis). Controlling white-tailed deer populations has been considered a potential method for reducing tick densities, as white-tailed deer are important hosts for blacklegged tick reproduction. However, the feasibility and efficacy of white-tailed deer management to impact acarological risk of encountering infected ticks (namely, density of host-seeking infected nymphs; DIN) is unclear. We investigated the effect of white-tailed deer density and management on the density of host-seeking nymphs and B. burgdorferi s.s. infection prevalence using surveillance data from eight national parks and park regions in the eastern United States from 2014-2022. We found that deer density was significantly positively correlated with the density of nymphs (nymph density increased by 49% with a 1 standard deviation increase in deer density) but was not strongly correlated with the prevalence of B. burgdorferi s.s. infection in nymphal ticks. Further, while white-tailed deer reduction efforts were followed by a decrease in the density of I. scapularis nymphs in parks, deer removal had variable effects on B. burgdorferi s.s. infection prevalence, with some parks experiencing slight declines and others slight increases in prevalence. Our findings suggest that managing white-tailed deer densities alone may not be effective in reducing DIN in all situations but may be a useful tool when implemented in integrated management regimes. |
Identifying suitable habitat for Ixodes scapularis (Acari: Ixodidae) infected with Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), Babesia microti (Piroplasmida: Babesiidae), and Borrelia miyamotoi (Spirochaetales: Spirochaetaceae) to guide surveillance efforts in the eastern United States
Burtis JC , Foster E , Parise CM , Eisen RJ . J Med Entomol 2023 60 (3) 590-603 Understanding the distribution of infected ticks is informative for the estimation of risk for tickborne diseases. The blacklegged tick, Ixodes scapularis (Acari: Ixodidae), is the primary vector for 7 medically significant pathogens in United States. However, knowledge of the ranges of these pathogens in host-seeking ticks is incomplete, particularly for those occurring at low prevalence. To aid in prioritizing costly field sampling efforts, we estimated ranges of suitable habitat for Anaplasma phagocytophilum, Babesia microti, and Borrelia miyamotoi in the eastern United States based on existing county-level surveillance records. The resulting suitability maps were compared against those developed previously for Bo. burgdorferi s.s., which shares similar ecology but has been detected in a greater number of counties. The overall accuracy of the habitat suitability models was high (AUC ≥ 0.92) for all 4 pathogens. The most important predictors were related to temperature and moisture. The upper midwestern and northeastern states were predicted to be highly suitable for all 4 pathogens. Based on our models, we prioritized sampling in 431, 275, and 539 counties currently lacking pathogen records that our models classified as suitable for A. phagocytophilum, Ba. microti, and Bo. miyamotoi, respectively. As a second-tier priority, we identified 311 (A. phagocytophilum), 590 (Ba. microti), and 252 (Bo. miyamotoi) counties, based on high suitability scores for Bo. burgdorferi. Our models can be used to improve cost-effectiveness of field sampling efforts aimed at improving accuracy and completeness of pathogen distribution maps. |
A serological assay to detect and differentiate rodent exposure to soft tick and hard tick relapsing fever infections in the United States
Parise CM , Bai Y , Brandt KS , Ford SL , Maes S , Replogle AJ , Kneubehl AR , Lopez JE , Eisen RJ , Hojgaard A . Ticks Tick Borne Dis 2023 14 (4) 102167 Human cases of relapsing fever (RF) in North America are caused primarily by Borrelia hermsii and Borrelia turicatae, which are spread by argasid (soft) ticks, and by Borrelia miyamotoi, which is transmitted by ixodid (hard) ticks. In some regions of the United States, the ranges of the hard and soft tick RF species are known to overlap; in many areas, recorded ranges of RF spirochetes overlap with Lyme disease (LD) group Borrelia spirochetes. Identification of RF clusters or cases detected in unusual geographic localities might prompt public health agencies to investigate environmental exposures, enabling prevention of additional cases through locally targeted mitigation. However, exposure risks and mitigation strategies differ among hard and soft tick RF, prompting a need for additional diagnostic strategies that differentiate hard tick from soft tick RF. We evaluated the ability of new and previously described recombinant antigens in serological assays to differentiate among prior exposures in mice to LD, soft or hard tick RF spirochetes. We extracted whole-cell protein lysates from RF Borrelia cultures and synthesized six recombinant RF antigens (Borrelia immunogenic protein A (BipA) derived from four species of RF Borrelia, glycerophosphodiester phosphodiesterase (GlpQ), and Borrelia miyamotoi membrane antigen A (BmaA)) to detect reactivity in laboratory derived (Peromyscus sp. and Mus sp.) mouse serum infected with RF and LD Borrelia species. Among 44 Borrelia exposed mouse samples tested, all five mice exposed to LD spirochetes were correctly differentiated from the 39 mice exposed to RF Borrelia using the recombinant targets. Of the 39 mice exposed to RF spirochetes, 28 were accurately categorized to species of exposure (71%). Segregation among soft tick RF species (Borrelia hermsii, Borrelia parkeri and Borrelia turicatae) was inadequate (58%) owing to observed cross-reactivity among recombinant BipA protein targets. However, among the 28 samples accurately separated to species, all were accurately assigned to soft tick or hard tick RF type. Although not adequately specific to accurately categorize exposure to soft tick RF species, the recombinant BipA protein targets from soft and hard tick RF species show utility in accurately discriminating mouse exposures to LD or RF Borrelia, and accurately segregate hard tick from soft tick RF Borrelia exposure. |
High-quality parasitic disease laboratory services are a priority at the CDC
Purfield AE , Butler JC , Cain KP , Kuhnert W , Muehlenbachs A , Parise M , Pirkle J . Am J Trop Med Hyg 2022 106 (6) 1574 The CDC is unwavering in our commitment to provide the highest quality laboratory diagnostic services for parasitic diseases. We clearly hear, understand, and concur with the concerns expressed in the accompanying editorial and appreciate the challenges the pause in testing for parasitic diseases presents for health-care providers, particularly those treating people at elevated risk for parasitic diseases. | | We also recognize the crucial role that our agency plays in ensuring those at risk receive equitable services for infections, including those that are generally known to all Americans as well as neglected diseases that are unfamiliar to most Americans. More broadly, the CDC works to protect the global community from parasitic diseases through three main priorities: reducing parasitic disease-related death, illness, and disability in the United States; reducing the global burden of malaria; and eliminating targeted neglected tropical diseases. Our Parasitic Diseases Laboratory is, in many ways, the foundation of this work and serves as a critical resource and often a laboratory of last resort for challenging diagnoses of unfamiliar pathogens when state and private laboratories do not have the relevant testing capacity. Our laboratory experts develop and improve tools and approaches to detect, prevent, and control disease; provide diagnostic assistance and expertise to public health laboratories; and conduct diagnostic tests for parasitic diseases. |
Partnership Between a Federal Agency and 4 Tribal Nations to Improve COVID-19 Response Capacities.
Kaur H , Welch S , Bhairavabhotla R , Weidle PJ , Santibanez S , Haberling DL , Smith EM , Ferris-George W , Hayashi K , Hostler A , Ao T , Dieke A , Boyer D , King E , Teton R , Williams-Singleton N , Flying EM , Hladik W , Marshall KJ , Pourier D , Ruiz Z , Yatabe G , Abe K , Parise M , Anderson M , Evans ME , Hunt H , Balajee SA . Public Health Rep 2022 137 (5) 333549221099239 Upon request from tribal nations, and as part of the Centers for Disease Control and Prevention's (CDC's) emergency response, CDC staff provided both remote and on-site assistance to tribes to plan, prepare, and respond to the COVID-19 pandemic. From April 2, 2020, through June 11, 2021, CDC deployed a total of 275 staff to assist 29 tribal nations. CDC staff typically collaborated in multiple work areas including epidemiology and surveillance (86%), contact tracing (76%), infection prevention control (72%), community mitigation (72%), health communication (66%), incident command structure (55%), emergency preparedness (38%), and worker safety (31%). We describe the activities of CDC staff in collaboration with 4 tribal nations, Northern Cheyenne, Hoopa Valley, Shoshone-Bannock, and Oglala Sioux Tribe, to combat COVID-19 and lessons learned from the engagement. |
A Novel Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Yersinia pestis.
Bai Y , Rizzo MR , Parise C , Maes S , Eisen RJ . Front Microbiol 2022 13 863142 Rapid detection of Yersinia pestis, the causative agent of plague, is essential during field investigations to enable prompt control measures for prevention of the spread of the disease. Affordable, efficient, reliable, and simple detection assays are extremely useful, particularly in plague-endemic regions with limited resources. We developed a loop-mediated isothermal amplification (LAMP) assay that detects Y. pestis within 30 min by simply incubating at 65°C on a dry bath heater. The assay targeted the caf1A gene that is situated on the pMT1 plasmid using six specific primers. Y. pestis presence is visually detected based on the color change in the reactions. For comparison of the assay performance, a real-time LAMP with fluorescent dye detection was conducted on a real-time PCR instrument using the same six primers. Sensitivity assessment showed that the limit of detection (LOD) was 0.2 and 0.03 pg when performed on the dry bath heater and on the real-time PCR instrument, respectively. The assay was 100% specific, having no cross-reactivity with closely related Yersinia spp. and other bacterial species. We tested the LAMP assay on field-collected fleas and showed that it successfully detected Y. pestis with identical results to that of a previously published pentaplex real-time PCR assay. These findings suggest that the relatively inexpensive and simpler LAMP assay could be used to support field investigations, yielding comparable results to more expensive and complex PCR assays. |
Reported cases of multisystem inflammatory syndrome in children aged 12-20 years in the USA who received a COVID-19 vaccine, December, 2020, through August, 2021: a surveillance investigation.
Yousaf AR , Cortese MM , Taylor AW , Broder KR , Oster ME , Wong JM , Guh AY , McCormick DW , Kamidani S , Schlaudecker EP , Edwards KM , Creech CB , Staat MA , Belay ED , Marquez P , Su JR , Salzman MB , Thompson D , Campbell AP , Museru O , Howard LM , Parise M , Finn LE , Kim M , Raman KV , Komatsu KK , Spiker BL , Burkholder CP , Lang SM , Soslow JH . Lancet Child Adolesc Health 2022 6 (5) 303-312 BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a hyperinflammatory condition associated with antecedent SARS-CoV-2 infection. In the USA, reporting of MIS-C after vaccination is required under COVID-19 vaccine emergency use authorisations. We aimed to investigate reports of individuals aged 12-20 years with MIS-C after COVID-19 vaccination reported to passive surveillance systems or through clinician outreach to the US Centers for Disease Control and Prevention (CDC). METHODS: In this surveillance activity, we investigated potential cases of MIS-C after COVID-19 vaccination reported to CDC's MIS-C national surveillance system, the Vaccine Adverse Event Reporting System (co-administered by CDC and the US Food and Drug Administration), and CDC's Clinical Immunization Safety Assessment Project. A multidisciplinary team adjudicated cases by use of the CDC MIS-C definition. Any positive SARS-CoV-2 serology test satisfied case criteria; although anti-nucleocapsid antibodies indicate previous SARS-CoV-2 infection, anti-spike protein antibodies indicate either past or recent infection or COVID-19 vaccination. We describe the demographic and clinical features of cases, stratified by laboratory evidence of SARS-CoV-2 infection. To calculate the reporting rate of MIS-C, we divided the count of all individuals meeting the MIS-C case definition, and of those without evidence of SARS-CoV-2 infection, by the number of individuals aged 12-20 years in the USA who received one or more COVID-19 vaccine doses up to Aug 31, 2021, obtained from CDC national vaccine surveillance data. FINDINGS: Using surveillance results from Dec 14, 2020, to Aug 31, 2021, we identified 21 individuals with MIS-C after COVID-19 vaccination. Of these 21 individuals, median age was 16 years (range 12-20); 13 (62%) were male and eight (38%) were female. All 21 were hospitalised: 12 (57%) were admitted to an intensive care unit and all were discharged home. 15 (71%) of 21 individuals had laboratory evidence of past or recent SARS-CoV-2 infection, and six (29%) did not. As of Aug 31, 2021, 21 335 331 individuals aged 12-20 years had received one or more doses of a COVID-19 vaccine, making the overall reporting rate for MIS-C after vaccination 1·0 case per million individuals receiving one or more doses in this age group. The reporting rate in only those without evidence of SARS-CoV-2 infection was 0·3 cases per million vaccinated individuals. INTERPRETATION: Here, we describe a small number of individuals with MIS-C who had received one or more doses of a COVID-19 vaccine before illness onset; the contribution of vaccination to these illnesses is unknown. Our findings suggest that MIS-C after COVID-19 vaccination is rare. Continued reporting of potential cases and surveillance for MIS-C illnesses after COVID-19 vaccination is warranted. FUNDING: US Centers for Disease Control and Prevention. |
Disparities in Incidence of COVID-19 Among Underrepresented Racial/Ethnic Groups in Counties Identified as Hotspots During June 5-18, 2020 - 22 States, February-June 2020.
Moore JT , Ricaldi JN , Rose CE , Fuld J , Parise M , Kang GJ , Driscoll AK , Norris T , Wilson N , Rainisch G , Valverde E , Beresovsky V , Agnew Brune C , Oussayef NL , Rose DA , Adams LE , Awel S , Villanueva J , Meaney-Delman D , Honein MA . MMWR Morb Mortal Wkly Rep 2020 69 (33) 1122-1126 During January 1, 2020-August 10, 2020, an estimated 5 million cases of coronavirus disease 2019 (COVID-19) were reported in the United States.* Published state and national data indicate that persons of color might be more likely to become infected with SARS-CoV-2, the virus that causes COVID-19, experience more severe COVID-19-associated illness, including that requiring hospitalization, and have higher risk for death from COVID-19 (1-5). CDC examined county-level disparities in COVID-19 cases among underrepresented racial/ethnic groups in counties identified as hotspots, which are defined using algorithmic thresholds related to the number of new cases and the changes in incidence.(†) Disparities were defined as difference of ≥5% between the proportion of cases and the proportion of the population or a ratio ≥1.5 for the proportion of cases to the proportion of the population for underrepresented racial/ethnic groups in each county. During June 5-18, 205 counties in 33 states were identified as hotspots; among these counties, race was reported for ≥50% of cumulative cases in 79 (38.5%) counties in 22 states; 96.2% of these counties had disparities in COVID-19 cases in one or more underrepresented racial/ethnic groups. Hispanic/Latino (Hispanic) persons were the largest group by population size (3.5 million persons) living in hotspot counties where a disproportionate number of cases among that group was identified, followed by black/African American (black) persons (2 million), American Indian/Alaska Native (AI/AN) persons (61,000), Asian persons (36,000), and Native Hawaiian/other Pacific Islander (NHPI) persons (31,000). Examining county-level data disaggregated by race/ethnicity can help identify health disparities in COVID-19 cases and inform strategies for preventing and slowing SARS-CoV-2 transmission. More complete race/ethnicity data are needed to fully inform public health decision-making. Addressing the pandemic's disproportionate incidence of COVID-19 in communities of color can reduce the community-wide impact of COVID-19 and improve health outcomes. |
Trends in Number and Distribution of COVID-19 Hotspot Counties - United States, March 8-July 15, 2020.
Oster AM , Kang GJ , Cha AE , Beresovsky V , Rose CE , Rainisch G , Porter L , Valverde EE , Peterson EB , Driscoll AK , Norris T , Wilson N , Ritchey M , Walke HT , Rose DA , Oussayef NL , Parise ME , Moore ZS , Fleischauer AT , Honein MA , Dirlikov E , Villanueva J . MMWR Morb Mortal Wkly Rep 2020 69 (33) 1127-1132 The geographic areas in the United States most affected by the coronavirus disease 2019 (COVID-19) pandemic have changed over time. On May 7, 2020, CDC, with other federal agencies, began identifying counties with increasing COVID-19 incidence (hotspots) to better understand transmission dynamics and offer targeted support to health departments in affected communities. Data for January 22-July 15, 2020, were analyzed retrospectively (January 22-May 6) and prospectively (May 7-July 15) to detect hotspot counties. No counties met hotspot criteria during January 22-March 7, 2020. During March 8-July 15, 2020, 818 counties met hotspot criteria for ≥1 day; these counties included 80% of the U.S. population. The daily number of counties meeting hotspot criteria peaked in early April, decreased and stabilized during mid-April-early June, then increased again during late June-early July. The percentage of counties in the South and West Census regions* meeting hotspot criteria increased from 10% and 13%, respectively, during March-April to 28% and 22%, respectively, during June-July. Identification of community transmission as a contributing factor increased over time, whereas identification of outbreaks in long-term care facilities, food processing facilities, correctional facilities, or other workplaces as contributing factors decreased. Identification of hotspot counties and understanding how they change over time can help prioritize and target implementation of U.S. public health response activities. |
Experimental demonstration of reservoir competence of the white-footed mouse, Peromyscus leucopus (Rodentia: Cricetidae), for the Lyme disease spirochete, Borrelia mayonii (Spirochaetales: Spirochaetaceae)
Parise CM , Breuner NE , Hojgaard A , Osikowicz LM , Replogle AJ , Eisen RJ , Eisen L . J Med Entomol 2019 57 (3) 927-932 The white-footed mouse, Peromyscus leucopus (Rafinesque), is a reservoir for the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern half of the United States, where the blacklegged tick, Ixodes scapularis Say (Acari: Ixodidae), is the primary vector. In the Midwest, an additional Lyme disease spirochete, Borrelia mayonii, was recorded from naturally infected I. scapularis and P. leucopus. However, an experimental demonstration of reservoir competence was lacking for a natural tick host. We therefore experimentally infected P. leucopus with B. mayonii via I. scapularis nymphal bites and then fed uninfected larvae on the mice to demonstrate spirochete acquisition and passage to resulting nymphs. Of 23 mice fed on by B. mayonii-infected nymphs, 21 (91%) developed active infections. The infection prevalence for nymphs fed as larvae on these infected mice 4 wk post-infection ranged from 56 to 98%, and the overall infection prevalence for 842 nymphs across all 21 P. leucopus was 75% (95% confidence interval, 72-77%). To assess duration of infectivity, 10 of the P. leucopus were reinfested with uninfected larval ticks 12 wk after the mice were infected. The overall infection prevalence for 480 nymphs across all 10 P. leucopus at the 12-wk time point was 26% (95% confidence interval, 23-31%), when compared with 76% (95% confidence interval, 71-79%) for 474 nymphs from the same subset of 10 mice at the 4-wk time point. We conclude that P. leucopus is susceptible to infection with B. mayonii via bite by I. scapularis nymphs and an efficient reservoir for this Lyme disease spirochete. |
Failure of the Asian longhorned tick, Haemaphysalis longicornis, to serve as an experimental vector of the Lyme disease spirochete, Borrelia burgdorferi sensu stricto
Breuner NE , Ford SL , Hojgaard A , Osikowicz LM , Parise CM , Rosales Rizzo MF , Bai Y , Levin ML , Eisen RJ , Eisen L . Ticks Tick Borne Dis 2019 11 (1) 101311 The invasive, human-biting Asian longhorned tick, Haemaphysalis longicornis, was detected in New Jersey in the eastern United States in August of 2017 and by November of 2018 this tick had been recorded from 45 counties across 9 states, primarily along the Eastern Seaboard. The establishment of H. longicornis in the United States has raised the questions of how commonly it will bite humans and which native pathogens may naturally infect this tick. There also is a need for experimental vector competence studies with native pathogens to determine if H. longicornis can acquire a given pathogen while feeding, pass it transstadially, and then transmit the pathogen in the next life stage. In this experimental study, we evaluated the vector competence of a population of H. longicornis originating from the United States (New York) for a native isolate (B31) of the Lyme disease spirochete, Borrelia burgdorferi sensu stricto (s.s.). In agreement with a previous experimental study on the vector competence of H. longicornis for Borrelia garinii, we found that uninfected H. longicornis larvae could acquire B. burgdorferi s.s. while feeding on infected Mus musculus mice (infection prevalence >50% in freshly fed larvae) but that the infection was lost during the molt to the nymphal stage. None of 520 tested molted nymphs were found to be infected, indicating that transstadial passage of B. burgdorferi s.s. is absent or rare in H. longicornis; and based on the potential error associated with the number of nymphs testing negative in this study, we estimate that the upper 95% limit for infection prevalence was 0.73%. An Ixodes scapularis process control showed both effective acquisition of B. burgdorferi s.s. from infected mice by uninfected larvae and transstadial passage to the nymphal stage (infection prevalence of 80-82% for both freshly fed larvae and molted nymphs). We also observed that although H. longicornis larvae could be compelled to feed on mice by placing the ticks within feeding capsules, attachment and feeding success was minimal (<0.5%) when larvae were placed freely on the fur of the mice. We conclude that H. longicornis is unlikely to contribute more than minimally, if at all, to transmission of Lyme disease spirochetes in the United States. |
Reported county-level distribution of the American dog tick (Acari: Ixodidae) in the contiguous United States
Lehane A , Parise C , Evans C , Beati L , Nicholson WL , Eisen RJ . J Med Entomol 2019 57 (1) 131-155 In the United States, tick-borne diseases are increasing in incidence and cases are reported over an expanding geographical area. Avoiding tick bites is a key strategy in tick-borne disease prevention, and this requires current and accurate information on where humans are at risk for exposure to ticks. Based on a review of published literature and records in the U.S. National Tick Collection and National Ecological Observatory Network databases, we compiled an updated county-level map showing the reported distribution of the American dog tick, Dermacentor variabilis (Say). We show that this vector of the bacterial agents causing Rocky Mountain spotted fever and tularemia is widely distributed, with records derived from 45 states across the contiguous United States. However, within these states, county-level records of established tick populations are limited. Relative to the range of suitable habitat for this tick, our data imply that D. variabilis is currently underreported in the peer-reviewed literature, highlighting a need for improved surveillance and documentation of existing tick records. |
What do we know about Chagas disease in the United States?
Montgomery SP , Parise ME , Dotson EM , Bialek SR . Am J Trop Med Hyg 2016 95 (6) 1225-1227 Chagas disease, caused by the parasite Trypanosoma cruzi, affects more than 5 million people worldwide leading to serious heart and gastrointestinal disease in a proportion of chronically infected patients. Important modes of transmission include vector-borne, congenital, and via blood transfusion or organ transplant from an infected donor. Vector-borne transmission of Chagas disease occurs in the Americas, including the southern half of North America, where the specific vector insects (triatomines), T. cruzi, and infected reservoir mammalian hosts are found. In the United States, there are estimated to be at least 300,000 cases of chronic Chagas disease among people originally from countries of Latin America where Chagas disease is endemic. Fewer than 30 cases of locally acquired infection have been documented in the United States, although a sylvatic transmission cycle has been known to exist in this country for at least a century. Studies defining risks for locally acquired infection and effective prevention strategies are needed to help prevent domestic transmission of T. cruzi To help address Chagas disease in the United States, improved health-care provider awareness and knowledge, better tools for screening and diagnosing patients, and wider availability of treatment drugs are needed. |
2013 multistate outbreaks of Cyclospora cayetanensis infections associated with fresh produce: focus on the Texas investigations
Abanyie F , Harvey RR , Harris JR , Wiegand RE , Gaul L , Desvignes-Kendrick M , Irvin K , Williams I , Hall RL , Herwaldt B , Gray EB , Qvarnstrom Y , Wise ME , Cantu V , Cantey PT , Bosch S , da Silva AJ , Fields A , Bishop H , Wellman A , Beal J , Wilson N , Fiore AE , Tauxe R , Lance S , Slutsker L , Parise M . Epidemiol Infect 2015 143 (16) 1-8 The 2013 multistate outbreaks contributed to the largest annual number of reported US cases of cyclosporiasis since 1997. In this paper we focus on investigations in Texas. We defined an outbreak-associated case as laboratory-confirmed cyclosporiasis in a person with illness onset between 1 June and 31 August 2013, with no history of international travel in the previous 14 days. Epidemiological, environmental, and traceback investigations were conducted. Of the 631 cases reported in the multistate outbreaks, Texas reported the greatest number of cases, 270 (43%). More than 70 clusters were identified in Texas, four of which were further investigated. One restaurant-associated cluster of 25 case-patients was selected for a case-control study. Consumption of cilantro was most strongly associated with illness on meal date-matched analysis (matched odds ratio 19.8, 95% confidence interval 4.0-infinity). All case-patients in the other three clusters investigated also ate cilantro. Traceback investigations converged on three suppliers in Puebla, Mexico. Cilantro was the vehicle of infection in the four clusters investigated; the temporal association of these clusters with the large overall increase in cyclosporiasis cases in Texas suggests cilantro was the vehicle of infection for many other cases. However, the paucity of epidemiological and traceback information does not allow for a conclusive determination; moreover, molecular epidemiological tools for cyclosporiasis that could provide more definitive linkage between case clusters are needed. |
Neglected parasitic infections in the United States: needs and opportunities
Parise ME , Hotez PJ , Slutsker L . Am J Trop Med Hyg 2014 90 (5) 783-5 Parasitic infections are a major global health burden. The impact of debilitating diseases caused by parasites is greatest among those who struggle to meet their daily basic needs and access basic health care services in low-income countries. However, persons who have or are at risk for parasitic infections are present in every income and social strata, and residents of the United States and other developed nations are not unaffected. For some persons living in the United States, these parasitic infections are acquired in their own immediate environment; for example, exposure to feces from domestic dogs or cats puts children at risk for toxocariasis and toxoplasmosis. For others, chronic parasitic infections acquired years ago in other areas of the world can manifest with severe illness later in life, such as neurocysticercosis leading to adult–onset epilepsy or Chagas disease leading to severe cardiomyopathy requiring heart transplant. We know much less than we should about the health and economic burden and impact of parasitic diseases in developed countries, including the United States (Table 1).1 |
Neglected parasitic infections in the United States: toxocariasis
Woodhall DM , Eberhard ML , Parise ME . Am J Trop Med Hyg 2014 90 (5) 810-3 Toxocariasis is a preventable parasitic disease that is caused by the dog and cat roundworms Toxocara cani and T. cati, respectively. Humans become infected when they accidently ingest infectious Toxocara eggs commonly found in contaminated soil; children are most often affected. Clinical manifestations of Toxocara infection in humans include ocular toxocariasis and visceral toxocariasis. Although infection with Toxocara can cause devastating disease, the burden of toxocariasis in the United States population remains unknown. In addition, risk factors for acquiring infection need to be better defined, and research needs to be conducted to better understand the pathophysiology and clinical course of toxocariasis. Development of diagnostic tests would enable clinicians to detect active infection, and determination of optimal drug regiments would ensure patients were appropriately treated. Addressing these public health gaps is necessary to understand and address the impact of toxocariasis in the United States. |
Neglected parasitic infections in the United States: toxoplasmosis
Jones JL , Parise ME , Fiore AE . Am J Trop Med Hyg 2014 90 (5) 794-9 Toxoplasma gondii is a leading cause of severe foodborne illness in the United States. Population-based studies have found T. gondii infection to be more prevalent in racial/ethnic minority and socioeconomically disadvantaged groups. Soil contaminated with cat feces, undercooked meat, and congenital transmission are the principal sources of infection. Toxoplasmosis-associated illnesses include congenital neurologic and ocular disease; acquired illness in immunocompetent persons, most notably ocular disease; and encephalitis or disseminated disease in immunosuppressed persons. The association of T. gondii infection with risk for mental illness is intriguing and requires further research. Reduction of T. gondii in meat, improvements in hygiene and food preparation practices, and reduction of environmental contamination can prevent toxoplasmosis, but more research is needed on how to implement these measures. In addition, screening and treatment may help prevent toxoplasmosis or reduce the severity of disease in some settings. |
Using mitochondrial genome sequences to track the origin of imported Plasmodium vivax infections diagnosed in the United States.
Rodrigues PT , Alves JM , Santamaria AM , Calzada JE , Xayavong M , Parise M , da Silva AJ , Ferreira MU . Am J Trop Med Hyg 2014 90 (6) 1102-8 Although the geographic origin of malaria cases imported into the United States can often be inferred from travel histories, these histories may be lacking or incomplete. We hypothesized that mitochondrial haplotypes could provide region-specific molecular barcodes for tracing the origin of imported Plasmodium vivax infections. An analysis of 348 mitochondrial genomes from worldwide parasites and new sequences from 69 imported malaria cases diagnosed across the United States allowed for a geographic assignment of most infections originating from the Americas, southeast Asia, east Asia, and Melanesia. However, mitochondrial lineages from Africa, south Asia, central Asia, and the Middle East, which altogether contribute the vast majority of imported malaria cases in the United States, were closely related to each other and could not be reliably assigned to their geographic origins. More mitochondrial genomes are required to characterize molecular barcodes of P. vivax from these regions. |
Clinical, epidemiologic, histopathologic and molecular features of an unexplained dermopathy
Pearson ML , Selby JV , Katz KA , Cantrell V , Braden CR , Parise ME , Paddock CD , Lewin-Smith MR , Kalasinsky VF , Goldstein FC , Hightower AW , Papier A , Lewis B , Motipara S , Eberhard ML . PLoS One 2012 7 (1) e29908 BACKGROUND: Morgellons is a poorly characterized constellation of symptoms, with the primary manifestations involving the skin. We conducted an investigation of this unexplained dermopathy to characterize the clinical and epidemiologic features and explore potential etiologies. METHODS: A descriptive study was conducted among persons at least 13 years of age and enrolled in Kaiser Permanente Northern California (KPNC) during 2006-2008. A case was defined as the self-reported emergence of fibers or materials from the skin accompanied by skin lesions and/or disturbing skin sensations. We collected detailed epidemiologic data, performed clinical evaluations and geospatial analyses and analyzed materials collected from participants' skin. RESULTS: We identified 115 case-patients. The prevalence was 3.65 (95% CI = 2.98, 4.40) cases per 100,000 enrollees. There was no clustering of cases within the 13-county KPNC catchment area (p = .113). Case-patients had a median age of 52 years (range: 17-93) and were primarily female (77%) and Caucasian (77%). Multi-system complaints were common; 70% reported chronic fatigue and 54% rated their overall health as fair or poor with mean Physical Component Scores and Mental Component Scores of 36.63 (SD = 12.9) and 35.45 (SD = 12.89), respectively. Cognitive deficits were detected in 59% of case-patients and 63% had evidence of clinically significant somatic complaints; 50% had drugs detected in hair samples and 78% reported exposure to solvents. Solar elastosis was the most common histopathologic abnormality (51% of biopsies); skin lesions were most consistent with arthropod bites or chronic excoriations. No parasites or mycobacteria were detected. Most materials collected from participants’ skin were composed of cellulose, likely of cotton origin. | CONCLUSIONS: This unexplained dermopathy was rare among this population of Northern California residents, but associated with significantly reduced health-related quality of life. No common underlying medical condition or infectious source was identified, similar to more commonly recognized conditions such as delusional infestation. |
Doxycycline for malaria chemoprophylaxis and treatment: report from the CDC expert meeting on malaria chemoprophylaxis
Tan KR , Magill AJ , Parise ME , Arguin PM . Am J Trop Med Hyg 2011 84 (4) 517-31 Doxycycline, a synthetically derived tetracycline, is a partially efficacious causal prophylactic (liver stage of Plasmodium) drug and a slow acting blood schizontocidal agent highly effective for the prevention of malaria. When used in conjunction with a fast acting schizontocidal agent, it is also highly effective for malaria treatment. Doxycycline is especially useful as a prophylaxis in areas with chloroquine and multidrug-resistant Plasmodium falciparum malaria. Although not recommended for pregnant women and children < 8 years of age, severe adverse events are rarely reported for doxycycline. This report examines the evidence behind current recommendations for the use of doxycycline for malaria and summarizes the available literature on its safety and tolerability. |
Associations between peripheral Plasmodium falciparum malaria parasitemia, human immunodeficiency virus, and concurrent helminthic infection among pregnant women in Malawi
Thigpen MC , Filler SJ , Kazembe PN , Parise ME , Macheso A , Campbell CH , Newman RD , Steketee RW , Hamel M . Am J Trop Med Hyg 2011 84 (3) 379-85 Approximately 2 billion persons worldwide are infected with schistosomiasis and soil-transmitted helminthes (STH), many in areas where endemic malaria transmission coexists. Few data exist on associations between these infections. Nested within a larger clinical trial, primigravid and secundigravid women provided blood samples for human immunodeficiency virus (HIV) testing and peripheral malaria films and stool and urine for evaluation of STH and Schistosoma spp. during their initial antenatal clinic visit. The most common parasitic infections were malaria (37.6%), S. haematobium (32.3%), and hookworm (14.4%); 14.2% of women were HIV-infected. S. haematobium infection was associated with lower malarial parasite densities (344 versus 557 parasites/muL blood; P < 0.05). In multivariate analysis, HIV and hookworm infection were independently associated with malaria infection (adjusted odds ratio = 1.9 and 95% confidence interval = 1.2-3.0 for HIV; adjusted odds ratio = 1.9 and 95% confidence interval = 1.03-3.5 for hookworm). Concurrent helminthic infection had both positive and negative effects on malaria parasitemia among pregnant women in Malawi. |
Sushi in pregnancy, parasitic diseases - obstetrician survey
Jones JL , Anderson B , Schulkin J , Parise ME , Eberhard ML . Zoonoses Public Health 2009 58 (2) 119-25 Parasites from raw fish can lead to a wide range of clinical manifestations and can be challenging to treat in pregnancy as result of medication exposure of the foetus. We surveyed obstetrician-gynecologists (ob-gyns) in the U.S. to determine their knowledge about the consumption of raw fish during pregnancy. In March 2007, a questionnaire was mailed to members of the American College of Obstetricians and Gynecologists (ACOG) randomly selected to represent all members. Non-responding physicians were sent two additional mailings. Of the 606 ACOG members surveyed, 305 (50%) responded. Most (82%) respondents indicated that eating raw fish is not safe during pregnancy. However, few (19%) knew that thorough freezing kills parasites in fish. Nearly all (94%) respondents thought that parasitic infections can be more challenging to treat in pregnancy. U.S. ob-gyns believe that eating raw fish during pregnancy is not safe; most would benefit from information about how to prevent infection and about treatment. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 07, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure