Last data update: Nov 04, 2024. (Total: 48056 publications since 2009)
Records 1-30 (of 62 Records) |
Query Trace: Lindsley WG[original query] |
---|
Efficacy of powered air purifying respirators (PAPRs) for source control of simulated respiratory aerosols
Lindsley WG , Blachere FM , Derk RC , Mnatsakanova A , Noti JD . Am J Infect Control 2024 BACKGROUND: Loose-fitting powered air purifying respirators (PAPRs) are a popular alternative to the use of filtering facepiece respirators for healthcare workers. Although PAPRs protect the wearer from aerosol particles, their ability to block infectious aerosol particles exhaled by the wearer from being released into the environment (called source control) is unclear. METHODS: The source control performance of four PAPRs with loose-fitting facepieces were tested using a manikin that exhales aerosol particles. The PAPRs were tested by themselves and in combination with a face-worn product intended to provide source control (either a surgical mask or an N95® filtering facepiece respirator.) RESULTS: Two PAPR facepieces with filtration panels significantly reduced the release of exhaled aerosols into the environment, while three facepieces without such panels did not. Wearing a surgical mask or respirator under the facepiece significantly improved the source control performance. CONCLUSIONS: Most PAPR facepieces do not block aerosols exhaled by the wearer. Facepieces designed to filter exhaled particles can prevent aerosols from being released into the environment. Wearing a surgical mask or a filtering facepiece respirator under the facepiece can also provide source control, but PAPRs are not typically certified for use with masks and respirators. |
Reduction of exposure to simulated respiratory aerosols using ventilation, physical distancing, and universal masking (preprint)
Coyle JP , Derk RC , Lindsley WG , Boots T , Blachere FM , Reynolds JS , McKinney WG , Sinsel EW , Lemons AR , Beezhold DH , Noti JD . medRxiv 2021 2021.09.16.21263702 To limit community spread of SARS-CoV-2, CDC recommends universal masking indoors, maintaining 1.8 m of physical distancing, adequate ventilation, and avoiding crowded indoor spaces. Several studies have examined the independent influence of each control strategy in mitigating transmission in isolation, yet controls are often implemented concomitantly within an indoor environment. To address the influence of physical distancing, universal masking, and ventilation on very fine respiratory droplets and aerosol particle exposure, a simulator that coughed and exhaled aerosols (the source) and a second breathing simulator (the recipient) were placed in an exposure chamber. When controlling for the other two mitigation strategies, universal masking with 3-ply cotton masks reduced exposure to 0.3–3 µm coughed and exhaled aerosol particles by > 77% compared to unmasked tests, whereas physical distancing (0.9 or 1.8 m) significantly changed exposure to cough but not exhaled aerosols. The effectiveness of ventilation depended upon the respiratory activity, i.e., coughing or breathing, as well as the duration of exposure time. Our results demonstrate that a combination of administrative and engineering controls can reduce personal inhalation exposure to potentially infectious very fine respiratory droplets and aerosol particles within an indoor environment.PRACTICAL IMPLICATIONSUniversal masking provided the most effective strategy in reducing inhalational exposure to simulated aerosols.Physical distancing provided limited reductions in exposure to small aerosol particles.Ventilation promotes air mixing in addition to aerosol removal, thus altering the exposure profile to individuals.A combination of mitigation strategies can effectively reduce exposure to potentially infectious aerosols.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was supported by the Centers for Disease Control and Prevention Emergency Operations Center.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Not ApplicableAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. |
Efficacy of universal masking for source control and personal protection from simulated cough and exhaled aerosols in a room (preprint)
Lindsley WG , Beezhold DH , Coyle J , Derk RC , Blachere FM , Boots T , Reynolds JS , McKinney WG , Sinsel E , Noti JD . medRxiv 2021 2021.04.21.21255880 Face masks reduce the spread of infectious respiratory diseases such as COVID-19 by blocking aerosols produced during coughs and exhalations (“source control”). Masks also slow and deflect cough and exhalation airflows, which changes the dispersion of aerosols. Factors such as the directions in which people are facing (orientation) and separation distance also affect aerosol dispersion. However, it is not clear how masking, orientation, and distance interact. We placed a respiratory aerosol simulator (“source”) and a breathing simulator (“recipient”) in a 3 m x 3 m chamber and measured aerosol concentrations for different combinations of masking, orientation, and separation distance. When the simulators were front-to-front during coughing, masks reduced the 15-minute mean aerosol concentration at the recipient by 92% at 0.9 and 1.8 m separation. When the simulators were side-by-side, masks reduced the concentration by 81% at 0.9 m and 78% at 1.8 m. During breathing, masks reduced the aerosol concentration by 66% when front-to-front and 76% when side-by-side at 0.9 m. Similar results were seen at 1.8 m. When the simulators were unmasked, changing the orientations from front-to-front to side-by-side reduced the cough aerosol concentration by 59% at 0.9 m and 60% at 1.8 m. When both simulators were masked, changing the orientations did not significantly change the concentration at either distance during coughing or breathing. Increasing the distance between the simulators from 0.9 m to 1.8 m during coughing reduced the aerosol concentration by 25% when no masks were worn but had little effect when both simulators were masked. During breathing, when neither simulator was masked, increasing the separation reduced the concentration by 13%, which approached significance, while the change was not significant when both source and recipient were masked. Our results show that universal masking reduces exposure to respiratory aerosol particles regardless of the orientation and separation distance between the source and recipient.Competing Interest StatementThe authors have declared no competing interest.Clinical TrialRegistration not requiredFunding StatementThis work was supported by the US Centers for Disease Control and Prevention (CDC).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:IRB approval was not required for this study.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesExperimental data is available upon request. |
Face mask fit modifications that improve source control performance (preprint)
Blachere FM , Lemons AR , Coyle JP , Derk RC , Lindsley WG , Beezhold DH , Woodfork K , Duling MG , Boutin B , Boots T , Harris JR , Nurkiewicz T , Noti JD . medRxiv 2021 2021.09.16.21263642 BACKGROUND During the COVID-19 pandemic, face masks are used as source control devices to reduce the expulsion of respiratory aerosols from infected people. Modifications such as mask braces, earloop straps, knotting and tucking, and double masking have been proposed to improve mask fit. However, the data on source control are limited.METHODS The effectiveness of mask fit modifications was determined by conducting fit tests on human subjects and simulator manikins and by performing simulated coughs and exhalations using a source control measurement system.RESULTS Medical masks without modification blocked ≥56% of cough aerosols and ≥42% of exhaled aerosols. Modifying fit by crossing the earloops or placing a bracket under the mask did not increase performance, while using earloop toggles, an earloop strap, and knotting and tucking the mask increased performance. The most effective modifications for improving source control performance were double masking and using a mask brace. Placing a cloth mask over a medical mask blocked ≥85% of cough aerosols and ≥91% of exhaled aerosols. Placing a brace over a medical mask blocked ≥95% of cough aerosols and ≥99% of exhaled aerosols.CONCLUSION Fit modifications can greatly improve the performance of face masks as source control devices for respiratory aerosols.Competing Interest StatementThe authors have declared no competing interest.Funding StatementResearch was supported by the following sources: Centers for Disease Control and Prevention, National Institutes of Health R01 ES015022 (TRN) and WV-CTSI U54 GM104942-05.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:WVU Protocol #: 2009119037All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData is available from research personnel upon request. |
Efficacy of face masks, neck gaiters and face shields for reducing the expulsion of simulated cough-generated aerosols (preprint)
Lindsley WG , Blachere FM , Law BF , Beezhold DH , Noti JD . medRxiv 2020 2020.10.05.20207241 Face masks are recommended to reduce community transmission of SARS-CoV-2. One of the primary benefits of face masks and other coverings is as source control devices to reduce the expulsion of respiratory aerosols during coughing, breathing, and speaking. Face shields and neck gaiters have been proposed as an alternative to face masks, but information about face shields and neck gaiters as source control devices is limited. We used a cough aerosol simulator with a pliable skin headform to propel small aerosol particles (0 to 7 µm) into different face coverings. An N95 respirator blocked 99% of the cough aerosol, a medical grade procedure mask blocked 59%, a 3-ply cotton cloth face mask blocked 51%, and a polyester neck gaiter blocked 47% as a single layer and 60% when folded into a double layer. In contrast, the face shield blocked 2% of the cough aerosol. Our results suggest that face masks and neck gaiters are preferable to face shields as source control devices for cough aerosols.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis research was funded by the National Institute for Occupational Safety and Health (NIOSH), US Centers for Disease Control and Prevention (CDC).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:No IRB approval requiredAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesExperimental data is available upon request. |
A comparison of performance metrics for cloth face masks as source control devices for simulated cough and exhalation aerosols (preprint)
Lindsley WG , Blachere FM , Beezhold DH , Law BF , Derk RC , Hettick JM , Woodfork K , Goldsmith WT , Harris JR , Duling MG , Boutin B , Nurkiewicz T , Noti JD . medRxiv 2021 Universal mask wearing is recommended by the Centers for Disease Control and Prevention to help control the spread of COVID-19. Masks reduce the expulsion of respiratory aerosols (called source control) and offer some protection to the wearer. However, masks vary greatly in their designs and construction materials, and it is not clear which are most effective. Our study tested 15 reusable cloth masks (which included face masks, neck gaiters, and bandanas), two medical masks, and two N95 filtering facepiece respirators as source control devices for aerosols ≤ 7 µm produced during simulated coughing and exhalation. These measurements were compared with the mask filtration efficiencies, airflow resistances, and fit factors. The source control collection efficiencies for the cloth masks ranged from 17% to 71% for coughing and 35% to 66% for exhalation. The filtration efficiencies of the cloth masks ranged from 1.4% to 98%, while the fit factors were 1.3 to 7.4 on an elastomeric manikin headform and 1.0 to 4.0 on human test subjects. The correlation coefficients between the source control efficacies and the other performance metrics ranged from 0.31 to 0.66 and were significant in all but one case. However, none of the alternative metrics were strong predictors of the source control performance of cloth masks. Our results suggest that a better understanding of the relationships between source control performance and metrics like filtration efficiency, airflow resistance, and fit factor are needed to develop simple methods to estimate the effectiveness of masks as source control devices for respiratory aerosols. |
Constant vs. cyclic flow when testing face masks and respirators as source control devices for simulated respiratory aerosols
Lindsley WG , Blachere FM , Derk RC , Boots T , Duling MG , Boutin B , Beezhold DH , Noti JD . Aerosol Sci Technol 2023 57 (3) 215-232 SARS-CoV-2 spreads by infectious aerosols and droplets from the respiratory tract. Masks and respirators can reduce the transmission of infectious respiratory diseases by collecting these aerosols at the source. The ability of source control devices to block aerosols can be tested by expelling an aerosol through a headform using constant airflows, which are simpler, or cyclic airflows, which are more realistic but require more complex methods. Experiments with respirators found that using cyclic vs. constant flows affected the amount of aerosol inhaled, but similar comparisons have not been made for source control devices with exhaled aerosols. We measured the collection efficiencies for exhaled aerosols for two cloth masks, two medical masks with and without an elastic mask brace, a neck gaiter, and an N95 filtering facepiece respirator using 15 L/min and 85 L/min constant and cyclic flows and a headform with pliable skin. The collection efficiencies for the 15 L/min cyclic flow, 15 L/min constant flow, and 85 L/min constant flow were not significantly different in most cases. The apparent collection efficiencies for the 85 L/min cyclic flow were artificially increased by rebreathing and refiltration of the aerosol from the collection chamber. The collection efficiencies correlated well with the fit factors (rho > 0.95) but not the filtration efficiencies (rho < 0.54). Our results suggest that the aerosol collection efficiency measurements of source control devices are comparable when testing the devices using either constant or cyclic airflows and that the potential for aerosol rebreathing must be considered when conducting experiments.Copyright © This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. |
SARS-CoV-2 Reduction in Shared Indoor Air-Reply.
Dowell D , Lindsley WG , Brooks JT . JAMA 2022 328 (21) 2163-2164 In response to our recent Viewpoint1 on air quality interventions to reduce SARS-CoV-2 transmission, Mr Srikrishna and colleagues note that a clear target for air changes per hour in non–health care settings would be helpful. Although we are not aware of COVID-19 outbreaks resulting from SARS-CoV-2 exposure in spaces ventilated with 5 to 6 air changes per hour or less, there are minimal data available on this association to date.2 Further study is needed to determine the effectiveness of various air changes per hour under different circumstances. For some scenarios, higher air changes per hour might be needed to prevent transmission. For example, the CDC recommends at least 12 air changes per hour for hospital airborne infection isolation rooms and for some other patient care areas in health care settings.3 |
Efficacy of Do-It-Yourself air filtration units in reducing exposure to simulated respiratory aerosols
Derk RC , Coyle JP , Lindsley WG , Blachere FM , Lemons AR , Service SK , Martin SB Jr , Mead KR , Fotta SA , Reynolds JS , McKinney WG , Sinsel EW , Beezhold DH , Noti JD . Build Environ 2023 229 109920 Many respiratory diseases, including COVID-19, can be spread by aerosols expelled by infected people when they cough, talk, sing, or exhale. Exposure to these aerosols indoors can be reduced by portable air filtration units (air cleaners). Homemade or Do-It-Yourself (DIY) air filtration units are a popular alternative to commercially produced devices, but performance data is limited. Our study used a speaker-audience model to examine the efficacy of two popular types of DIY air filtration units, the Corsi-Rosenthal cube and a modified Ford air filtration unit, in reducing exposure to simulated respiratory aerosols within a mock classroom. Experiments were conducted using four breathing simulators at different locations in the room, one acting as the respiratory aerosol source and three as recipients. Optical particle spectrometers monitored simulated respiratory aerosol particles (0.3-3 μm) as they dispersed throughout the room. Using two DIY cubes (in the front and back of the room) increased the air change rate as much as 12.4 over room ventilation, depending on filter thickness and fan airflow. Using multiple linear regression, each unit increase of air change reduced exposure by 10%. Increasing the number of filters, filter thickness, and fan airflow significantly enhanced the air change rate, which resulted in exposure reductions of up to 73%. Our results show DIY air filtration units can be an effective means of reducing aerosol exposure. However, they also show performance of DIY units can vary considerably depending upon their design, construction, and positioning, and users should be mindful of these limitations. |
Reducing SARS-CoV-2 in Shared Indoor Air.
Dowell D , Lindsley WG , Brooks JT . JAMA 2022 328 (2) 141-142 SARS-CoV-2 replicates in the respiratory tract and spreads through exhalation of infectious respiratory particles. The chances of transmission increase the longer an uninfected person stays in an enclosed space with an infected person. Infection can occur not only through short-range transmission of exhaled respiratory particles from an infectious person resulting in mucous membrane deposition or inhalation of exhaled respiratory particles by an uninfected person. Infection also can occur through long-range transmission from inhalation of infectious respiratory particles that remain suspended in air for longer periods (potentially after the infectious person is no longer present) and across longer distances (greater than a few meters). |
Reduction of exposure to simulated respiratory aerosols using ventilation, physical distancing, and universal masking.
Coyle JP , Derk RC , Lindsley WG , Boots T , Blachere FM , Reynolds JS , McKinney WG , Sinsel EW , Lemons AR , Beezhold DH , Noti JD . Indoor Air 2022 32 (2) e12987 To limit community spread of SARS-CoV-2, CDC recommends universal masking indoors, maintaining 1.8 m of physical distancing, adequate ventilation, and avoiding crowded indoor spaces. Several studies have examined the independent influence of each control strategy in mitigating transmission in isolation, yet controls are often implemented concomitantly within an indoor environment. To address the influence of physical distancing, universal masking, and ventilation on very fine respiratory droplets and aerosol particle exposure, a simulator that coughed and exhaled aerosols (the source) and a second breathing simulator (the recipient) were placed in an exposure chamber. When controlling for the other two mitigation strategies, universal masking with 3-ply cotton masks reduced exposure to 0.3-3 µm coughed and exhaled aerosol particles by >77% compared to unmasked tests, whereas physical distancing (0.9 or 1.8 m) significantly changed exposure to cough but not exhaled aerosols. The effectiveness of ventilation depended upon the respiratory activity, that is, coughing or breathing, as well as the duration of exposure time. Our results demonstrate that a layered mitigation strategy approach of administrative and engineering controls can reduce personal inhalation exposure to potentially infectious very fine respiratory droplets and aerosol particles within an indoor environment. |
Efficacy of Ventilation, HEPA Air Cleaners, Universal Masking, and Physical Distancing for Reducing Exposure to Simulated Exhaled Aerosols in a Meeting Room.
Coyle JP , Derk RC , Lindsley WG , Blachere FM , Boots T , Lemons AR , Martin SBJr , Mead KR , Fotta SA , Reynolds JS , McKinney WG , Sinsel EW , Beezhold DH , Noti JD . Viruses 2021 13 (12) There is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but not limited to maintaining physical distancing, adequate ventilation, universal masking, avoiding overcrowding, and vaccination, have shown to be effective in reducing the spread of SARS-CoV-2 within the indoor environment. Here, we examine the effect of mitigation strategies on reducing the risk of exposure to simulated respiratory aerosol particles within a classroom-style meeting room. To quantify exposure of uninfected individuals (Recipients), surrogate respiratory aerosol particles were generated by a breathing simulator with a headform (Source) that mimicked breath exhalations. Recipients, represented by three breathing simulators with manikin headforms, were placed in a meeting room and affixed with optical particle counters to measure 0.3-3 µm aerosol particles. Universal masking of all breathing simulators with a 3-ply cotton mask reduced aerosol exposure by 50% or more compared to scenarios with simulators unmasked. While evaluating the effect of Source placement, Recipients had the highest exposure at 0.9 m in a face-to-face orientation. Ventilation reduced exposure by approximately 5% per unit increase in air change per hour (ACH), irrespective of whether increases in ACH were by the HVAC system or portable HEPA air cleaners. The results demonstrate that mitigation strategies, such as universal masking and increasing ventilation, reduce personal exposure to respiratory aerosols within a meeting room. While universal masking remains a key component of a layered mitigation strategy of exposure reduction, increasing ventilation via system HVAC or portable HEPA air cleaners further reduces exposure. |
Face mask fit modifications that improve source control performance.
Blachere FM , Lemons AR , Coyle JP , Derk RC , Lindsley WG , Beezhold DH , Woodfork K , Duling MG , Boutin B , Boots T , Harris JR , Nurkiewicz T , Noti JD . Am J Infect Control 2021 50 (2) 133-140 BACKGROUND: During the COVID-19 pandemic, face masks are used as source control devices to reduce the expulsion of respiratory aerosols from infected people. Modifications such as mask braces, earloop straps, knotting and tucking, and double masking have been proposed to improve mask fit however the data on source control are limited. METHODS: The effectiveness of mask fit modifications was determined by conducting fit tests on human subjects and simulator manikins and by performing simulated coughs and exhalations using a source control measurement system. RESULTS: Medical masks without modification blocked ≥56% of cough aerosols and ≥42% of exhaled aerosols. Modifying fit by crossing the earloops or placing a bracket under the mask did not increase performance, while using earloop toggles, an earloop strap, and knotting and tucking the mask increased performance. The most effective modifications for improving source control performance were double masking and using a mask brace. Placing a cloth mask over a medical mask blocked ≥85% of cough aerosols and ≥91% of exhaled aerosols. Placing a brace over a medical mask blocked ≥95% of cough aerosols and ≥99% of exhaled aerosols. CONCLUSIONS: Fit modifications can greatly improve the performance of face masks as source control devices for respiratory aerosols. |
Virus decay rates should not be used to reduce recommended room air clearance times
Lindsley WG , Martin SB , Mead KR , Hammond DR . Infect Control Hosp Epidemiol 2021 43 (12) 1-2 We read with concern the letter by Hurlburt et al Reference Hurlburt, DeKleer and Bryce1 proposing revisions to the recommended room air clearance times for infectious aerosols in healthcare facilities. We believe that the calculations performed to justify the changes are based on flawed assumptions and an erroneous calculation. Experimental data on the survival of airborne SARS-CoV-2 virus and the dynamics of room ventilation do not support their conclusions. |
Sampling for SARS-CoV-2 Aerosols in Hospital Patient Rooms.
Lane MA , Walawender M , Webster AS , Brownsword EA , Ingersoll JM , Miller C , Waggoner J , Uyeki TM , Lindsley WG , Kraft CS . Viruses 2021 13 (12) Evidence varies as to how far aerosols spread from individuals infected with SARS-CoV-2 in hospital rooms. We investigated the presence of aerosols containing SARS-CoV-2 inside of dedicated COVID-19 patient rooms. Three National Institute for Occupational Safety and Health BC 251 two-stage cyclone samplers were set up in each patient room for a six-hour sampling period. Samplers were place on tripods, which each held two samplers at various heights above the floor. Extracted samples underwent reverse transcription polymerase chain reaction for selected gene regions of the SARS-CoV-2 virus nucleocapsid. Patient medical data were compared between participants in rooms where virus-containing aerosols were detected and those where they were not. Of 576 aerosols samples collected from 19 different rooms across 32 participants, 3% (19) were positive for SARS-CoV-2, the majority from near the head and foot of the bed. Seven of the positive samples were collected inside a single patient room. No significant differences in participant clinical characteristics were found between patients in rooms with positive and negative aerosol samples. SARS-CoV-2 viral aerosols were detected from the patient rooms of nine participants (28%). These findings provide reassurance that personal protective equipment that was recommended for this virus is appropriate given its spread in hospital rooms. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
Efficacy of Portable Air Cleaners and Masking for Reducing Indoor Exposure to Simulated Exhaled SARS-CoV-2 Aerosols - United States, 2021.
Lindsley WG , Derk RC , Coyle JP , Martin SBJr , Mead KR , Blachere FM , Beezhold DH , Brooks JT , Boots T , Noti JD . MMWR Morb Mortal Wkly Rep 2021 70 (27) 972-976 SARS-CoV-2, the virus that causes COVID-19, can be spread by exposure to droplets and aerosols of respiratory fluids that are released by infected persons when they cough, sing, talk, or exhale. To reduce indoor transmission of SARS-CoV-2 between persons, CDC recommends measures including physical distancing, universal masking (the use of face masks in public places by everyone who is not fully vaccinated), and increased room ventilation (1). Ventilation systems can be supplemented with portable high efficiency particulate air (HEPA) cleaners* to reduce the number of infectious particles in the air and provide enhanced protection from transmission between persons (2); two recent reports found that HEPA air cleaners in classrooms could reduce overall aerosol particle concentrations by ≥80% within 30 minutes (3,4). To investigate the effectiveness of portable HEPA air cleaners and universal masking at reducing exposure to exhaled aerosol particles, the investigation team used respiratory simulators to mimic a person with COVID-19 and other, uninfected persons in a conference room. The addition of two HEPA air cleaners that met the Environmental Protection Agency (EPA)-recommended clean air delivery rate (CADR) (5) reduced overall exposure to simulated exhaled aerosol particles by up to 65% without universal masking. Without the HEPA air cleaners, universal masking reduced the combined mean aerosol concentration by 72%. The combination of the two HEPA air cleaners and universal masking reduced overall exposure by up to 90%. The HEPA air cleaners were most effective when they were close to the aerosol source. These findings suggest that portable HEPA air cleaners can reduce exposure to SARS-CoV-2 aerosols in indoor environments, with greater reductions in exposure occurring when used in combination with universal masking. |
A comparison of performance metrics for cloth masks as source control devices for simulated cough and exhalation aerosols.
Lindsley WG , Blachere FM , Beezhold DH , Law BF , Derk RC , Hettick JM , Woodfork K , Goldsmith WT , Harris JR , Duling MG , Boutin B , Nurkiewicz T , Boots T , Coyle J , Noti JD . Aerosol Sci Technol 2021 55 (10) 1125-1142 Universal mask wearing is recommended to help control the spread of COVID-19. Masks reduce the expulsion of aerosols of respiratory fluids into the environment (called source control) and offer some protection to the wearer. Masks are often characterized using filtration efficiency, airflow resistance, and manikin or human fit factors, which are standard metrics used for personal protective devices. However, none of these metrics are direct measurements of how effectively a mask blocks coughed and exhaled aerosols. We studied the source control performance of 15 cloth masks (face masks, neck gaiters, and bandanas), two medical masks, and two N95 filtering facepiece respirators by measuring their ability to block aerosols ≤7 µm expelled during simulated coughing and exhalation (called source control collection efficiency). These measurements were compared with filtration efficiencies, airflow resistances, and fit factors measured on manikin headforms and humans. Collection efficiencies for the cloth masks ranged from 17% to 71% for coughing and 35% to 66% for exhalation. Filtration efficiencies for the cloth masks ranged from 1.4% to 98%, while the fit factors were 1.3 to 7.4 on headforms and 1.0 to 4.0 on human subjects. The Spearman’s rank correlation coefficients between the source control collection efficiencies and the standard metrics ranged from 0.03 to 0.68 and were significant in all but two cases. However, none of the standard metrics were strongly correlated with source control performance. A better understanding of the relationships between source control collection efficiency, filtration efficiency, airflow resistance, and fit factor is needed. ©, This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law. |
Efficacy of universal masking for source control and personal protection from simulated cough and exhaled aerosols in a room
Lindsley WG , Beezhold DH , Coyle J , Derk RC , Blachere FM , Boots T , Reynolds JS , McKinney WG , Sinsel E , Noti JD . J Occup Environ Hyg 2021 18 (8) 1-15 Face masks reduce the expulsion of respiratory aerosols produced during coughs and exhalations ("source control"). Factors such as the directions in which people are facing (orientation) and separation distance also affect aerosol dispersion. However, it is not clear how the combined effects of masking, orientation, and distance affect the exposure of individuals to respiratory aerosols in indoor spaces. We placed a respiratory aerosol simulator ("source") and a breathing simulator ("recipient") in a 3 m x 3 m chamber and measured aerosol concentrations for different combinations of masking, orientation, and separation distance. When the simulators were front-to-front during coughing, masks reduced the 15-minute mean aerosol concentration at the recipient by 92% at 0.9 and 1.8 m separation. When the simulators were side-by-side, masks reduced the concentration by 81% at 0.9 m and 78% at 1.8 m. During breathing, masks reduced the aerosol concentration by 66% when front-to-front and 76% when side-by-side at 0.9 m. Similar results were seen at 1.8 m. When the simulators were unmasked, changing the orientations from front-to-front to side-by-side reduced the cough aerosol concentration by 59% at 0.9 m and 60% at 1.8 m. When both simulators were masked, changing the orientations did not significantly change the concentration at either distance during coughing or breathing. Increasing the distance between the simulators from 0.9 m to 1.8 m during coughing reduced the aerosol concentration by 25% when no masks were worn but had little effect when both simulators were masked. During breathing, when neither simulator was masked, increasing the separation reduced the concentration by 13%, which approached significance, while the change was not significant when both source and recipient were masked. Our results show that universal masking reduces exposure to respiratory aerosol particles regardless of the orientation and separation distance between the source and recipient. |
Surface dosimetry of ultraviolet germicidal irradiation using a colorimetric technique
Neu DT , Mead KR , McClelland TL , Lindsley WG , Martin SB , Heil G , See M , Feng HA . Ann Work Expo Health 2021 65 (5) 605-611 Ultraviolet germicidal irradiation uses ultraviolet C (UV-C) energy to disinfect surfaces in clinical settings. Verifying that the doses of UV-C energy received by surfaces are adequate for proper disinfection levels can be difficult and expensive. Our study aimed to test commercially available colorimetric labels, sensitive to UV-C energy, and compare their precision with an accepted radiometric technique. The color-changing labels were found to predictably change color in a dose-dependent manner that would allow them to act as a qualitative alternative to radiometry when determining the minimum UV-C energy dosage received at surfaces. If deployed using careful protective techniques to avoid unintentional exposure to sunlight or other light sources, the use of colorimetric labels could provide inexpensive, easy, and accurate verification of effective UV-C dosing in clinical spaces. |
Maximizing Fit for Cloth and Medical Procedure Masks to Improve Performance and Reduce SARS-CoV-2 Transmission and Exposure, 2021.
Brooks JT , Beezhold DH , Noti JD , Coyle JP , Derk RC , Blachere FM , Lindsley WG . MMWR Morb Mortal Wkly Rep 2021 70 (7) 254-257 Universal masking is one of the prevention strategies recommended by CDC to slow the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1). As of February 1, 2021, 38 states and the District of Columbia had universal masking mandates. Mask wearing has also been mandated by executive order for federal property* as well as on domestic and international transportation conveyances.(†) Masks substantially reduce exhaled respiratory droplets and aerosols from infected wearers and reduce exposure of uninfected wearers to these particles. Cloth masks(§) and medical procedure masks(¶) fit more loosely than do respirators (e.g., N95 facepieces). The effectiveness of cloth and medical procedure masks can be improved by ensuring that they are well fitted to the contours of the face to prevent leakage of air around the masks' edges. During January 2021, CDC conducted experimental simulations using pliable elastomeric source and receiver headforms to assess the extent to which two modifications to medical procedure masks, 1) wearing a cloth mask over a medical procedure mask (double masking) and 2) knotting the ear loops of a medical procedure mask where they attach to the mask's edges and then tucking in and flattening the extra material close to the face (knotted and tucked masks), could improve the fit of these masks and reduce the receiver's exposure to an aerosol of simulated respiratory droplet particles of the size considered most important for transmitting SARS-CoV-2. The receiver's exposure was maximally reduced (>95%) when the source and receiver were fitted with modified medical procedure masks. These laboratory-based experiments highlight the importance of good fit to optimize mask performance. Until vaccine-induced population immunity is achieved, universal masking is a highly effective means to slow the spread of SARS-CoV-2** when combined with other protective measures, such as physical distancing, avoiding crowds and poorly ventilated indoor spaces, and good hand hygiene. Innovative efforts to improve the fit of cloth and medical procedure masks to enhance their performance merit attention. |
Differential Expression of Serum Exosome microRNAs and Cytokines in Influenza A and B Patients Collected in the 2016 and 2017 Influenza Seasons.
Othumpangat S , Lindsley WG , Beezhold DH , Kashon ML , Burrell CN , Mubareka S , Noti JD . Pathogens 2021 10 (2) MicroRNAs (miRNAs) have remarkable stability and are key regulators of mRNA transcripts for several essential proteins required for the survival of cells and replication of the virus. Exosomes are thought to play an essential role in intercellular communications by transporting proteins and miRNAs, making them ideal in the search for biomarkers. Evidence suggests that miRNAs are involved in the regulation of influenza virus replication in many cell types. During the 2016 and 2017 influenza season, we collected blood samples from 54 patients infected with influenza and from 30 healthy volunteers to identify the potential role of circulating serum miRNAs and cytokines in influenza infection. Data comparing the exosomal miRNAs in patients with influenza B to healthy volunteers showed 76 miRNAs that were differentially expressed (p < 0.05). In contrast, 26 miRNAs were differentially expressed between patients with influenza A (p < 0.05) and the controls. Of these miRNAs, 11 were commonly expressed in both the influenza A and B patients. Interferon (IFN)-inducing protein 10 (IP-10), which is involved in IFN synthesis during influenza infection, showed the highest level of expression in both influenza A and B patients. Influenza A patients showed increased expression of IFNα, GM-CSF, interleukin (IL)-13, IL-17A, IL-1β, IL-6 and TNFα, while influenza B induced increased levels of EGF, G-CSF, IL-1α, MIP-1α, and TNF-β. In addition, hsa-miR-326, hsa-miR-15b-5p, hsa-miR-885, hsa-miR-122-5p, hsa-miR-133a-3p, and hsa-miR-150-5p showed high correlations to IL-6, IL-15, IL-17A, IL-1β, and monocyte chemoattractant protein-1 (MCP-1) with both strains of influenza. Next-generation sequencing studies of H1N1-infected human lung small airway epithelial cells also showed similar pattern of expression of miR-375-5p, miR-143-3p, 199a-3p, and miR-199a-5p compared to influenza A patients. In summary, this study provides insights into the miRNA profiling in both influenza A and B virus in circulation and a novel approach to identify the early infections through a combination of cytokines and miRNA expression. |
Bioaerosol sampling for SARS-CoV-2 in a referral center with critically ill COVID-19 patients March-May 2020.
Lane MA , Brownsword EA , Babiker A , Ingersoll JM , Waggoner J , Ayers M , Klopman M , Uyeki TM , Lindsley WG , Kraft CS . Clin Infect Dis 2021 73 (7) e1790-e1794 BACKGROUND: Previous research has shown that rooms of patients with COVID-19 present the potential for healthcare-associated transmission through aerosols containing SARS-CoV-2. However, data on the presence of these aerosols outside of patient rooms are limited. We investigated whether virus-containing aerosols were present in nursing stations and patient room hallways in a referral center with critically ill COVID-19 patients. METHODS: Eight National Institute for Occupational Safety and Health BC 251 two-stage cyclone samplers were set up throughout six units, including nursing stations and visitor corridors in intensive care units and general medical units, for six hours each sampling period. Samplers were placed on tripods which held two samplers positioned 102 cm and 152 cm above the floor. Units were sampled for three days. Extracted samples underwent reverse transcription polymerase chain reaction for selected gene regions of the SARS-CoV-2 virus nucleocapsid and the housekeeping gene human RNase P as an internal control. RESULTS: The units sampled varied in the number of laboratory-confirmed COVID-19 patients present on the days of sampling. Some of the units included patient rooms under negative pressure, while most were maintained at a neutral pressure. Of 528 aerosol samples collected, none were positive for SARS-CoV-2 RNA by the estimated limit of detection of 8 viral copies/m 3 of air. CONCLUSION: Aerosolized SARS-CoV-2 outside of patient rooms was undetectable. While healthcare personnel should avoid unmasked close contact with each other, these findings may provide reassurance for the use of alternatives to tight-fitting respirators in areas outside of patient rooms during the current pandemic. |
Efficacy of face masks, neck gaiters and face shields for reducing the expulsion of simulated cough-generated aerosols.
Lindsley WG , Blachere FM , Law BF , Beezhold DH , Noti JD . Aerosol Sci Technol 2020 55 (4) [Epub ahead of print] Face masks are recommended to reduce community transmission of SARS-CoV-2. One of the primary benefits of face masks and other coverings is as source control devices to reduce the expulsion of respiratory aerosols during coughing, breathing, and speaking. Face shields and neck gaiters have been proposed as an alternative to face masks, but information about face shields and neck gaiters as source control devices is limited. We used a cough aerosol simulator with a pliable skin headform to propel small aerosol particles (0 to 7 ìm) into different face coverings. An N95 respirator blocked 99% (standard deviation (SD) 0.3%) of the cough aerosol, a medical grade procedure mask blocked 59% (SD 6.9%), a 3-ply cotton cloth face mask blocked 51% (SD 7.7%), and a polyester neck gaiter blocked 47% (SD 7.5%) as a single layer and 60% (SD 7.2%) when folded into a double layer. In contrast, the face shield blocked 2% (SD 15.3%) of the cough aerosol. Our results suggest that face masks and neck gaiters are preferable to face shields as source control devices for cough aerosols. |
COVID-19 and the Workplace: Research Questions for the Aerosol Science Community.
Lindsley WG , Blachere FM , Burton NC , Christensen B , Estill CF , Fisher EM , Martin SB , Mead KR , Noti JD , Seaton M . Aerosol Sci Technol 2020 54 (10) 1117-1123 The global Coronavirus Disease (COVID-19) pandemic caused by the SARS-CoV-2 virus has raised many urgent questions about the transmission of this disease, including the possible roles of aerosols containing SARS-CoV-2. This is particularly true in workplace settings where workers may encounter customers and coworkers who are infected with COVID-19 and where aerosols can be produced in a variety of ways. Research by the aerosol science community is needed to learn more about whether SARS-CoV-2 can spread by infectious aerosols and about the effectiveness of different protective measures. The purpose of this commentary is to present some of the questions surrounding aerosols containing SARS-CoV-2 and to provide suggestions for future research topics. |
Bioaerosol sampling of a ventilated patient with COVID-19.
Lane MA , Brownsword EA , Morgan JS , Babiker A , Vanairsdale SA , Lyon GM , Mehta AK , Ingersoll JM , Lindsley WG , Kraft CS . Am J Infect Control 2020 48 (12) 1540-1542 Bioaerosol samples were collected in an airborne infection isolation room, bathroom and anteroom of a ventilated patient with coronavirus disease 2019. Twenty-eight samples were negative for SARS-CoV-2 nucleic acid, possibly due to the patient being on a closed-circuit ventilator or the efficiency of the air exchanges in the room. |
Inactivation of the multi-drug resistant pathogen Candida auris using ultraviolet germicidal irradiation (UVGI)
Lemons AR , McClelland TL , Martin SBJr , Lindsley WG , Green BJ . J Hosp Infect 2020 BACKGROUND: Candida auris, often a multi-drug resistant fungal pathogen, has become an emerging threat in healthcare settings around the world. Reliable disinfection protocols specifically designed to inactivate C. auris are essential, as many chemical disinfectants commonly used in healthcare settings have been shown to have variable efficacy at inactivating C. auris. AIM: Ultraviolet germicidal irradiation (UVGI) was investigated as a method to inactivate clinically relevant strains of C. auris. METHODS: Ten C. auris and two C. albicans isolates were exposed to ultraviolet (UV) energy to determine the UV dose required to inactivate each isolate. Using a UV reactor, each isolate (10(6) cells/mL) was exposed to 11 UV doses ranging from 10-150 mJ/cm(2) and then cultured to assess cell viability. FINDINGS: An exponential decay model was applied to each dose-response curve to determine inactivation rate constants for each isolate, which ranged from 0.108-0.176 cm(2)/mJ for C. auris and 0.239-0.292 cm(2)/mJ for C. albicans. As the model of exponential decay did not accurately estimate the dose beyond 99.9% inactivation, a logistic regression model was applied to better estimate the doses required for 99.999% inactivation. Using this model, significantly greater UV energy was required to inactivate C. auris (103 to 192 mJ/cm(2)) when compared to C. albicans (78 to 80 mJ/cm(2)). CONCLUSION: This study demonstrated UVGI as a feasible approach for inactivating C. auris, although variable susceptibility among isolates must be taken into account. This dose-response data is critical for recommending UVGI dosing strategies to be tested in healthcare settings. |
Viruses in the Built Environment (VIBE) meeting report.
Prussin AJ 2nd , Belser JA , Bischoff W , Kelley ST , Lin K , Lindsley WG , Nshimyimana JP , Schuit M , Wu Z , Bibby K , Marr LC . Microbiome 2020 8 (1) 1 BACKGROUND: During a period of rapid growth in our understanding of the microbiology of the built environment in recent years, the majority of research has focused on bacteria and fungi. Viruses, while probably as numerous, have received less attention. In response, the Alfred P. Sloan Foundation supported a workshop entitled "Viruses in the Built Environment (VIBE)," at which experts in environmental engineering, environmental microbiology, epidemiology, infection prevention, fluid dynamics, occupational health, metagenomics, and virology convened to synthesize recent advances and identify key research questions and knowledge gaps regarding viruses in the built environment. RESULTS: Four primary research areas and funding priorities were identified. First, a better understanding of viral communities in the built environment is needed, specifically which viruses are present and their sources, spatial and temporal dynamics, and interactions with bacteria. Second, more information is needed about viruses and health, including viral transmission in the built environment, the relationship between virus detection and exposure, and the definition of a healthy virome. The third research priority is to identify and evaluate interventions for controlling viruses and the virome in the built environment. This encompasses interactions among viruses, buildings, and occupants. Finally, to overcome the challenge of working with viruses, workshop participants emphasized that improved sampling methods, laboratory techniques, and bioinformatics approaches are needed to advance understanding of viruses in the built environment. CONCLUSIONS: We hope that identifying these key questions and knowledge gaps will engage other investigators and funding agencies to spur future research on the highly interdisciplinary topic of viruses in the built environment. There are numerous opportunities to advance knowledge, as many topics remain underexplored compared to our understanding of bacteria and fungi. Video abstract. |
Field sampling of indoor bioaerosols.
Cox J , Mbareche H , Lindsley WG , Duchaine C . Aerosol Sci Technol 2019 2019 (5) 572-584 Because bioaerosols are related to adverse health effects in exposed humans and indoor environments represent a unique framework of exposure, concerns about indoor bioaerosols have risen over recent years. One of the major issues in indoor bioaerosol research is the lack of standardization in the methodology, from air sampling strategies and sample treatment to the analytical methods applied. The main characteristics to consider in the choice of indoor sampling methods for bioaerosols are the sampler performance, the representativeness of the sampling, and the concordance with the analytical methods to be used. The selection of bioaerosol collection methods is directly dependent on the analytical methods, which are chosen to answer specific questions raised while designing a study for exposure assessment. In this review, the authors present current practices in the analytical methods and the sampling strategies, with specificity for each type of microbe (fungi, bacteria, archaea and viruses). In addition, common problems and errors to be avoided are discussed. Based on this work, recommendations are made for future efforts towards the development of viable bioaerosol samplers, standards for bioaerosol exposure limits, and making association studies to optimize the use of the big data provided by high-throughput sequencing methods. |
Microbial aerosols: New diagnostic specimens for pulmonary infections
Fennelly KP , Acuna-Villaorduna C , Jones-Lopez E , Lindsley WG , Milton D . Chest 2019 157 (3) 540-546 Pulmonary infections are important causes of global morbidity and mortality, but diagnostics are often limited by the ability to collect specimens easily, safely and in a cost-effective manner. We review recent advances in the collection of infectious aerosols from patients with tuberculosis and with influenza. Although this research has been focused on assessing the infectious potential of such patients, we propose that these methods have the potential to lead to the use of patient-generated microbial aerosols as non-invasive diagnostic tests of disease as well as tests of infectiousness. |
Efficacy of an ambulance ventilation system in reducing EMS worker exposure to airborne particles from a patient cough aerosol simulator
Lindsley WG , Blachere FM , McClelland TL , Neu DT , Mnatsakanova A , Martin SBJr , Mead KR , Noti JD . J Occup Environ Hyg 2019 16 (12) 1-13 The protection of emergency medical service (EMS) workers from airborne disease transmission is important during routine transport of patients with infectious respiratory illnesses and would be critical during a pandemic of a disease such as influenza. However, few studies have examined the effectiveness of ambulance ventilation systems at reducing EMS worker exposure to airborne particles (aerosols). In our study, a cough aerosol simulator mimicking a coughing patient with an infectious respiratory illness was placed on a patient cot in an ambulance. The concentration and dispersion of cough aerosol particles were measured for 15 min at locations corresponding to likely positions of an EMS worker treating the patient. Experiments were performed with the patient cot at an angle of 0 degrees (horizontal), 30 degrees , and 60 degrees , and with the ambulance ventilation system set to 0, 5, and 12 air changes/hour (ACH). Our results showed that increasing the air change rate significantly reduced the airborne particle concentration (p < 0.001). Increasing the air change rate from 0 to 5 ACH reduced the mean aerosol concentration by 34% (SD = 19%) overall, while increasing it from 0 to 12 ACH reduced the concentration by 68% (SD = 9%). Changing the cot angle also affected the concentration (p < 0.001), but the effect was more modest, especially at 5 and 12 ACH. Contrary to our expectations, the aerosol concentrations at the different worker positions were not significantly different (p < 0.556). Flow visualization experiments showed that the ventilation system created a recirculation pattern which helped disperse the aerosol particles throughout the compartment, reducing the effectiveness of the system. Our findings indicate that the ambulance ventilation system reduced but did not eliminate worker exposure to infectious aerosol particles. Aerosol exposures were not significantly different at different locations within the compartment, including locations behind and beside the patient. Improved ventilation system designs with smoother and more unidirectional airflows could provide better worker protection. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 04, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure