Last data update: Aug 15, 2025. (Total: 49733 publications since 2009)
| Records 1-30 (of 32 Records) |
| Query Trace: Lindsey RL[original query] |
|---|
| Validation of Core and Whole-Genome Multi-Locus Sequence Typing Schemes for Shiga-Toxin-Producing E. coli (STEC) Outbreak Detection in a National Surveillance Network, PulseNet 2.0, USA
Leeper MM , Schroeder MN , Griswold T , Thakur M , Krishnan K , Katz LS , Hise KB , Williams GM , Stroika SG , Im SB , Lindsey RL , Smith PA , Huffman J , Kelley A , Cleland S , Collins AJ , Gautam S , Tyagi E , Park S , Carriço JA , Machado MP , Pouseele H , Michielsen D , Carleton HA . Microorganisms 2025 13 (6)
Shiga-toxin-producing E. coli (STEC) is a leading causing of bacterial foodborne and zoonotic illnesses in the USA. Whole-genome sequencing (WGS) is a powerful tool used in public health and microbiology for the detection, surveillance, and outbreak investigation of STEC. In this study, we applied three WGS-based subtyping methods, high quality single-nucleotide polymorphism (hqSNP) analysis, whole genome multi-locus sequence typing using chromosome-associated loci [wgMLST (chrom)], and core genome multi-locus sequence typing (cgMLST), to isolate sequences from 11 STEC outbreaks. For each outbreak, we evaluated the concordance between subtyping methods using pairwise genomic differences (number of SNPs or alleles), linear regression models, and tanglegrams. Pairwise genomic differences were highly concordant between methods for all but one outbreak, which was associated with international travel. The slopes of the regressions for hqSNP vs. allele differences were 0.432 (cgMLST) and 0.966 wgMLST (chrom); the slope was 1.914 for cgMLST vs. wgMLST (chrom) differences. Tanglegrams comprised of outbreak and sporadic sequences showed moderate clustering concordance between methods, where Baker's Gamma Indices (BGIs) ranged between 0.35 and 0.99 and Cophenetic Correlation Coefficients (CCCs) were ≥0.88 across all outbreaks. The K-means analysis using the Silhouette method showed the clear separation of outbreak groups with average silhouette widths ≥0.87 across all methods. This study validates the use of cgMLST for the national surveillance of STEC illness clusters using the PulseNet 2.0 system and demonstrates that hqSNP or wgMLST can be used for further resolution. |
| Attribution of Salmonella enterica to Food Sources by Using Whole-Genome Sequencing Data
Rose EB , Steele MK , Tolar B , Pettengill J , Batz M , Bazaco M , Tameru B , Cui Z , Lindsey RL , Simmons M , Chen J , Posny D , Carleton H , Bruce BB . Emerg Infect Dis 2025 31 (4) 783-790
Salmonella enterica bacteria are a leading cause of foodborne illness in the United States; however, most Salmonella illnesses are not associated with known outbreaks, and predicting the source of sporadic illnesses remains a challenge. We used a supervised random forest model to determine the most likely sources responsible for human salmonellosis cases in the United States. We trained the model by using whole-genome multilocus sequence typing data from 18,661 Salmonella isolates from collected single food sources and used feature selection to determine the subset of loci most influential for prediction. The overall out-of-bag accuracy of the trained model was 91%; the highest prediction accuracy was for chicken (97%). We applied the trained model to 6,470 isolates from humans with unknown exposure to predict the source of infection. Our model predicted that >33% of the human-derived Salmonella isolates originated from chicken and 27% were from vegetables. |
| Kalamari: a representative set of genomes of public health concern
Katz LS , Griswold T , Lindsey RL , Lauer AC , Im MS , Williams G , Halpin JL , Gómez GA , Kucerova Z , Morrison S , Page A , Den Bakker HC , Carleton HA . Microbiol Resour Announc 2025 e0096324
Kalamari is a resource that supports genomic epidemiology and pathogen surveillance. It consists of representative genomes and common contaminants. Kalamari also contains a custom taxonomy and software for downloading and formatting the data. |
| Conditional expression of flagellar motility, curli fimbriae, and biofilms in Shiga toxin- producing Escherichia albertii
Carter MQ , Carychao D , Lindsey RL . Front Microbiol 2024 15 1456637
Escherichia albertii is an emerging foodborne pathogen. We previously reported that some avian Shiga toxin-producing E. albertii strains exhibited higher or comparable cytotoxicity in Vero-d2EGFP cells with several enterohemorrhagic E. coli (EHEC) outbreak strains. To better understand the environmental persistence of this pathogen, comparative genomics and phenotypic assays were applied to assess adhesion capability, motility, and biofilm formation in E. albertii. Among the 108 adherence-related genes, those involved in biogenesis of curli fimbriae, hemorrhagic E. coli pilus, type 1 fimbriae, and Sfm fimbriae were conserved in E. albertii. All 20 E. albertii strains carried a complete set of primary flagellar genes that were organized into four gene clusters, while five strains possessed genes related to the secondary flagella, also known as lateral flagella. Compared to EHEC strain EDL933, the eight chemotaxis genes located within the primary flagellar gene clusters were deleted in E. albertii. Additional deletion of motility genes flhABCD and motBC was identified in several E. albertii strains. Swimming motility was detected in three strains when grown in LB medium, however, when grown in 5% TSB or in the pond water-supplemented with 10% pigeon droppings, an additional four strains became motile. Although all E. albertii strains carried curli genes, curli fimbriae were detected only in four, eight, and nine strains following 24, 48, and 120 h incubation, respectively. Type 1 fimbriae were undetectable in any of the strains grown at 37°C or 28°C. Strong biofilms were detected in strains that produced curli fimbriae and in a chicken isolate that was curli fimbriae negative but carried genes encoding adhesive fimbriae K88, a signature of enterotoxigenic E. coli strains causing neonatal diarrhea in piglets. In all phenotypic traits examined, no correlation was revealed between the strains isolated from different sources, or between the strains with and without Shiga toxin genes. The phenotypic variations could not be explained solely by the genetic diversity or the difference in adherence genes repertoire, implying complex regulation in expression of various adhesins. Strains that exhibited a high level of cytotoxicity and were also proficient in biofilm production, may have potential to emerge into high-risk pathogens. |
| Genetic diversity in Salmonella enterica in outbreaks of foodborne and zoonotic origin in the USA in 2006-2017
Trees E , Carleton HA , Folster JP , Gieraltowski L , Hise K , Leeper M , Nguyen TA , Poates A , Sabol A , Tagg KA , Tolar B , Vasser M , Webb HE , Wise M , Lindsey RL . Microorganisms 2024 12 (8)
Whole genome sequencing is replacing traditional laboratory surveillance methods as the primary tool to track and characterize clusters and outbreaks of the foodborne and zoonotic pathogen Salmonella enterica (S. enterica). In this study, 438 S. enterica isolates representing 35 serovars and 13 broad vehicle categories from one hundred epidemiologically confirmed outbreaks were evaluated for genetic variation to develop epidemiologically relevant interpretation guidelines for Salmonella disease cluster detection. The Illumina sequences were analyzed by core genome multi-locus sequence typing (cgMLST) and screened for antimicrobial resistance (AR) determinants and plasmids. Ninety-three of the one hundred outbreaks exhibited a close allele range (less than 10 allele differences with a subset closer than 5). The remaining seven outbreaks showed increased variation, of which three were considered polyclonal. A total of 16 and 28 outbreaks, respectively, showed variations in the AR and plasmid profiles. The serovars Newport and I 4,[5],12:i:-, as well as the zoonotic and poultry product vehicles, were overrepresented among the outbreaks, showing increased variation. A close allele range in cgMLST profiles can be considered a reliable proxy for epidemiological relatedness for the vast majority of S. enterica outbreak investigations. Variations associated with mobile elements happen relatively frequently during outbreaks and could be reflective of changing selective pressures. |
| Rapid identification of enteric bacteria from whole genome sequences using average nucleotide identity metrics
Lindsey RL , Gladney LM , Huang AD , Griswold T , Katz LS , Dinsmore BA , Im MS , Kucerova Z , Smith PA , Lane C , Carleton HA . Front Microbiol 2023 14 1225207
Identification of enteric bacteria species by whole genome sequence (WGS) analysis requires a rapid and an easily standardized approach. We leveraged the principles of average nucleotide identity using MUMmer (ANIm) software, which calculates the percent bases aligned between two bacterial genomes and their corresponding ANI values, to set threshold values for determining species consistent with the conventional identification methods of known species. The performance of species identification was evaluated using two datasets: the Reference Genome Dataset v2 (RGDv2), consisting of 43 enteric genome assemblies representing 32 species, and the Test Genome Dataset (TGDv1), comprising 454 genome assemblies which is designed to represent all species needed to query for identification, as well as rare and closely related species. The RGDv2 contains six Campylobacter spp., three Escherichia/Shigella spp., one Grimontia hollisae, six Listeria spp., one Photobacterium damselae, two Salmonella spp., and thirteen Vibrio spp., while the TGDv1 contains 454 enteric bacterial genomes representing 42 different species. The analysis showed that, when a standard minimum of 70% genome bases alignment existed, the ANI threshold values determined for these species were ≥95 for Escherichia/Shigella and Vibrio species, ≥93% for Salmonella species, and ≥92% for Campylobacter and Listeria species. Using these metrics, the RGDv2 accurately classified all validation strains in TGDv1 at the species level, which is consistent with the classification based on previous gold standard methods. |
| Genomic and phenotypic characterization of shiga toxin-producing Escherichia albertii strains isolated from wild birds in a major agricultural region in California
Carter MQ , Quiñones B , He X , Pham A , Carychao D , Cooley MB , Lo CC , Chain PSG , Lindsey RL , Bono JL . Microorganisms 2023 11 (11)
Escherichia albertii is an emerging foodborne pathogen. To better understand the pathogenesis and health risk of this pathogen, comparative genomics and phenotypic characterization were applied to assess the pathogenicity potential of E. albertii strains isolated from wild birds in a major agricultural region in California. Shiga toxin genes stx(2f) were present in all avian strains. Pangenome analyses of 20 complete genomes revealed a total of 11,249 genes, of which nearly 80% were accessory genes. Both core gene-based phylogenetic and accessory gene-based relatedness analyses consistently grouped the three stx(2f)-positive clinical strains with the five avian strains carrying ST7971. Among the three Stx2f-converting prophage integration sites identified, ssrA was the most common one. Besides the locus of enterocyte effacement and type three secretion system, the high pathogenicity island, OI-122, and type six secretion systems were identified. Substantial strain variation in virulence gene repertoire, Shiga toxin production, and cytotoxicity were revealed. Six avian strains exhibited significantly higher cytotoxicity than that of stx(2f)-positive E. coli, and three of them exhibited a comparable level of cytotoxicity with that of enterohemorrhagic E. coli outbreak strains, suggesting that wild birds could serve as a reservoir of E. albertii strains with great potential to cause severe diseases in humans. |
| Identification and characterization of ten Escherichia coli strains encoding novel shiga toxin 2 subtypes, Stx2n as well as Stx2j, Stx2m, and Stx2o, in the United States
Lindsey RL , Prasad A , Feldgarden M , Gonzalez-Escalona N , Kapsak C , Klimke W , Melton-Celsa A , Smith P , Souvorov A , Truong J , Scheutz F . Microorganisms 2023 11 (10)
The sharing of genome sequences in online data repositories allows for large scale analyses of specific genes or gene families. This can result in the detection of novel gene subtypes as well as the development of improved detection methods. Here, we used publicly available WGS data to detect a novel Stx subtype, Stx2n in two clinical E. coli strains isolated in the USA. During this process, additional Stx2 subtypes were detected; six Stx2j, one Stx2m strain, and one Stx2o, were all analyzed for variability from the originally described subtypes. Complete genome sequences were assembled from short- or long-read sequencing and analyzed for serotype, and ST types. The WGS data from Stx2n- and Stx2o-producing STEC strains were further analyzed for virulence genes pro-phage analysis and phage insertion sites. Nucleotide and amino acid maximum parsimony trees showed expected clustering of the previously described subtypes and a clear separation of the novel Stx2n subtype. WGS data were used to design OMNI PCR primers for the detection of all known stx1 (283 bp amplicon), stx2 (400 bp amplicon), intimin encoded by eae (221 bp amplicon), and stx2f (438 bp amplicon) subtypes. These primers were tested in three different laboratories, using standard reference strains. An analysis of the complete genome sequence showed variability in serogroup, virulence genes, and ST type, and Stx2 pro-phages showed variability in size, gene composition, and phage insertion sites. The strains with Stx2j, Stx2m, Stx2n, and Stx2o showed toxicity to Vero cells. Stx2j carrying strain, 2012C-4221, was induced when grown with sub-inhibitory concentrations of ciprofloxacin, and toxicity was detected. Taken together, these data highlight the need to reinforce genomic surveillance to identify the emergence of potential new Stx2 or Stx1 variants. The importance of this surveillance has a paramount impact on public health. Per our description in this study, we suggest that 2017C-4317 be designated as the Stx2n type-strain. |
| Reoccurring Escherichia coli O157:H7 strain linked to leafy greens-associated outbreaks, 2016-2019
Chen JC , Patel K , Smith PA , Vidyaprakash E , Snyder C , Tagg KA , Webb HE , Schroeder MN , Katz LS , Rowe LA , Howard D , Griswold T , Lindsey RL , Carleton HA . Emerg Infect Dis 2023 29 (9) 1895-1899
Genomic characterization of an Escherichia coli O157:H7 strain linked to leafy greens-associated outbreaks dates its emergence to late 2015. One clade has notable accessory genomic content and a previously described mutation putatively associated with increased arsenic tolerance. This strain is a reoccurring, emerging, or persistent strain causing illness over an extended period. |
| Longitudinal surveillance and comparative characterization of Escherichia albertii in wild raccoons in the United States.
Hinenoya A , Wang H , Patrick EM , Zeng X , Cao L , Li XP , Lindsey RL , Gillespie B , He Q , Yamasaki S , Lin J . Microbiol Res 2022 262 127109
Escherichia albertii is an emerging enteric bacterial pathogen causing watery diarrhea, abdominal distension, vomiting and fever in humans. E. albertii has caused many foodborne outbreaks in Japan and was also reported in other countries worldwide. However, the important animal reservoirs of this pathogen are still largely unknown, impeding us to combat this emerging pathogen. Recently, we reported that wild raccoons (Procyon lotor) and broiler chickens are significant reservoirs of E. albertii in Japan and the U.S., respectively. Here, we performed a longitudinal surveillance to monitor prevalence of E. albertii in wild raccoons in the U.S. and conducted comprehensive comparative analyses of the E. albertii of different origins. A total of 289 fecal swab samples were collected from wild raccoons in Tennessee and Kentucky in the U.S. (2018-2020). Approximately 26% (74/289) of the raccoons examined were PCR-positive for E. albertii and eventually 22 E. albertii isolates were obtained. PFGE analysis showed the U.S. raccoon E. albertii were phylogenetically distant even though the corresponding raccoons were captured from a small area. Unlike the high prevalence of multidrug resistance (83%) observed in previous chicken E. albertii survey, antibiotic resistance was rarely observed in all the U.S. raccoon and 22 Japan raccoon strains with only one Japan strain displaying multidrug resistance (2%). Whole genome sequencing of 54 diverse E. albertii strains and subsequent comparative genomics analysis revealed unique clusters that displayed close evolutionary relationships and similar virulence gene profiles among the strains of different origins in terms of geographical locations (e.g., U.S. and Japan) and hosts (raccoon, chicken, swine, and human). Challenge experiment demonstrated raccoon E. albertii strains could successfully colonize in the chicken intestine at 3 and 8 days postinfection. A pilot environmental survey further showed all the four tested water samples from Tennessee river were E. albertii-positive; two different E. albertii strains, isolated from a single water sample, showed close relationships to those of human origin. Together, the findings from this study provide new insights into the ecology, evolution, and pathobiology of E. albertii, and underscore the need to control the emerging E. albertii in a complex ecosystem using One Health approach. |
| Use of Large-Scale Genomics to Identify the Role of Animals and Foods as Potential Sources of Extraintestinal Pathogenic Escherichia coli That Cause Human Illness.
Harrison L , Tyson GH , Strain E , Lindsey RL , Strockbine N , Ceric O , Fortenberry GZ , Harris B , Shaw S , Tillman G , Zhao S , Dessai U . Foods 2022 11 (13)
Extraintestinal pathogenic Escherichia coli (ExPEC) cause urinary tract and potentially life-threatening invasive infections. Unfortunately, the origins of ExPEC are not always clear. We used genomic data of E. coli isolates from five U.S. government organizations to evaluate potential sources of ExPEC infections. Virulence gene analysis of 38,032 isolates from human, food animal, retail meat, and companion animals classified the subset of 8142 non-diarrheagenic isolates into 40 virulence groups. Groups were identified as low, medium, and high relative risk of containing ExPEC strains, based on the proportion of isolates recovered from humans. Medium and high relative risk groups showed a greater representation of sequence types associated with human disease, including ST-131. Over 90% of food source isolates belonged to low relative risk groups, while >60% of companion animal isolates belonged to medium or high relative risk groups. Additionally, 18 of the 26 most prevalent antimicrobial resistance determinants were more common in high relative risk groups. The associations between antimicrobial resistance and virulence potentially limit treatment options for human ExPEC infections. This study demonstrates the power of large-scale genomics to assess potential sources of ExPEC strains and highlights the importance of a One Health approach to identify and manage these human pathogens. |
| The Use of Whole-Genome Sequencing by the Federal Interagency Collaboration for Genomics for Food and Feed Safety in the United States.
Stevens EL , Carleton HA , Beal J , Tillman GE , Lindsey RL , Lauer AC , Pightling A , Jarvis KG , Ottesen A , Ramachandran P , Hintz L , Katz LS , Folster JP , Whichard JM , Trees E , Timme RE , McDermott P , Wolpert B , Bazaco M , Zhao S , Lindley S , Bruce BB , Griffin PM , Brown E , Allard M , Tallent S , Irvin K , Hoffmann M , Wise M , Tauxe R , Gerner-Smidt P , Simmons M , Kissler B , Defibaugh-Chavez S , Klimke W , Agarwala R , Lindsay J , Cook K , Austerman SR , Goldman D , McGarry S , Hale KR , Dessai U , Musser SM , Braden C . J Food Prot 2022 85 (5) 755-772
This multi-agency report developed under the Interagency Collaboration for Genomics for Food and Feed Safety (Gen-FS) provides an overview of the use of and transition to Whole-Genome Sequencing (WGS) technology to detect and characterize pathogens transmitted commonly by food and identify their sources. We describe foodborne pathogen analysis, investigation, and harmonization efforts among federal agencies, including the National Institutes of Health (NIH); the Department of Health and Human Services' Centers for Disease Control and Prevention (CDC) and the Food and Drug Administration (FDA); and the U.S. Department of Agriculture's Food Safety and Inspection Service (FSIS), Agricultural Research Service (ARS), and Animal and Plant Health Inspection Service (APHIS). We describe single nucleotide polymorphism (SNP), core-genome (cg) and whole-genome multi-locus sequence typing (wgMLST) data analysis methods as used in CDC's PulseNet and FDA's GenomeTrakr networks, underscoring the complementary nature of the results for linking genetically related foodborne pathogens during outbreak investigations while allowing flexibility to meet the specific needs of Gen-FS agency partners. We highlight how we apply WGS to pathogen characterization (virulence and antimicrobial resistance profiles), source attribution efforts, and increasing transparency by making the sequences and other data publicly available through the National Center for Biotechnology Information (NCBI). Finally, we highlight the impact of current trends in the use of culture-independent diagnostics tests (CIDT) for human diagnostic testing on analytical approaches related to food safety. Lastly, we highlight what is next for WGS in food safety. |
| The virulence of Escherichia coli O157:H7 isolates in mice depends on Shiga toxin type 2a (Stx2a)-induction and high levels of Stx2a in stool
Hauser JR , Atitkar RR , Petro CD , Lindsey RL , Strockbine N , O'Brien AD , Melton-Celsa AR . Front Cell Infect Microbiol 2020 10 62 In this study we compared nine Shiga toxin (Stx)-producing Escherichia coli O157:H7 patient isolates for Stx levels, stx-phage insertion site(s), and pathogenicity in a streptomycin (Str)-treated mouse model. The strains encoded stx 2a, stx 1a and stx 2a, or stx 2a and stx 2c. All of the strains elaborated 10(5)-10(6) cytotoxic doses 50% (CD50) into the supernatant after growth in vitro as measured on Vero cells, and showed variable levels of increased toxin production after growth with sub-inhibitory levels of ciprofloxacin (Cip). The stx 2a+stx 2c+ isolates were 90-100% lethal for Str-treated BALB/c mice, though one isolate, JH2013, had a delayed time-to-death. The stx 2a+ isolate was avirulent. Both an stx 2a and a recA deletion mutant of one of the stx 2a+stx 2c+ strains, JH2010, exhibited at least a three-log decrease in cytotoxicity in vitro and both were avirulent in the mice. Stool from Str-treated mice infected with the highly virulent isolates were 10- to 100-fold more cytotoxic than feces from mice infected with the clinical isolate, JH2012, that made only Stx2a. Taken together these findings demonstrate that the stx 2a-phage from JH2010 induces to higher levels in vivo than does the phage from JH2012. The stx 1a+stx 2a+ clinical isolates were avirulent and neutralization of Stx1 in stool from mice infected with those strains indicated that the toxin produced in vivo was primarily Stx1a. Treatment of mice infected with Stx1a+Stx2a+ isolates with Cip resulted in an increase in Stx2a production in vivo and lethality in the mice. Our data suggest that high levels of Stx2a in stool are predictive of virulence in mice. |
| PacBio Genome Sequences of Eight Escherichia albertii Strains Isolated from Humans in the United States.
Lindsey RL , Rowe LA , Batra D , Smith P , Strockbine NA . Microbiol Resour Announc 2019 8 (9)
Escherichia albertii is an emerging pathogen that is closely related to Escherichia coli and can carry some of the same virulence genes as E. coli. Here, we report the release of Illumina-corrected PacBio sequences for eight E. albertii genomes. Two of these strains carry Shiga toxin 2f. |
| Conjugal Transfer, Whole Genome Sequencing, and Plasmid Analysis of Four mcr-1 -bearing Isolates from U.S. Patients.
Zhu W , Lawsin A , Lindsey RL , Batra D , Knipe K , Yoo BB , Perry KA , Rowe LA , Lonsway D , Waters MS , Rasheed JK , Halpin AL . Antimicrob Agents Chemother 2019 63 (4)
Four Enterobacteriaceae clinical isolates bearing mcr-1 gene-harboring plasmids were characterized. All isolates demonstrated the ability to transfer colistin resistance to E. coli; plasmids were stable in conjugants after multiple passages on non-selective media. mcr-1 was located on an IncX4 (n=3) or IncN (n=1) plasmid. The IncN plasmid harbored 13 additional antimicrobial resistance genes. Results indicate the mcr-1-bearing plasmids in this study are highly transferable in vitro and stable in the recipients. |
| PacBio Genome Sequences of Escherichia coli Serotype O157:H7, Diffusely Adherent E. coli , and Salmonella enterica Strains, All Carrying Plasmids with an mcr-1 Resistance Gene.
Lindsey RL , Batra D , Smith P , Patel PN , Tagg KA , Garcia-Toledo L , Loparev VN , Juieng P , Sheth M , Joung YJ , Rowe LA . Microbiol Resour Announc 2018 7 (14)
We report here Illumina-corrected PacBio whole-genome sequences of an Escherichia coli serotype O157:H7 strain (2017C-4109), an E. coli serotype O[undetermined]:H2 strain (2017C-4173W12), and a Salmonella enterica subsp. enterica serovar Enteritidis strain (2017K-0021), all of which carried the mcr-1 resistance gene on an IncI2 or IncX4 plasmid. We also determined that pMCR-1-CTSe is identical to a previously published plasmid, pMCR-1-CT. |
| Interlaboratory Evaluation of the U.S. Food and Drug Administration Escherichia coli Identification Microarray for Profiling Shiga Toxin-Producing Escherichia coli.
Patel IR , Gangiredla J , Lacher DW , Mammel MK , Bagi L , Baranzoni GM , Fratamico PM , Roberts EL , Deb Roy C , Lindsey RL , VStoneburg D , Martin H , Smith P , Strockbine NA , Elkins CA , Scheutz F , Feng PCH . J Food Prot 2018 81 (8) 1275-1282
The U.S. Food and Drug Administration Escherichia coli Identification (FDA-ECID) microarray provides rapid molecular characterization of E. coli. The effectiveness of the FDA-ECID for characterizing Shiga toxin-producing E. coli (STEC) was evaluated by three federal laboratories and one reference laboratory with a panel of 54 reference E. coli strains from the External Quality Assurance program. Strains were tested by FDA-ECID for molecular serotyping (O and H antigens), Shiga toxin subtyping, and the presence of the ehxA and eae genes for enterohemolysin and intimin, respectively. The FDA-ECID O typing was 96% reproducible among the four laboratories and 94% accurate compared with the reference External Quality Assurance data. Discrepancies were due to the absence of O41 target loci on the array and to two pairs of O types with identical target sequences. H typing was 96% reproducible and 100% accurate, with discrepancies due to two strains from one laboratory that were identified as mixed by FDA-ECID. Shiga toxin (Stx) type 1 subtyping was 100% reproducible and accurate, and Stx2 subtyping was 100% reproducible but only 64% accurate. FDA-ECID identified most Stx2 subtypes but had difficulty distinguishing among stx2a, stx2c, and stx2d genes because of close similarities of these sequences. FDA-ECID was 100% effective for detecting ehxA and eae and accurately subtyped the eae alleles. This interlaboratory study revealed that FDA-ECID for STEC characterization was highly reproducible for molecular serotyping, stx and eae subtyping, and ehxA detection. However, the array was less useful for distinguishing among the highly homologous O antigen genes and the stx2a, stx2c, and stx2d subtypes. |
| High-Quality Whole-Genome Sequences for 77 Shiga Toxin-Producing Escherichia coli Strains Generated with PacBio Sequencing.
Patel PN , Lindsey RL , Garcia-Toledo L , Rowe LA , Batra D , Whitley SW , Drapeau D , Stoneburg D , Martin H , Juieng P , Loparev VN , Strockbine N . Genome Announc 2018 6 (19)
Shiga toxin-producing Escherichia coli (STEC) is an enteric foodborne pathogen that can cause mild to severe illness. Here, we report the availability of high-quality whole-genome sequences for 77 STEC strains generated using the PacBio sequencing platform. |
| High-Quality Whole-Genome Sequences for 59 Historical Shigella Strains Generated with PacBio Sequencing.
Kim J , Lindsey RL , Garcia-Toledo L , Loparev VN , Rowe LA , Batra D , Juieng P , Stoneburg D , Martin H , Knipe K , Smith P , Strockbine N . Genome Announc 2018 6 (15)
Shigella spp. are enteric pathogens that cause shigellosis. We report here the high-quality whole-genome sequences of 59 historical Shigella strains that represent the four species and a variety of serotypes. |
| High-Quality Complete and Draft Genome Sequences for Three Escherichia spp. and Three Shigella spp. Generated with Pacific Biosciences and Illumina Sequencing and Optical Mapping.
Schroeder MR , Juieng P , Batra D , Knipe K , Rowe LA , Sheth M , Smith P , Garcia-Toledo L , Loparev VN , Lindsey RL . Genome Announc 2018 6 (1)
Escherichia spp., including E. albertii and E. coli, Shigella dysenteriae, and S. flexneri are causative agents of foodborne disease. We report here reference-level whole-genome sequences of E. albertii (2014C-4356), E. coli (2011C-4315 and 2012C-4431), S. dysenteriae (BU53M1), and S. flexneri (94-3007 and 71-2783). |
| High-Quality Whole-Genome Sequences for 21 Enterotoxigenic Escherichia coli Strains Generated with PacBio Sequencing.
Smith P , Lindsey RL , Rowe LA , Batra D , Stripling D , Garcia-Toledo L , Drapeau D , Knipe K , Strockbine N . Genome Announc 2018 6 (2)
Enterotoxigenic Escherichia coli (ETEC) is an important diarrheagenic pathogen. We report here the high-quality whole-genome sequences of 21 ETEC strains isolated from patients in the United States, international diarrheal surveillance studies, and cruise ship outbreaks. |
| Next-Generation Sequencing Technologies and their Application to the Study and Control of Bacterial Infections.
Besser J , Carleton HA , Gerner-Smidt P , Lindsey RL , Trees E . Clin Microbiol Infect 2017 24 (4) 335-341
BACKGROUND: With the decreasing cost and efficiency of next generation sequencing, the technology is rapidly introduced into clinical and public health laboratory practice. AIMS: In this review, the historical background and principles of first, second and third generation sequencing are described as are the characteristics of the most commonly used sequencing instruments. SOURCES: Peer reviewed literature, white papers and meeting reports. CONTENT & IMPLICATIONS: Next generation sequencing is a technology that potentially could replace many traditional microbiological workflows, providing clinicians and public health specialists with more actionable information than hitherto achievable. Examples of the clinical and public health uses of the technology are provided. The challenge of comparability of different sequencing platforms is discussed. Finally, the future directions of the technology integrating it with laboratory management and public health surveillance systems, and moving it towards performing sequencing directly from the clinical specimen (metagenomics) could lead to yet another fundamental transformation of clinical diagnostics and public health surveillance. |
| High-Quality Draft Genome Sequences for Four Drug-Resistant or Outbreak-Associated Shigella sonnei Strains Generated with PacBio Sequencing and Whole-Genome Maps.
Lindsey RL , Batra D , Rowe L , Loparev V N , Juieng P , Garcia-Toledo L , Bicknese A , Stripling D , Martin H , Chen J , Strockbine N , Trees E . Genome Announc 2017 5 (35)
Drug-resistant Shigella sonnei poses a clinical and public health challenge. We report here the high-quality draft whole-genome sequences of four outbreak-associated S. sonnei isolates; three were resistant to two or more antibiotics, and one was resistant to streptomycin only. |
| Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii.
Lindsey RL , Garcia-Toledo L , Fasulo D , Gladney LM , Strockbine N . J Microbiol Methods 2017 140 1-4
Escherichia coli, Escherichia albertii, and Escherichia fergusonii are closely related bacteria that can cause illness in humans, such as bacteremia, urinary tract infections and diarrhea. Current identification strategies for these three species vary in complexity and typically rely on the use of multiple phenotypic and genetic tests. To facilitate their rapid identification, we developed a multiplex PCR assay targeting conserved, species-specific genes. We used the Daydreamer (Pattern Genomics, USA) software platform to concurrently analyze whole genome sequence assemblies (WGS) from 150 Enterobacteriaceae genomes (107 E. coli, 5 Shigella spp., 21 E. albertii, 12 E. fergusonii and 5 other species) and design primers for the following species-specific regions: a 212bp region of the cyclic di-GMP regulator gene (cdgR, AW869_22935 from genome K-12 MG1655, CP014225) for E. coli/Shigella; a 393bp region of the DNA-binding transcriptional activator of cysteine biosynthesis gene (EAKF1_ch4033 from genome KF1, CP007025) for E. albertii; and a 575bp region of the palmitoleoyl-acyl carrier protein (ACP)-dependent acyltransferase (EFER_0790 from genome ATCC 35469, CU928158) for E. fergusonii. We incorporated the species-specific primers into a conventional multiplex PCR assay and assessed its performance with a collection of 97 Enterobacteriaceae strains. The assay was 100% sensitive and specific for detecting the expected species and offers a quick and accurate strategy for identifying E. coli, E. albertii, and E. fergusonii in either a single reaction or by in silico PCR with sequence assemblies. |
| High-Quality Genome Sequence of an Escherichia coli O157 Strain Carrying an mcr-1 Resistance Gene Isolated from a Patient in the United States.
Lindsey RL , Batra D , Rowe L , Loparev VN , Stripling D , Garcia-Toledo L , Knipe K , Juieng P , Sheth M , Martin H , Laufer Halpin A . Genome Announc 2017 5 (11)
Enterobacteriaceae carrying plasmid-mediated colistin resistance have been found around the world. We report here the high-quality whole-genome sequence of an Escherichia coli O157:H48 isolate (2016C-3936C1) from Connecticut that carried the mcr-1 resistance gene on an IncX4-type plasmid. |
| High-Quality Draft Genome Sequences for Five Non-O157 Shiga Toxin-Producing Escherichia coli Strains Generated with PacBio Sequencing and Optical Maps.
Lindsey RL , Rowe L , Garcia-Toledo L , Loparev V , Knipe K , Stripling D , Martin H , Trees E , Juieng P , Batra D , Strockbine N . Genome Announc 2016 4 (3)
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen. We report here the high-quality draft whole-genome sequences of five STEC strains isolated from clinical cases in the United States. This report is for STEC of serotypes O55:H7, O79:H7, O91:H14, O153:H2, and O156:H25. |
| Implementation of Whole Genome Sequencing (WGS) for Identification and Characterization of Shiga Toxin-Producing Escherichia coli (STEC) in the United States.
Lindsey RL , Pouseele H , Chen JC , Strockbine NA , Carleton HA . Front Microbiol 2016 7 766
Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen capable of causing severe disease in humans. Rapid and accurate identification and characterization techniques are essential during outbreak investigations. Current methods for characterization of STEC are expensive and time-consuming. With the advent of rapid and cheap whole genome sequencing (WGS) benchtop sequencers, the potential exists to replace traditional workflows with WGS. The aim of this study was to validate tools to do reference identification and characterization from WGS for STEC in a single workflow within an easy to use commercially available software platform. Publically available serotype, virulence, and antimicrobial resistance databases were downloaded from the Center for Genomic Epidemiology (CGE) (www.genomicepidemiology.org) and integrated into a genotyping plug-in with in silico PCR tools to confirm some of the virulence genes detected from WGS data. Additionally, down sampling experiments on the WGS sequence data were performed to determine a threshold for sequence coverage needed to accurately predict serotype and virulence genes using the established workflow. The serotype database was tested on a total of 228 genomes and correctly predicted from WGS for 96.1% of O serogroups and 96.5% of H serogroups identified by conventional testing techniques. A total of 59 genomes were evaluated to determine the threshold of coverage to detect the different WGS targets, 40 were evaluated for serotype and virulence gene detection and 19 for the stx gene subtypes. For serotype, 95% of the O and 100% of the H serogroups were detected at > 40x and ≥ 30x coverage, respectively. For virulence targets and stx gene subtypes, nearly all genes were detected at > 40x, though some targets were 100% detectable from genomes with coverage ≥20x. The resistance detection tool was 97% concordant with phenotypic testing results. With isolates sequenced to > 40x coverage, the different databases accurately predicted serotype, virulence, and resistance from WGS data, providing a fast and cheaper alternative to conventional typing techniques. |
| Complete Genome Sequences of Two Shiga Toxin-Producing Escherichia coli Strains from Serotypes O119:H4 and O165:H25.
Lindsey RL , Knipe K , Rowe L , Garcia-Toledo L , Loparev V , Juieng P , Trees E , Strockbine N , Stripling D , Gerner-Smidt P . Genome Announc 2015 3 (6)
Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen. Here, we report complete whole-genome sequences for two STEC strains of serotypes O119:H4 and O165:H25 isolated from clinical cases in the United States. |
| Genome Sequence of a Urease-Positive Campylobacter lari Strain.
Meinersmann RJ , Bono JL , Lindsey RL , Genzlinger LL , Loparev VN , Oakley BB . Genome Announc 2015 3 (5)
Campylobacter lari is frequently isolated from shore birds and can cause illness in humans. Here, we report the draft whole-genome sequence of a urease-positive strain of C. lari that was isolated in estuarial water on the coast of Delaware, USA. |
| Evaluating the occurrence of Escherichia albertii in chicken carcass rinses by PCR, Vitek analysis, and sequencing of the rpoB gene.
Lindsey RL , Fedorka-Cray PJ , Abley M , Turpin JB , Meinersmann RJ . Appl Environ Microbiol 2015 81 (5) 1727-34
Escherichia albertii is a recently described species that has been associated with gastroenteritis in humans and with healthy and ill birds. Most recently, it has been identified as the causative agent in a food-borne outbreak in Japan. The distribution and clinical importance of E. albertii are not well studied because its importance is unclear. Culture methods for clinical isolation frequently miss E. albertii or incorrectly identify it as Shigella spp., Escherichia coli, or Hafnia alvei. This study was designed to determine if E. albertii could be recovered from chicken carcass rinses collected at slaughter during a 1-year period from November 2009 until October 2010. Colonies were isolated from chicken carcass rinses and tested by PCR for the presence or absence of clpX, lysP, mdh, intimin (eae), Shiga toxins 1 and 2 (stx1, stx2, and stx2f), heat-stable enterotoxin A (staA), and cytolethal distending toxins 1 and 2 (cdtB) genes. Sixty-five isolates were analyzed by sequencing a section of the rpoB gene. Analysis of the rpoB gene sequences revealed 14 fixed differences between E. albertii and other, closely related organisms. The fixed differences found in the rpoB gene could aid in future discrimination of E. albertii from closely related bacteria. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Aug 15, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure




