Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-19 (of 19 Records) |
Query Trace: Kozak-Muiznieks NA[original query] |
---|
Expanded geographic distribution for two Legionella pneumophila sequence types of clinical concern
Hamlin JAP , Kozak-Muiznieks NA , Mercante JW , Rishishwar L , Norris ET , Gaines AB , Ishaq MK , Winchell JM , Willby MJ . mSphere 2024 e0075623 Legionella pneumophila serogroup 1 sequence types (ST) 213 and 222, a single-locus variant of ST213, were first detected in the early 1990s in the Midwest United States (U.S.) and the late 1990s in the Northeast U.S. and Canada. Since 1992, these STs have increasingly been implicated in community-acquired sporadic and outbreak-associated Legionnaires' disease (LD) cases. We were interested in understanding the change in LD frequency due to these STs and identifying genetic features that differentiate these STs from one another. For the geographic area examined here (Mountain West to Northeast) and over the study period (1992-2020), ST213/222-associated LD cases identified by the Centers for Disease Control and Prevention increased by 0.15 cases per year, with ST213/222-associated LD cases concentrated in four states: Michigan (26%), New York (18%), Minnesota (16%), and Ohio (10%). Additionally, between 2002 and 2021, ST222 caused at least five LD outbreaks in the U.S.; no known outbreaks due to ST213 occurred in the U.S. during this time. We compared the genomes of 230 ST213/222 isolates and found that the mean of the average nucleotide identity (ANI) within each ST was high (99.92% for ST222 and 99.92% for ST213), with a minimum between ST ANI of 99.50% and a maximum of 99.87%, indicating low genetic diversity within and between these STs. While genomic features were identified (e.g., plasmids and CRISPR-Cas systems), no association explained the increasing geographic distribution and prevalence of ST213 and ST222. Yet, we provide evidence of the expanded geographical distribution of ST213 and ST222 in the U.S.IMPORTANCESince the 1990s, cases of Legionnaires' disease (LD) attributed to a pair of closely related Legionella pneumophila variants, ST213 and ST222, have increased in the U.S. Furthermore, between 2002 and 2021, ST222 caused at least five outbreaks of LD in the U.S., while ST213 has not been linked to any U.S. outbreak. We wanted to understand how the rate of LD cases attributed to these variants has changed over time and compare the genetic features of the two variants. Between 1992 and 2020, we determined an increase of 0.15 LD cases ascribed to ST213/222 per year in the geographic region studied. Our research shows that these STs are spreading within the U.S., yet most of the cases occurred in four states: Michigan, New York, Minnesota, and Ohio. Additionally, we found little genetic diversity within and between these STs nor could specific genetic features explain their geographic spread. |
Two outbreaks of Legionnaires disease associated with outdoor hot tubs for private use - two cruise ships, November 2022-July 2024
Lee S , Edens C , Ritter T , Rodriguez LO , Tardivel K , Kozak-Muiznieks NA , Willby M , Ortiz N , Cohen AL , Smith JC . MMWR Morb Mortal Wkly Rep 2024 73 (42) 950-954 Legionnaires disease is a serious pneumonia caused by Legionella bacteria. During November 2022-June 2024, CDC was notified of 12 cases of Legionnaires disease among travelers on two cruise ships; eight on cruise ship A and four on cruise ship B. CDC, in collaboration with the cruise lines, initiated investigations to ascertain the potential sources of on-board exposure after notification of the second potentially associated case for each ship. Epidemiologic data collected from patient interviews and environmental assessment and sampling results identified private hot tubs on selected cabin balconies as the most likely exposure source. To minimize Legionella growth, both cruise lines modified the operation and maintenance of these devices by removing the heating elements, draining water between uses, and increasing the frequency of hyperchlorination and cleaning. Hot tubs offer favorable conditions for Legionella growth and transmission when maintained and operated inadequately, regardless of location. Private hot tubs on cruise ships are not subject to the same maintenance requirements as are public hot tubs in common areas. Given the range of hot tub-type devices offered as amenities across the cruise industry, to reduce risk for Legionella growth and transmission, it is important for cruise ship water management program staff members to inventory and assess private balcony hot tubs and adapt public hot tub maintenance and operations protocols for use on private outdoor hot tubs. |
Large community outbreak of legionnaires disease potentially associated with a cooling tower - Napa County, California, 2022
Grossmann NV , Milne C , Martinez MR , Relucio K , Sadeghi B , Wiley EN , Holland SN , Rutschmann S , Vugia DJ , Kimura A , Crain C , Akter F , Mukhopadhyay R , Crandall J , Shorrock M , Smith JC , Prasad N , Kahn R , Barskey AE , Lee S , Willby MJ , Kozak-Muiznieks NA , Lucas CE , Henderson KC , Hamlin JAP , Yang E , Clemmons NS , Ritter T , Henn J . MMWR Morb Mortal Wkly Rep 2023 72 (49) 1315-1320 Legionnaires disease is a serious infection acquired by inhalation of water droplets from human-made building water systems that contain Legionella bacteria. On July 11 and 12, 2022, Napa County Public Health (NCPH) in California received reports of three positive urinary antigen tests for Legionella pneumophila serogroup 1 in the town of Napa. By July 21, six Legionnaires disease cases had been confirmed among Napa County residents, compared with a baseline of one or two cases per year. NCPH requested assistance from the California Department of Public Health (CDPH) and CDC to aid in the investigations. Close temporal and geospatial clustering permitted a focused environmental sampling strategy of high-risk facilities which, coupled with whole genome sequencing results from samples and investigation of water system maintenance, facilitated potential linking of the outbreak with an environmental source. NCPH, with technical support from CDC and CDPH, instructed and monitored remediation practices for all environmental locations that tested positive for Legionella. The investigation response to this community outbreak illustrates the importance of interdisciplinary collaboration by public health agencies, laboratory support, timely communication with the public, and cooperation of managers of potentially implicated water systems. Timely identification of possible sources, sampling, and remediation of any facility testing positive for Legionella is crucial to interrupting further transmission. |
Notes from the Field: Legionnaires disease in a U.S. traveler after staying in a private vacation rental house in the U.S. Virgin Islands - United States, February 2022
Mac VV , Labgold K , Moline HL , Smith JC , Carroll J , Clemmons N , Edens C , Ellis B , Harrison C , Henderson KC , Ishaq MK , Kozak-Muiznieks NA , Kunz J , Lawrence M , Lucas CE , Walker HL , Willby MJ , Ellis EM . MMWR Morb Mortal Wkly Rep 2023 72 (20) 564-565 On February 1, 2022, the U.S. Virgin Islands (USVI) Department of Health (VIDOH) was notified of a confirmed case of Legionnaires disease in an adult U.S. resident (Figure). The patient, a man aged 55 years, returned to his U.S. state of residence from leisure travel in USVI on January 22 and developed a cough, shortness of breath, and fatigue on January 23. On January 29, he was hospitalized for shortness of breath and received a positive SARS-CoV-2 test result at admission. The combination of the patient’s symptoms and recent travel history prompted administration of a urinary antigen test (UAT) for Legionnaires disease specific to Legionella pneumophila serogroup 1 (Lp1); a positive result was returned on January 31. Inpatient treatment administered for COVID-19 pneumonia and Legionnaires disease included remdesivir, oral levofloxacin, oral and intravenous steroid therapy, and as-needed use of a bronchodilator inhaler and an expectorant. Remdesivir was discontinued during inpatient treatment because of elevated liver enzymes. The patient recovered and was discharged on February 2. |
Community outbreak of legionellosis associated with an indoor hot tub, New Hampshire, 2018
Daly ER , Talbot EA , Smith JC , Ritter T , McCormic ZD , Fay K , Raphael BH , Kozak-Muiznieks NA , Levinson KJ , Bean CL , Wilson RT , Morse D , Scacheri A , Linxweiler J , Chan BP . J Environ Health 2022 84 (10) 16-25 Legionellosis is an infection acquired through inhalation of aerosolized water droplets containing Legionella bacteria. In August 2018, public health officials in New Hampshire launched an investigation into a legionellosis outbreak. They identified 49 illnesses likely associated with the outbreak and implicated an improperly maintained hot tub at a hotel. The same strain of Legionella pneumophila serogroup 1 was found in both the hot tub and in samples from two patients with Legionnaires disease. The indoor hot tub vented to the outdoors, which is how some patients with confirmed legionellosis likely acquired the infection despite not entering the hotel during the incubation period. This outbreak is notable for 1) likely illness acquisition through the exterior vent of the hot tub room and 2) use of whole genome sequencing to link environmental and patient specimens. Collaboration among public health and environmental officials, laboratorians, and building managers was essential to determining the source of the outbreak and preventing further illness. 2022, National Environmental Health Association. All rights reserved. |
Genomic heterogeneity differentiates clinical and environmental subgroups of Legionella pneumophila sequence type 1.
Mercante JW , Caravas JA , Ishaq MK , Kozak-Muiznieks NA , Raphael BH , Winchell JM . PLoS One 2018 13 (10) e0206110 Legionella spp. are the cause of a severe bacterial pneumonia known as Legionnaires' disease (LD). In some cases, current genetic subtyping methods cannot resolve LD outbreaks caused by common, potentially endemic L. pneumophila (Lp) sequence types (ST), which complicates laboratory investigations and environmental source attribution. In the United States (US), ST1 is the most prevalent clinical and environmental Lp sequence type. In order to characterize the ST1 population, we sequenced 289 outbreak and non-outbreak associated clinical and environmental ST1 and ST1-variant Lp strains from the US and, together with international isolate sequences, explored their genetic and geographic diversity. The ST1 population was highly conserved at the nucleotide level; 98% of core nucleotide positions were invariant and environmental isolates unassociated with human disease (n = 99) contained ~65% more nucleotide diversity compared to clinical-sporadic (n = 139) or outbreak-associated (n = 28) ST1 subgroups. The accessory pangenome of environmental isolates was also ~30-60% larger than other subgroups and was enriched for transposition and conjugative transfer-associated elements. Up to ~10% of US ST1 genetic variation could be explained by geographic origin, but considerable genetic conservation existed among strains isolated from geographically distant states and from different decades. These findings provide new insight into the ST1 population structure and establish a foundation for interpreting genetic relationships among ST1 strains; these data may also inform future analyses for improved outbreak investigations. |
Comparative genome analysis reveals a complex population structure of Legionella pneumophila subspecies.
Kozak-Muiznieks NA , Morrison SS , Mercante JW , Ishaq MK , Johnson T , Caravas J , Lucas CE , Brown E , Raphael BH , Winchell JM . Infect Genet Evol 2018 59 172-185 The majority of Legionnaires' disease (LD) cases are caused by Legionella pneumophila, a genetically heterogeneous species composed of at least 17 serogroups. Previously, it was demonstrated that L. pneumophila consists of three subspecies: pneumophila, fraseri and pascullei. During an LD outbreak investigation in 2012, we detected that representatives of both subspecies fraseri and pascullei colonized the same water system and that the outbreak-causing strain was a new member of the least represented subspecies pascullei. We used partial sequence based typing consensus patterns to mine an international database for additional representatives of fraseri and pascullei subspecies. As a result, we identified 46 sequence types (STs) belonging to subspecies fraseri and two STs belonging to subspecies pascullei. Moreover, a recent retrospective whole genome sequencing analysis of isolates from New York State LD clusters revealed the presence of a fourth L. pneumophila subspecies that we have termed raphaeli. This subspecies consists of 15 STs. Comparative analysis was conducted using the genomes of multiple members of all four L. pneumophila subspecies. Whereas each subspecies forms a distinct phylogenetic clade within the L. pneumophila species, they share more average nucleotide identity with each other than with other Legionella species. Unique genes for each subspecies were identified and could be used for rapid subspecies detection. Improved taxonomic classification of L. pneumophila strains may help identify environmental niches and virulence attributes associated with these genetically distinct subspecies. |
Lessons from an outbreak of Legionnaires' disease on a hematology-oncology unit
Francois Watkins LK , Toews KE , Harris AM , Davidson S , Ayers-Millsap S , Lucas CE , Hubbard BC , Kozak-Muiznieks NA , Khan E , Kutty PK . Infect Control Hosp Epidemiol 2017 38 (3) 306-313 OBJECTIVES To define the scope of an outbreak of Legionnaires' disease (LD), to identify the source, and to stop transmission. DESIGN AND SETTING Epidemiologic investigation of an LD outbreak among patients and a visitor exposed to a newly constructed hematology-oncology unit. METHODS An LD case was defined as radiographically confirmed pneumonia in a person with positive urinary antigen testing and/or respiratory culture for Legionella and exposure to the hematology-oncology unit after February 20, 2014. Cases were classified as definitely or probably healthcare-associated based on whether they were exposed to the unit for all or part of the incubation period (2-10 days). We conducted an environmental assessment and collected water samples for culture. Clinical and environmental isolates were compared by monoclonal antibody (MAb) and sequence-based typing. RESULTS Over a 12-week period, 10 cases were identified, including 6 definite and 4 probable cases. Environmental sampling revealed Legionella pneumophila serogroup 1 (Lp1) in the potable water at 9 of 10 unit sites (90%), including all patient rooms tested. The 3 clinical isolates were identical to environmental isolates from the unit (MAb2-positive, sequence type ST36). No cases occurred with exposure after the implementation of water restrictions followed by point-of-use filters. CONCLUSIONS Contamination of the unit's potable water system with Lp1 strain ST36 was the likely source of this outbreak. Healthcare providers should routinely test patients who develop pneumonia at least 2 days after hospital admission for LD. A single case of LD that is definitely healthcare associated should prompt a full investigation. Infect Control Hosp Epidemiol 2017;38:306-313. |
Complete Genome Sequences of Legionella pneumophila subsp. fraseri Strains Detroit-1 and Dallas 1E.
Raphael BH , Kozak-Muiznieks NA , Morrison SS , Mercante JW , Winchell JM . Genome Announc 2017 5 (5) We report here the complete genome sequences of two of the earliest known strains of Legionella pneumophila subsp. fraseri Detroit-1 is serogroup 1 and was isolated from a lung biopsy specimen in 1977. Dallas 1E is serogroup 5 and was isolated in 1978 from a cooling tower. |
Legionnaires' disease outbreak at a resort in Cozumel, Mexico
Hampton LM , Garrison L , Kattan J , Brown E , Kozak-Muiznieks NA , Lucas C , Fields B , Fitzpatrick N , Sapian L , Martin-Escobar T , Waterman S , Hicks LA , Alpuche-Aranda C , Lopez-Gatell H . Open Forum Infect Dis 2016 3 (3) ofw170 Background. A Legionnaires' disease (LD) outbreak at a resort on Cozumel Island in Mexico was investigated by a joint Mexico-United States team in 2010. This is the first reported LD outbreak in Mexico, where LD is not a reportable disease. Methods. Reports of LD among travelers were solicited from US health departments and the European Working Group for Legionella Infections. Records from the resort and Cozumel Island health facilities were searched for possible LD cases. In April 2010, the resort was searched for possible Legionella exposure sources. The temperature and total chlorine of the water at 38 sites in the resort were measured, and samples from those sites were tested for Legionella. Results. Nine travelers became ill with laboratory-confirmed LD within 2 weeks of staying at the resort between May 2008 and April 2010. The resort and its potable water system were the only common exposures. No possible LD cases were identified among resort workers. Legionellae were found to have extensively colonized the resort's potable water system. Legionellae matching a case isolate were found in the resort's potable water system. Conclusions. Medical providers should test for LD when treating community-acquired pneumonia that is severe or affecting patients who traveled in the 2 weeks before the onset of symptoms. When an LD outbreak is detected, the source should be identified and then aggressively remediated. Because LD can occur in tropical and temperate areas, all countries should consider making LD a reportable disease if they have not already done so. |
Dynamics of genome change among Legionella species.
Joseph SJ , Cox D , Wolff B , Morrison SS , Kozak-Muiznieks NA , Frace M , Didelot X , Castillo-Ramirez S , Winchell J , Read TD , Dean D . Sci Rep 2016 6 33442 Legionella species inhabit freshwater and soil ecosystems where they parasitize protozoa. L. pneumonphila (LP) serogroup-1 (Lp1) is the major cause of Legionnaires' Disease (LD), a life-threatening pulmonary infection that can spread systemically. The increased global frequency of LD caused by Lp and non-Lp species underscores the need to expand our knowledge of evolutionary forces underlying disease pathogenesis. Whole genome analyses of 43 strains, including all known Lp serogroups 1-17 and 17 emergent LD-causing Legionella species (of which 33 were sequenced in this study) in addition to 10 publicly available genomes, resolved the strains into four phylogenetic clades along host virulence demarcations. Clade-specific genes were distinct for genetic exchange and signal-transduction, indicating adaptation to specific cellular and/or environmental niches. CRISPR spacer comparisons hinted at larger pools of accessory DNA sequences in Lp than predicted by the pan-genome analyses. While recombination within Lp was frequent and has been reported previously, population structure analysis identified surprisingly few DNA admixture events between species. In summary, diverse Legionella LD-causing species share a conserved core-genome, are genetically isolated from each other, and selectively acquire genes with potential for enhanced virulence. |
Legionella clemsonensis sp. nov., - a green fluorescing Legionella strain from a patient with pneumonia
Palmer A , Painter J , Hassler H , Richards VP , Bruce T , Morrison S , Brown E , Kozak-Muiznieks NA , Lucas C , McNealy TL . Microbiol Immunol 2016 60 (10) 694-701 A novel Legionella species was identified based on sequencing, cellular fatty acid analysis, biochemical reactions, and biofilm characterization. Strain D5610 was originally isolated from the bronchial wash of a patient in Ohio. The bacteria were Gram negative, rod shaped, and exhibited a green fluorescence under long wave UV light. Phylogenetic analysis and fatty acid composition revealed a distinct separation within the genus. The strain grows between 26-45 degrees C and forms biofilms equivalent to L. pneumophila Philadelphia 1. These characterizations suggest that this isolate is a novel Legionella species for which the name Legionella clemsonensis sp nov. is proposed. |
Genomic resolution of outbreak-associated Legionella pneumophila serogroup 1 isolates from New York State.
Raphael BH , Baker DJ , Nazarian E , Lapierre P , Bopp D , Kozak-Muiznieks NA , Morrison SS , Lucas CE , Mercante JW , Musser KA , Winchell JM . Appl Environ Microbiol 2016 82 (12) 3582-90 A total of 30 Legionella pneumophila serogroup 1 isolates representing 10 separate legionellosis laboratory investigations ("outbreaks") that occurred in New York State between 2004 and 2012 were selected for evaluation of whole-genome sequencing (WGS) approaches for molecular subtyping of this organism. Clinical and environmental isolates were available for each outbreak and were initially examined by pulsed-field gel electrophoresis (PFGE). Sequence-based typing alleles were extracted from WGS data yielding complete sequence types (ST) for isolates representing 8 out of the 10 outbreaks evaluated in this study. Isolates from separate outbreaks sharing the same ST also contained the fewest differences in core genome single nucleotide polymorphisms (SNPs) and the greatest proportion of identical allele sequences in a whole-genome multilocus sequence typing (wgMLST) scheme. Both core SNP and wgMLST analyses distinguished isolates from separate outbreaks, including those from two outbreaks sharing indistinguishable PFGE profiles. Isolates from a hospital-associated outbreak spanning multiple years shared indistinguishable PFGE profiles but displayed differences in their genome sequences, suggesting the presence of multiple environmental sources. Finally, the rtx gene demonstrated differences in the repeat region sequence among ST1 isolates from different outbreaks, suggesting that variation in this gene may be useful for targeted molecular subtyping approaches for L. pneumophila This study demonstrates the utility of various genome sequence analysis approaches for L. pneumophila for environmental source attribution studies while furthering the understanding of Legionella ecology. IMPORTANCE: We demonstrate that whole-genome sequencing helps to improve resolution of Legionella pneumophila isolated during laboratory investigations of legionellosis compared to traditional subtyping methods. These data can be important in confirming the environmental sources of legionellosis outbreaks. Moreover, we evaluated various methods to analyze genome sequence data to help resolve outbreak-related isolates. |
Three Genome Sequences of Legionella pneumophila subsp. pascullei Associated with Colonization of a Health Care Facility.
Kozak-Muiznieks NA , Morrison SS , Sammons S , Rowe LA , Sheth M , Frace M , Lucas CE , Loparev VN , Raphael BH , Winchell JM . Genome Announc 2016 4 (3) e00335-16 Here, we report the complete genome sequences of three Legionella pneumophila subsp. pascullei strains (including both serogroup 1 and 5 strains) that were found in the same health care facility in 1982 and 2012. |
Legionellosis outbreak associated with a hotel fountain
Smith SS , Ritger K , Samala U , Black SR , Okodua M , Miller L , Kozak-Muiznieks NA , Hicks LA , Steinheimer C , Ewaidah S , Presser L , Siston AM . Open Forum Infect Dis 2015 2 (4) ofv164 BACKGROUND: In August 2012, the Chicago Department of Public Health (CDPH) was notified of acute respiratory illness, including 1 fatality, among a group of meeting attendees who stayed at a Chicago hotel during July 30-August 3, 2012. Suspecting Legionnaires' disease (LD), CDPH advised the hotel to close their swimming pool, spa, and decorative lobby fountain and began an investigation. METHODS: Case finding included notification of individuals potentially exposed during July 16-August 15, 2012. Individuals were interviewed using a standardized questionnaire. An environmental assessment was performed. RESULTS: One hundred fourteen cases were identified: 11 confirmed LD, 29 suspect LD, and 74 Pontiac fever cases. Illness onsets occurred July 21-August 22, 2012. Median age was 48 years (range, 22-82 years), 64% were male, 59% sought medical care (15 hospitalizations), and 3 died. Relative risks for hotel exposures revealed that persons who spent time near the decorative fountain or bar, both located in the lobby were respectively 2.13 (95%, 1.64-2.77) and 1.25 (95% CI, 1.09-1.44) times more likely to become ill than those who did not. Legionella pneumophila serogroup 1 was isolated from samples collected from the fountain, spa, and women's locker room fixtures. Legionella pneumophila serogroup 1 environmental isolates and a clinical isolate had matching sequence-based types. Hotel maintenance records lacked a record of regular cleaning and disinfection of the fountain. CONCLUSIONS: Environmental testing identified Legionella in the hotel's potable water system. Epidemiologic and laboratory data indicated the decorative fountain as the source. Poor fountain maintenance likely created favorable conditions for Legionella overgrowth. |
The importance of clinical surveillance in detecting Legionnaires' disease outbreaks: a large outbreak in a hospital with a Legionella disinfection system, Pennsylvania, 2011-2012
Demirjian A , Lucas CE , Garrison LE , Kozak-Muiznieks NA , States S , Brown EW , Wortham JM , Beaudoin A , Casey ML , Marriott C , Ludwig AM , Sonel AF , Muder RR , Hicks LA . Clin Infect Dis 2015 60 (11) 1596-602 BACKGROUND: Healthcare-associated Legionnaires' disease (LD) is a preventable pneumonia with a 30% case-fatality rate. The Centers for Disease Control and Prevention guidelines recommend a high index of suspicion for the diagnosis of healthcare-associated LD. We characterized an outbreak and evaluated contributing factors in a hospital using copper-silver ionization for prevention of Legionella growth in water. METHODS: Through medical chart review at a large, urban tertiary care hospital in November 2012, we identified patients diagnosed with LD during 2011-2012. Laboratory-confirmed cases were categorized as definite, probable, and not healthcare-associated based on time spent in the hospital during the incubation period. We performed an environmental assessment of the hospital, including collection of samples for Legionella culture. Clinical and environmental isolates were compared by genotyping. Copper and silver ion concentrations were measured in 11 water samples. RESULTS: We identified five definite and 17 probable healthcare-associated LD cases; six case-patients died. Of 25 locations (mostly potable water) where environmental samples were obtained for Legionella-specific culture, all but two showed Legionella growth; eleven isolates were identical to three clinical isolates by sequence-based typing. Mean copper and silver concentrations were at or above the manufacturer's recommended target for Legionella control. Despite this, all samples where copper and silver concentrations were tested showed Legionella growth. CONCLUSIONS: This outbreak was linked to the hospital's potable water system and highlights the importance of maintaining a high index of suspicion for healthcare-associated LD, even in the setting of a long-term disinfection program. |
Draft Genome Sequence of Legionella pneumophila D-5864, a Serogroup 6 Strain.
Morrison SS , Kozak-Muiznieks NA , Sammons S , Rowe LA , Frace M , Winchell JM . Genome Announc 2015 3 (1) Legionella pneumophila is the leading etiology of legionellosis infections in North America and Europe. Here we report the draft genome sequence of L. pneumophila D-5864, a serogroup 6 strain, which was isolated from a bronchial alveolar lavage specimen of a male patient from Arizona in 2009. Genes within the lipopolysaccharide (LPS)-biosynthesis region could potentially be determinants of serogroup specificity. |
Extension of the Legionella pneumophila sequence-based typing scheme to include strains carrying a variant of the N-acylneuraminate cytidylyltransferase gene
Mentasti M , Underwood A , Luck C , Kozak-Muiznieks NA , Harrison TG , Fry NK . Clin Microbiol Infect 2014 20 (7) O435-41 Sequence-based typing (SBT) combined with monoclonal antibody subgrouping of Legionella pneumophila isolates is at present considered to be the reference standard during epidemiological investigation of Legionnaires' disease outbreaks. In some isolates of L. pneumophila, the seventh allele of the standard SBT scheme, neuA, is not amplified, because a homologue that is refractory to amplification with the standard neuA primers is present. Consequently, a complete seven-allele profile, and hence a sequence type, cannot be obtained. Subsequently, primers were designed to amplify both neuA and the homologue, but these yielded suboptimal sequencing results. In this study, novel primers specific for the neuA homologue were designed and internationally validated by members of the ESCMID Study Group for Legionella Infections at national and regional Legionella reference laboratories with a modified version of the online L. pneumophila sequence quality tool. To date, the addition of the neuAh target to the SBT protocol has allowed full typing data to be obtained for 108 isolates of 11 different serogroups, namely 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, and 14, which could not previously be typed with the standard SBT neuA primers. Further studies are necessary to determine why it is still not possible to obtain either a neuA or a neuAh allele from three serogroup 11 isolates. |
Prevalence of sequence types among clinical and environmental isolates of Legionella pneumophila serogroup 1 in the United States from 1982 to 2012.
Kozak-Muiznieks NA , Lucas CE , Brown E , Pondo T , Taylor TH Jr , Frace M , Miskowski D , Winchell JM . J Clin Microbiol 2013 52 (1) 201-11 Since the establishment of sequence-based typing as the gold standard for DNA-based typing of Legionella pneumophila, the Centers for Disease Control and Prevention's (CDC) Legionella laboratory has conducted routine SBT analysis of all incoming L. pneumophila serogroup 1 (Lp1) isolates to identify potential links between cases and to better understand genetic diversity and clonal expansion among L. pneumophila. Retrospective genotyping of Lp1 isolates from sporadic cases and Legionnaires' disease (LD) outbreaks deposited into the CDC reference collection since 1982 has been completed. For this study, we compared the distribution of sequence types (STs) among Lp1 isolates implicated in 26 US outbreaks, 571 clinical isolates from US sporadic cases of LD and 149 environmental isolates with no known association with LD. The Lp1 isolates under study had been deposited into our collection between 1982 and 2012. We identified 17 outbreak-associated, 153 sporadic, and 49 environmental STs. We observed that Lp1 STs from outbreaks and sporadic cases are more similar to each other than either group is to environmental STs. The most frequent ST for both sporadic and environmental isolates was ST1, accounting for 25% and 49% of the total number of isolates, respectively. The STs shared by both outbreak-associated and sporadic Lp1 included ST1, ST35, ST36, ST37, and ST222. The STs most commonly found in sporadic and outbreak-associated Lp1 populations may have an increased ability to cause disease and thus may require special attention when detected. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure