Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-30 (of 47 Records) |
Query Trace: Karem K[original query] |
---|
Design and optimization of a monkeypox virus specific serological assay
Taha TY , Townsend MB , Pohl J , Karem KL , Damon IK , Mbala Kingebeni P , Muyembe Tamfum JJ , Martin JW , Pittman PR , Huggins JW , Satheshkumar PS , Bagarozzi DA Jr , Reynolds MG , Hughes LJ . Pathogens 2023 12 (3) Monkeypox virus (MPXV), a member of the Orthopoxvirus (OPXV) genus, is a zoonotic virus, endemic to central and western Africa that can cause smallpox-like symptoms in humans with fatal outcomes in up to 15% of patients. The incidence of MPXV infections in the Democratic Republic of the Congo, where the majority of cases have occurred historically, has been estimated to have increased as much as 20-fold since the end of smallpox vaccination in 1980. Considering the risk global travel carries for future disease outbreaks, accurate epidemiological surveillance of MPXV is warranted as demonstrated by the recent Mpox outbreak, where the majority of cases were occurring in non-endemic areas. Serological differentiation between childhood vaccination and recent infection with MPXV or other OPXVs is difficult due to the high level of conservation within OPXV proteins. Here, a peptide-based serological assay was developed to specifically detect exposure to MPXV. A comparative analysis of immunogenic proteins across human OPXVs identified a large subset of proteins that could potentially be specifically recognized in response to a MPXV infection. Peptides were chosen based upon MPXV sequence specificity and predicted immunogenicity. Peptides individually and combined were screened in an ELISA against serum from well-characterized Mpox outbreaks, vaccinee sera, and smallpox sera collected prior to eradication. One peptide combination was successful with ~86% sensitivity and ~90% specificity. The performance of the assay was assessed against the OPXV IgG ELISA in the context of a serosurvey by retrospectively screening a set of serum specimens from the region in Ghana believed to have harbored the MPXV-infected rodents involved in the 2003 United States outbreak. |
Development of a Bead-Based Multiplex Assay for Use in Multianalyte Screening and Surveillance of HIV, Viral Hepatitis, Syphilis, and Herpes.
Yufenyuy EL , Vedapuri S , Zheng A , Cooley G , Danavall D , Mayur S , Kodani M , Chen C , Tun Y , Fakile YF , Martin D , Kamili S , Karem K , Parekh BS . J Clin Microbiol 2022 60 (5) e0234821 Diagnostic assays that can simultaneously determine the presence of infection with multiple pathogens are key for diagnosis and surveillance. Current multiplex diagnostic assays are complex and often have limited availability. We developed a simple, multianalyte, pathogen detection assay for screening and serosurveillance using the Luminex Magpix platform that is high throughput and can be helpful in monitoring multiple diseases. The Luminex bead-based 10-plex immunoassay for the detection of HIV-1, HIV-2, Treponema pallidum, hepatitis B virus (HBV), hepatitis C virus (HCV), herpes simplex virus 1 (HSV-1), and HSV-2 infections was accomplished by coupling beads with specific antigens to detect IgG antibodies in plasma or serum samples. Each coupled antigen was systematically optimized, and the performance was evaluated using a panel of well-characterized specimens (n=417) that contained antibodies to HIV-1, HIV-2, T. pallidum, HBV, HCV, HSV-1, and HSV-2. The multiplex assay had a sensitivity of 92.2% (95% Clopper-Pearson confidence interval [CI], 90.2 to 94.0%) and a specificity of 98.1% (95% CI, 97.6 to 98.7%). The sensitivities and specificities for disease-specific biomarker detection ranged from 68.7 to 100% and 95.6 to 100%, respectively. The results showed that the 10-plex immunoassay had an overall agreement of 96.7% (95% CI, 96.7 to 97.3%) with reference tests and a corresponding kappa value of 0.91 (95% CI, 0.90 to 0.93). Kappa values for the individual pathogens ranged from 0.69 to 1.00. The assay is robust and allows the simultaneous detection of antibodies to multiple antigens using a small sample volume in a high-throughput format. This assay has the potential to simplify disease surveillance by providing an alternative to expensive and highly specialized individual tests. |
The "bio-crime model" of cross-border cooperation among veterinary public health, justice, law enforcements, and customs to tackle the illegal animal trade/bio-terrorism and to prevent the spread of zoonotic diseases among human population
Zucca P , Rossmann MC , Osorio JE , Karem K , De Benedictis P , Haißl J , De Franceschi P , Calligaris E , Kohlweiß M , Meddi G , Gabrutsch W , Mairitsch H , Greco O , Furlani R , Maggio M , Tolomei M , Bremini A , Fischinger I , Zambotto P , Wagner P , Millard Y , Palei M , Zamaro G . Front Vet Sci 2020 7 593683 Illegal animal trade (pet, wildlife, animal products, etc.) is an example of transnational organized crime (T.O.C.) that generates a large business with huge profit margins. This criminal activity causes several negative effects on human health (zoonoses), animal health and welfare, market protection, consumer fraud and may be used as tool of agro/bio-terrorism. Illegal animal trade can facilitate the spread of zoonoses that are defined as diseases and infections that are transmitted by vertebrate animals to man. Humans are affected by more than 1,700 known pathogens: 60% of existing human infectious diseases are zoonotic and at least 75% of emerging infectious diseases of humans have an animal origin and 72% of zoonoses originate from wildlife or exotic animals. The Bio-Crime Project was developed in 2017 by Friuli Venezia Giulia Region (Italy) and Land Carinthia (Austria) together with other public institutions to combat illegal animal trade and to reduce the risk of disease transmission from animals to humans. Project partners agreed that a multi-agency approach was required to tackle the illegal animal trade that was high value, easy to undertake and transnational crime. The Bio-crime model of cross-border cooperation introduces the novel approach of replicating the cooperative framework given by the triad of Veterinary Public Health, Justice and Law Enforcements/Customs across borders using the International Police and Custom Cooperation Centres (IPCCCs) as a connection link among public entities of the neighbor countries. This model has been recognized as a best practice at European level because it can be easily replicated and scaled up without any supplementary cost for Member States. |
IMVAMUNE and ACAM2000 provide different protection against disease when administered postexposure in an intranasal monkeypox challenge prairie dog model
Keckler MS , Salzer JS , Patel N , Townsend MB , Nakazawa YJ , Doty JB , Gallardo-Romero NF , Satheshkumar PS , Carroll DS , Karem KL , Damon IK . Vaccines (Basel) 2020 8 (3) The protection provided by smallpox vaccines when used after exposure to Orthopoxviruses is poorly understood. Postexposu re administration of 1st generation smallpox vaccines was effective during eradication. However, historical epidemiological reports and animal studies on postexposure vaccination are difficult to extrapolate to today's populations, and 2nd and 3rd generation vaccines, developed after eradication, have not been widely tested in postexposure vaccination scenarios. In addition to concerns about preparedness for a potential malevolent reintroduction of variola virus, humans are becoming increasingly exposed to naturally occurring zoonotic orthopoxviruses and, following these exposures, disease severity is worse in individuals who never received smallpox vaccination. This study investigated whether postexposure vaccination of prairie dogs with 2nd and 3rd generation smallpox vaccines was protective against monkeypox disease in four exposure scenarios. We infected animals with monkeypox virus at doses of 10(4) pfu (2× LD(50)) or 10(6) pfu (170× LD(50)) and vaccinated the animals with IMVAMUNE(®) or ACAM2000(®) either 1 or 3 days after challenge. Our results indicated that postexposure vaccination protected the animals to some degree from the 2× LD(50), but not the 170× LD(5) challenge. In the 2× LD(50) challenge, we also observed that administration of vaccine at 1 day was more effective than administration at 3 days postexposure for IMVAMUNE(®), but ACAM2000(®) was similarly effective at either postexposure vaccination time-point. The effects of postexposure vaccination and correlations with survival of total and neutralizing antibody responses, protein targets, take formation, weight loss, rash burden, and viral DNA are also presented. |
Magnitude and diversity of immune response to vaccinia virus is dependent on route of administration
Hughes LJ , Townsend MB , Gallardo-Romero N , Hutson CL , Patel N , Doty JB , Salzer JS , Damon IK , Carroll DS , Satheshkumar PS , Karem KL . Virology 2020 544 55-63 Historic observations suggest that survivors of smallpox maintained lifelong immunity and protection to subsequent infection compared to vaccinated individuals. Although protective immunity by vaccination using a related virus (vaccinia virus (VACV) strains) was the key for smallpox eradication, it does not uniformly provide long term, or lifelong protective immunity (Heiner et al., 1971). To determine differences in humoral immune responses, mice were inoculated with VACV either systemically, using intranasal inoculation (IN), or locally by an intradermal (ID) route. We hypothesized that sub-lethal IN infections may mimic systemic or naturally occurring infection and lead to an immunodominance reaction, in contrast to localized ID immunization. The results demonstrated systemic immunization through an IN route led to enhanced adaptive immunity to VACV-expressed protein targets both in magnitude and in diversity when compared to an ID route using a VACV protein microarray. In addition, cytokine responses, assessed using a Luminex(R) mouse cytokine multiplex kit, following IN infection was greater than that stemming from ID infection. Overall, the results suggest that the route of immunization (or infection) influences antibody responses. The greater magnitude and diversity of response in systemic infection provides indirect evidence for anecdotal observations made during the smallpox era that survivors maintain lifelong protection. These findings also suggest that systemic or disseminated host immune induction may result in a superior response, that may influence the magnitude of, as well as duration of protective responses. |
Uncrewed aircraft systems versus motorcycles to deliver laboratory samples in west Africa: a comparative economic study
Ochieng WO , Ye T , Scheel C , Lor A , Saindon J , Yee SL , Meltzer MI , Kapil V , Karem K . Lancet Glob Health 2020 8 (1) e143-e151 BACKGROUND: Transportation of laboratory samples in low-income and middle-income countries is often constrained by poor road conditions, difficult geographical terrain, and insecurity. These constraints can lead to long turnaround times for laboratory diagnostic tests and hamper epidemic control or patient treatment efforts. Although uncrewed aircraft systems (UAS)-ie, drones-can mitigate some of these transportation constraints, their cost-effectiveness compared with land-based transportation systems is unclear. METHODS: We did a comparative economic study of the costs and cost-effectiveness of UAS versus motorcycles in Liberia (west Africa) for transportation of laboratory samples under simulated routine conditions and public health emergency conditions (based on the 2013-16 west African Ebola virus disease epidemic). We modelled three UAS with operational ranges of 30 km, 65 km, and 100 km (UAS30, UAS65, and UAS100) and lifespans of 1000 to 10 000 h, and compared the costs and number of samples transported with an established motorcycle transportation programme (most commonly used by the Liberian Ministry of Health and the charity Riders for Health). Data for UAS were obtained from Skyfire (a UAS consultancy), Vayu (a UAS manufacturer), and Sandia National Laboratories (a private company with UAS research experience). Motorcycle operational data were obtained from Riders for Health. In our model, we included costs for personnel, equipment, maintenance, and training, and did univariate and probabilistic sensitivity analyses for UAS lifespans, range, and accident or failures. FINDINGS: Under the routine scenario, the per sample transport costs were US$0.65 (95% CI 0.01-2.85) and $0.82 (0.56-5.05) for motorcycles and UAS65, respectively. Per-sample transport costs under the emergency scenario were $24.06 (95% CI 21.14-28.20) for motorcycles, $27.42 (95% CI 19.25-136.75) for an unadjusted UAS model with insufficient geographical coverage, and $34.09 (95% CI 26.70-127.40) for an adjusted UAS model with complementary motorcycles. Motorcycles were more cost-effective than short-range UAS (ie, UAS30). However, with increasing range and operational lifespans, UAS became increasingly more cost-effective. INTERPRETATION: Given the current level of technology, purchase prices, equipment lifespans, and operational flying ranges, UAS are not a viable option for routine transport of laboratory samples in west Africa. Field studies are required to generate evidence about UAS lifespan, failure rates, and performance under different weather conditions and payloads. FUNDING: None. |
Assessing monkeypox virus prevalence in small mammals at the human-animal interface in the Democratic Republic of the Congo
Doty JB , Malekani JM , Kalemba LN , Stanley WT , Monroe BP , Nakazawa YU , Mauldin MR , Bakambana TL , Liyandja Dja Liyandja T , Braden ZH , Wallace RM , Malekani DV , McCollum AM , Gallardo-Romero N , Kondas A , Peterson AT , Osorio JE , Rocke TE , Karem KL , Emerson GL , Carroll DS . Viruses 2017 9 (10) During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources. |
Characterization of monkeypox virus infection in African rope squirrels (Funisciurus sp.)
Falendysz EA , Lopera JG , Doty JB , Nakazawa Y , Crill C , Lorenzsonn F , Kalemba LN , Ronderos MD , Mejia A , Malekani JM , Karem K , Carroll DS , Osorio JE , Rocke TE . PLoS Negl Trop Dis 2017 11 (8) e0005809 Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions. |
A rapid Orthopoxvirus purification protocol suitable for high-containment laboratories
Hughes L , Wilkins K , Goldsmith CS , Smith S , Hudson P , Patel N , Karem K , Damon I , Li Y , Olson VA , Satheshkumar PS . J Virol Methods 2017 243 68-73 Virus purification in a high-containment setting provides unique challenges due to barrier precautions and operational safety approaches that are not necessary in lower biosafety level (BSL) 2 environments. The need for high risk group pathogen diagnostic assay development, anti-viral research, pathogenesis and vaccine efficacy research necessitates work in BSL-3 and BSL-4 labs with infectious agents. When this work is performed in accordance with BSL-4 practices, modifications are often required in standard protocols. Classical virus purification techniques are difficult to execute in a BSL-3 or BSL-4 laboratory because of the work practices used in these environments. Orthopoxviruses are a family of viruses that, in some cases, requires work in a high-containment laboratory and due to size do not lend themselves to simpler purification methods. Current CDC purification techniques of orthopoxviruses uses 1,1,2-trichlorotrifluoroethane, commonly known as Genetron(R). Genetron(R) is a chlorofluorocarbon (CFC) that has been shown to be detrimental to the ozone and has been phased out and the limited amount of product makes it no longer a feasible option for poxvirus purification purposes. Here we demonstrate a new orthopoxvirus purification method that is suitable for high-containment laboratories and produces virus that is not only comparable to previous purification methods, but improves on purity and yield. |
Laboratory evaluation of the Chembio Dual Path Platform HIV-Syphilis Assay
Kalou MB , Castro A , Watson A , Jost H , Clay S , Tun Y , Chen C , Karem K , Nkengasong JN , Ballard R , Parekh B . Afr J Lab Med 2016 5 (1) 433 BACKGROUND: Use of rapid diagnostic tests for HIV and syphilis has increased remarkably in the last decade. As new rapid diagnostic tests become available, there is a continuous need to assess their performance and operational characteristics prior to use in clinical settings. OBJECTIVES: In this study, we evaluated the performance of the Chembio Dual Path Platform (DPP(®)) HIV-Syphilis Assay to accurately diagnose HIV, syphilis, and HIV/syphilis co-infection. METHOD: In 2013, 990 serum samples from the Georgia Public Health Laboratory in Atlanta, Georgia, United States were characterised for HIV and syphilis and used to evaluate the platform. HIV reference testing combined third-generation Enzyme Immunoassay and Western Blot, whereas reference testing for syphilis was conducted by the Treponema pallidum passive particle agglutination method and the TrepSure assay. We assessed the sensitivity and specificity of the DPP assay on this panel by comparing results with the HIV and syphilis reference testing algorithms. RESULTS: For HIV, sensitivity was 99.8% and specificity was 98.4%; for syphilis, sensitivity was 98.8% and specificity was 99.4%. Of the 348 co-infected sera, 344 (98.9%) were detected accurately by the DPP assay, but 11 specimens had false-positive results (9 HIV and 2 syphilis) due to weak reactivity. CONCLUSION: In this evaluation, the Chembio DPP HIV-Syphilis Assay had high sensitivity and specificity for detecting both HIV and treponemal antibodies. Our results indicate that this assay could have a significant impact on the simultaneous screening of HIV and syphilis using a single test device for high-risk populations or pregnant women needing timely care and treatment. |
Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis.
Igietseme JU , Omosun Y , Stuchlik O , Reed MS , Partin J , He Q , Joseph K , Ellerson D , Bollweg B , George Z , Eko FO , Bandea C , Liu H , Yang G , Shieh WJ , Pohl J , Karem K , Black CM . PLoS One 2015 10 (12) e0145198 Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1), but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43), Mets1, Add1Scarb1 and MARCKSL1). T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of tumorigenesis of HPV oncogene-transformed epithelial cells. These findings provide a novel understanding of the molecular pathogenesis of chlamydia-associated diseases, which may guide a rational prevention strategy. |
Laboratory investigations of African pouched rats (Cricetomys gambianus) as a potential reservoir host species for Monkeypox virus
Hutson CL , Nakazawa YJ , Self J , Olson VA , Regnery RL , Braden Z , Weiss S , Malekani J , Jackson E , Tate M , Karem KL , Rocke TE , Osorio JE , Damon IK , Carroll DS . PLoS Negl Trop Dis 2015 9 (10) e0004013 Monkeypox is a zoonotic disease endemic to central and western Africa, where it is a major public health concern. Although Monkeypox virus (MPXV) and monkeypox disease in humans have been well characterized, little is known about its natural history, or its maintenance in animal populations of sylvatic reservoir(s). In 2003, several species of rodents imported from Ghana were involved in a monkeypox outbreak in the United States with individuals of three African rodent genera (Cricetomys, Graphiurus, Funisciurus) shown to be infected with MPXV. Here, we examine the course of MPXV infection in Cricetomys gambianus (pouched Gambian rats) and this rodent species' competence as a host for the virus. We obtained ten Gambian rats from an introduced colony in Grassy Key, Florida and infected eight of these via scarification with a challenge dose of 4X104 plaque forming units (pfu) from either of the two primary clades of MPXV: Congo Basin (C-MPXV: n = 4) or West African (W-MPXV: n = 4); an additional 2 animals served as PBS controls. Viral shedding and the effect of infection on activity and physiological aspects of the animals were measured. MPXV challenged animals had significantly higher core body temperatures, reduced activity and increased weight loss than PBS controls. Viable virus was found in samples taken from animals in both experimental groups (C-MPXV and W-MPXV) between 3 and 27 days post infection (p.i.) (up to 1X108 pfu/ml), with viral DNA found until day 56 p.i. The results from this work show that Cricetomys gambianus (and by inference, probably the closely related species, Cricetomys emini) can be infected with MPXV and shed viable virus particles; thus suggesting that these animals may be involved in the maintenance of MPXV in wildlife mammalian populations. More research is needed to elucidate the epidemiology of MPXV and the role of Gambian rats and other species. |
Development of a high-content orthopoxvirus infectivity and neutralization assays
Gates I , Olson V , Smith S , Patel N , Damon I , Karem K . PLoS One 2015 10 (10) e0138836 Currently, a number of assays measure Orthopoxvirus neutralization with serum from individuals, vaccinated against smallpox. In addition to the traditional plaque reduction neutralization test (PRNT), newer higher throughput assays are based on neutralization of recombinant vaccinia virus, expressing reporter genes such as beta-galactosidase or green fluorescent protein. These methods could not be used to evaluate neutralization of variola virus, since genetic manipulations of this virus are prohibited by international agreements. Currently, PRNT is the assay of choice to measure neutralization of variola virus. However, PRNT assays are time consuming, labor intensive, and require considerable volume of serum sample for testing. Here, we describe the development of a high-throughput, cell-based imaging assay that can be used to measure neutralization, and characterize replication kinetics of various Orthopoxviruses, including variola, vaccinia, monkeypox, and cowpox. |
Comparison of monkeypox virus clade kinetics and pathology within the prairie dog animal model using a serial sacrifice study design
Hutson CL , Carroll DS , Gallardo-Romero N , Drew C , Zaki SR , Nagy T , Hughes C , Olson VA , Sanders J , Patel N , Smith SK , Keckler MS , Karem K , Damon IK . Biomed Res Int 2015 2015 965710 Monkeypox virus (MPXV) infection of the prairie dog is valuable to studying systemic orthopoxvirus disease. To further characterize differences in MPXV clade pathogenesis, groups of prairie dogs were intranasally infected (8 x 103 p.f.u.) with Congo Basin (CB) or West African (WA) MPXV, and 28 tissues were harvested on days 2, 4, 6, 9, 12, 17, and 24 postinfection. Samples were evaluated for the presence of virus and gross and microscopic lesions. Virus was recovered from nasal mucosa, oropharyngeal lymph nodes, and spleen earlier in CB challenged animals (day 4) than WA challenged animals (day 6). For both groups, primary viremia (indicated by viral DNA) was seen on days 6-9 through day 17. CB MPXV spread more rapidly, accumulated to greater levels, and caused greater morbidity in animals compared to WA MPXV. Histopathology and immunohistochemistry (IHC) findings, however, were similar. Two animals that succumbed to disease demonstrated abundant viral antigen in all organs tested, except for brain. Dual-IHC staining of select liver and spleen sections showed that apoptotic cells (identified by TUNEL) tended to colocalize with poxvirus antigen. Interestingly splenocytes were labelled positive for apoptosis more often than hepatocytes in both MPXV groups. These findings allow for further characterization of differences between MPXV clade pathogenesis, including identifying sites that are important during early viral replication and cellular response to viral infection. |
A phylogeographic investigation of African monkeypox.
Nakazawa Y , Mauldin MR , Emerson GL , Reynolds MG , Lash RR , Gao J , Zhao H , Li Y , Muyembe JJ , Kingebeni PM , Wemakoy O , Malekani J , Karem KL , Damon IK , Carroll DS . Viruses 2015 7 (4) 2168-84 Monkeypox is a zoonotic disease caused by a virus member of the genus Orthopoxvirus and is endemic to Central and Western African countries. Previous work has identified two geographically disjuct clades of monkeypox virus based on the analysis of a few genomes coupled with epidemiological and clinical analyses; however, environmental and geographic causes of this differentiation have not been explored. Here, we expand previous phylogenetic studies by analyzing a larger set of monkeypox virus genomes originating throughout Sub-Saharan Africa to identify possible biogeographic barriers associated with genetic differentiation; and projected ecological niche models onto environmental conditions at three periods in the past to explore the potential role of climate oscillations in the evolution of the two primary clades. Analyses supported the separation of the Congo Basin and West Africa clades; the Congo Basin clade shows much shorter branches, which likely indicate a more recent diversification of isolates within this clade. The area between the Sanaga and Cross Rivers divides the two clades and the Dahomey Gap seems to have also served as a barrier within the West African clade. Contraction of areas with suitable environments for monkeypox virus during the Last Glacial Maximum, suggests that the Congo Basin clade of monkeypox virus experienced a severe bottleneck and has since expanded its geographic range. |
Identification of Giardia duodenalis and Enterocytozoon bieneusi in an epizoological investigation of a laboratory colony of prairie dogs, Cynomys ludovicianus.
Roellig DM , Salzer JS , Carroll DS , Ritter JM , Drew C , Gallardo-Romero N , Keckler MS , Langham G , Hutson CL , Karem KL , Gillespie TR , Visvesvara GS , Metcalfe MG , Damon IK , Xiao L . Vet Parasitol 2015 210 91-7 Since 2005, black-tailed prairie dogs (Cynomys ludovicianus) have been collected for use as research animals from field sites in Kansas, Colorado, and Texas. In January of 2012, Giardia trophozoites were identified by histology, thin-section electron microscopy, and immunofluorescent staining in the lumen of the small intestine and colon of a prairie dog euthanized because of extreme weight loss. With giardiasis suspected as the cause of weight loss, a survey of Giardia duodenalis in the laboratory colony of prairie dogs was initiated. Direct immunofluorescent testing of feces revealed active shedding of Giardia cysts in 40% (n=60) of animals held in the vivarium. All tested fecal samples (n=29) from animals in another holding facility where the index case originated were PCR positive for G. duodenalis with assemblages A and B identified from sequencing triosephosphate isomerase (tpi), glutamate dehydrogenase (gdh), and beta-giardin (bg) genes. Both assemblages are considered zoonotic, thus the parasites in prairie dogs are potential human pathogens and indicate prairie dogs as a possible wildlife reservoir or the victims of pathogen spill-over. Molecular testing for other protozoan gastrointestinal parasites revealed no Cryptosporidium infections but identified a host-adapted Enterocytozoon bieneusi genotype group. |
A highly specific monoclonal antibody against monkeypox virus detects the heparin binding domain of A27
Hughes LJ , Goldstein J , Pohl J , Hooper JW , Lee Pitts R , Townsend MB , Bagarozzi D , Damon IK , Karem KL . Virology 2014 464-465c 264-273 The eradication of smallpox and the cessation of global vaccination led to the increased prevalence of human infections in Central Africa. Serologic and protein-based diagnostic assay for MPXV detection is difficult due to cross-reactive antibodies that do not differentiate between diverse orthopoxvirus (OPXV) species. A previously characterized monoclonal antibody (mAb 69-126-3-7) against MPXV [1] was retested for cross-reactivity with various OPXVs. The 14.5kDa band protein that reacted with mAb 69-126-3 was identified to be MPXV A29 protein (homolog of vaccinia virus Copenhagen A27). Amino acid sequence analysis of the MPXV A29 with other OPXV homologs identified four amino acid changes. Peptides corresponding to these regions were designed and evaluated for binding to mAb 69-126-3 by ELISA and BioLayer Interferometry (BLI). Further refinement and truncations mapped the specificity of this antibody to a single amino acid difference in a 30-mer peptide compared to other OPXV homologs. This particular residue is proposed to be essential for heparin binding by VACV A27 protein. Despite this substitution, MPXV A29 bound to heparin with similar affinity to that of VACV A27 protein, suggesting flexibility of this motif for heparin binding. Although binding of mAb 69-126-3-7 to MPXV A29 prevented interaction with heparin, it did not have any effect on the infectivity of MPXV. Characterization of 69-126-3-7 mAb antibody allows for the possibility of the generation of a serological based species-specific detection of OPXVs despite high proteomic homology. |
Poxvirus viability and signatures in historical relics
McCollum AM , Li Y , Wilkins K , Karem KL , Davidson WB , Paddock CD , Reynolds MG , Damon IK . Emerg Infect Dis 2014 20 (2) 177-84 Although it has been >30 years since the eradication of smallpox, the unearthing of well-preserved tissue material in which the virus may reside has called into question the viability of variola virus decades or centuries after its original occurrence. Experimental data to address the long-term stability and viability of the virus are limited. There are several instances of well-preserved corpses and tissues that have been examined for poxvirus viability and viral DNA. These historical specimens cause concern for potential exposures, and each situation should be approached cautiously and independently with the available information. Nevertheless, these specimens provide information on the history of a major disease and vaccination against it. |
Mapping monkeypox transmission risk through time and space in the Congo basin
Nakazawa Y , Lash RR , Carroll DS , Damon IK , Karem KL , Reynolds MG , Osorio JE , Rocke TE , Malekani JM , Muyembe JJ , Formenty P , Peterson AT . PLoS One 2013 8 (9) e74816 Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox. |
Novel poxvirus in big brown bats, northwestern United States
Emerson GL , Nordhausen R , Garner MM , Huckabee JR , Johnson S , Wohrle RD , Davidson WB , Wilkins K , Li Y , Doty JB , Gallardo-Romero NF , Metcalfe MG , Karem KL , Damon IK , Carroll DS . Emerg Infect Dis 2013 19 (6) 1002-4 A wildlife hospital and rehabilitation center in northwestern United States received several big brown bats with necrosuppurative osteomyelitis in multiple joints. Wing and joint tissues were positive by PCR for poxvirus. Thin-section electron microscopy showed poxvirus particles within A-type inclusions. Phylogenetic comparison supports establishment of a new genus of Poxviridae. |
Orthopoxvirus variola infection of Cynomys ludovicianus (North American Black tailed prairie dog)
Carroll DS , Olson VA , Smith SK , Braden ZH , Patel N , Abel J , Li Y , Damon IK , Karem KL . Virology 2013 443 (2) 358-62 Since the eradication of Smallpox, researchers have attempted to study Orthopoxvirus pathogenesis and immunity in animal models in order to correlate results human smallpox. A solely human pathogen, Orthopoxvirus variola fails to produce authentic smallpox illness in any other animal species tested to date. In 2003, an outbreak in the USA of Orthopoxvirus monkeypox, revealed the susceptibility of the North American black-tailed prairie dog (Cynomys ludovicianus) to infection and fulminate disease. Prairie dogs infected with Orthopoxvirus monkeypox present with a clinical scenario similar to ordinary smallpox, including prodrome, rash, and high mortality. This study examines if Black-tailed prairie dogs can become infected with O. variola and serve as a surrogate model for the study of human smallpox disease. Substantive evidence of infection is found in immunological seroconversion of animals to either intranasal or intradermal challenges with O. variola, but in the absence of overt illness. |
Unintentional transfer of vaccinia virus associated with smallpox vaccines: ACAM2000 (R) compared with Dryvax (R)
Tack DM , Karem KL , Montgomery JR , Collins L , Bryant-Genevier MG , Tiernan R , Cano M , Lewis P , Engler RJ , Damon IK , Reynolds MG . Hum Vaccin Immunother 2013 9 (7) 1489-96 BACKGROUND: Routine vaccination against smallpox (variola) ceased in the US in 1976. However, in 2002 limited coverage for military personnel and some healthcare workers was reinstituted. In March 2008, ACAM2000(R) replaced Dryvax(R) as the vaccine used in the United States against smallpox. Unintentional transfer of vaccinia virus from a vaccination site by autoinoculation or contact transmission, can have significant public health implications. We summarize unintentional virus transfer AEs associated with ACAM2000(R) since March 2008 and compare with Dryvax(R). RESULTS: We identified 309 reports for ACAM2000(R) with skin or ocular involvement, of which 93 were autoinoculation cases and 20 were contact transmission cases. The rate for reported cases of autoinoculation was 20.6 per 100,000 vaccinations and for contact transmission was 4.4 per 100,000 vaccinations. Eighteen contact transmission cases could be attributed to contact during a sporting activity (45%) or intimate contact (45%). Of the 113 unintentional transfer cases, 6 met the case definition for ocular vaccinia. The most common locations for all autoinoculation and contact cases were arm/elbow/shoulder (35/113; 31%) and face (24/113; 21%). METHODS: We reviewed 753 reports associated with smallpox in the Vaccine Adverse Event Reporting System and CDC Poxvirus consultation log, reported from March 2008 to August 2010. Reports were classified into categories based upon standard case definitions. CONCLUSION: Overall, unintentional transfer events for ACAM2000(R) and Dryvax(R) are similar. We recommend continued efforts to prevent transfer events and continuing education for healthcare providers focused on recognition of vaccinia lesions, proper sample collection, and laboratory testing to confirm diagnosis. |
Serologic evidence for circulating orthopoxviruses in peridomestic rodents from rural Uganda
Salzer JS , Carroll DS , Rwego IB , Li Y , Falendysz EA , Shisler JL , Karem KL , Damon IK , Gillespie TR . J Wildl Dis 2013 49 (1) 125-31 The prevalence of orthopoxviruses (OPXV) among wildlife, including monkeypox virus (MPXV), remains largely unknown. Outbreaks of human monkeypox in central Africa have been associated with hunting, butchering, and consuming infected forest animals, primarily rodents and primates. Monkeypox cases have not been reported in east Africa, where human contact with wildlife is more limited. Whether this lack of human disease is due to the absence of MPXV in rodents is unknown. However, testing of wildlife beyond the known geographic distribution of human cases of monkeypox has rarely been conducted, limiting our knowledge of the natural distribution of MPXV and other OPXV. To improve our understanding of the natural distribution of OPXV in Africa and related risks to public health, we conducted a serosurvey of peridomestic rodents (Rattus rattus) in and around traditional dwellings in Kabarole District, Uganda, from May 2008 to July 2008. We tested for OPXV antibody in areas free of human monkeypox. Sera from 41% of the R. rattus individuals sampled reacted to OPXV-specific proteins from multiple, purified OPXV samples, but did not react by enzyme-linked immunosorbent assay. The specific OPXV could not be identified because poxvirus DNA was undetectable in corresponding tissues. We conclude that an OPXV or a similar poxvirus is circulating among wild rodents in Uganda. With the known geographic range of OPXV in rodents now increased, factors that dictate OPXV prevalence and disease will be identified. |
Transmissibility of the monkeypox virus clades via respiratory transmission: investigation using the prairie dog-monkeypox virus challenge system
Hutson CL , Gallardo-Romero N , Carroll DS , Clemmons C , Salzer JS , Nagy T , Hughes CM , Olson VA , Karem KL , Damon IK . PLoS One 2013 8 (2) e55488 Monkeypox virus (MPXV) is endemic within Africa where it sporadically is reported to cause outbreaks of human disease. In 2003, an outbreak of human MPXV occurred in the US after the importation of infected African rodents. Since the eradication of smallpox (caused by an orthopoxvirus (OPXV) related to MPXV) and cessation of routine smallpox vaccination (with the live OPXV vaccinia), there is an increasing population of people susceptible to OPXV diseases. Previous studies have shown that the prairie dog MPXV model is a functional animal model for the study of systemic human OPXV illness. Studies with this model have demonstrated that infected animals are able to transmit the virus to naive animals through multiple routes of exposure causing subsequent infection, but were not able to prove that infected animals could transmit the virus exclusively via the respiratory route. Herein we used the model system to evaluate the hypothesis that the Congo Basin clade of MPXV is more easily transmitted, via respiratory route, than the West African clade. Using a small number of test animals, we show that transmission of viruses from each of the MPXV clade was minimal via respiratory transmission. However, transmissibility of the Congo Basin clade was slightly greater than West African MXPV clade (16.7% and 0% respectively). Based on these findings, respiratory transmission appears to be less efficient than those of previous studies assessing contact as a mechanism of transmission within the prairie dog MPXV animal model. |
Detection of human monkeypox in the Republic of the Congo following intensive community education
Reynolds MG , Emerson GL , Pukuta E , Karhemere S , Muyembe JJ , Bikindou A , McCollum AM , Moses C , Wilkins K , Zhao H , Damon IK , Karem KL , Li Y , Carroll DS , Mombouli JV . Am J Trop Med Hyg 2013 88 (5) 982-985 Monkeypox is an acute viral infection with a clinical course resembling smallpox. It is endemic in northern and central Democratic Republic of the Congo (DRC), but it is reported only sporadically in neighboring Republic of the Congo (ROC). In October 2009, interethnic violence in northwestern DRC precipitated the movement of refugees across the Ubangi River into ROC. The influx of refugees into ROC heightened concerns about monkeypox in the area, because of the possibility that the virus could be imported, or that incidence could increase caused by food insecurity and over reliance on bush meat. As part of a broad-based campaign to improve health standards in refugee settlement areas, the United Nations International Children's Emergency Fund (UNICEF) sponsored a program of intensive community education that included modules on monkeypox recognition and prevention. In the 6 months immediately following the outreach, 10 suspected cases of monkeypox were reported to health authorities. Laboratory testing confirmed monkeypox virus infection in two individuals, one of whom was part of a cluster of four suspected cases identified retrospectively. Anecdotes collected at the time of case reporting suggest that the outreach campaign contributed to detection of suspected cases of monkeypox. |
Phylogenetic and ecologic perspectives of a monkeypox outbreak, southern Sudan, 2005.
Nakazawa Y , Emerson GL , Carroll DS , Zhao H , Li Y , Reynolds MG , Karem KL , Olson VA , Lash RR , Davidson WB , Smith SK , Levine RS , Regnery RL , Sammons SA , Frace MA , Mutasim EM , Karsani ME , Muntasir MO , Babiker AA , Opoka L , Chowdhary V , Damon IK . Emerg Infect Dis 2013 19 (2) 237-45 Identification of human monkeypox cases during 2005 in southern Sudan (now South Sudan) raised several questions about the natural history of monkeypox virus (MPXV) in Africa. The outbreak area, characterized by seasonally dry riverine grasslands, is not identified as environmentally suitable for MPXV transmission. We examined possible origins of this outbreak by performing phylogenetic analysis of genome sequences of MPXV isolates from the outbreak in Sudan and from differing localities. We also compared the environmental suitability of study localities for monkeypox transmission. Phylogenetically, the viruses isolated from Sudan outbreak specimens belong to a clade identified in the Congo Basin. This finding, added to the political instability of the area during the time of the outbreak, supports the hypothesis of importation by infected animals or humans entering Sudan from the Congo Basin, and person-to-person transmission of virus, rather than transmission of indigenous virus from infected animals to humans. |
Humoral immunity to smallpox vaccines and monkeypox virus challenge; proteomic assessment and clinical correlations
Townsend MB , Keckler MS , Patel N , Davies DH , Felgner P , Damon IK , Karem KL . J Virol 2012 87 (2) 900-11 Despite the eradication of smallpox, Orthopoxviruses (OPV) remain public health concerns. Efforts to develop new therapeutics and vaccines for smallpox continue through their evaluation in animal models despite limited understanding of the specific correlates of protective immunity. Recent monkeypox virus challenge studies have established the Black-Tailed Prairie Dog (Cynomys ludovicianus) as a model of human systemic OPV infections. In this study, we assess the induction of humoral immunity in humans and prairie dogs receiving Dryvax(R), ACAM2000(R), or IMVAMUNE(R) vaccines and characterize the proteomic profile of immune recognition using ELISA, neutralization assays and protein microarrays. We confirm anticipated similarities of antigenic protein targets of smallpox vaccine-induced responses in humans and prairie dogs and identify several differences. Subsequent monkeypox intranasal infection of vaccinated prairie dogs results in a significant boost in humoral immunity characterized by a shift in reactivity of increased intensity to a broader range of OPV proteins. This work provides evidence of similarities between the vaccine response in prairie dogs and humans, which enhance the value of the prairie dog model system as an OPV vaccination model and offers novel findings that form a framework for examining humoral immune response induced by systemic infection of orthopoxviruses. |
Evaluation of the Tetracore Orthopox BioThreat(R) antigen detection assay using laboratory grown orthopoxviruses and rash illness clinical specimens
Townsend MB , Macneil A , Reynolds MG , Hughes CM , Olson VA , Damon IK , Karem KL . J Virol Methods 2012 187 (1) 37-42 The commercially available Orthopox BioThreat((R)) Alert assay for orthopoxvirus (OPV) detection is piloted. This antibody-based lateral-flow assay labels and captures OPV viral agents to detect their presence. Serial dilutions of cultured Vaccinia virus (VACV) and Monkeypox virus (MPXV) were used to evaluate the sensitivity of the Tetracore assay by visual and quantitative determinations; specificity was assessed using a small but diverse set of diagnostically relevant blinded samples from viral lesions submitted for routine OPV diagnostic testing. The BioThreat((R)) Alert assay reproducibly detected samples at concentrations of 10(7)pfu/ml for VACV and MPXV and positively identified samples containing 10(6)pfu/ml in 4 of 7 independent experiments. The assay correctly identified 9 of 11 OPV clinical samples and had only one false positive when testing 11 non-OPV samples. Results suggest applicability for use of the BioThreat((R)) Alert assay as a rapid screening assay and point of care diagnosis for suspect human monkeypox cases. |
The pox in the North American backyard: Volepox virus pathogenesis in California mice (Peromyscus californicus)
Gallardo-Romero NF , Drew CP , Weiss SL , Metcalfe MG , Nakazawa YJ , Smith SK , Emerson GL , Hutson CL , Salzer JS , Bartlett JH , Olson VA , Clemmons CJ , Davidson WB , Zaki SR , Karem KL , Damon IK , Carroll DS . PLoS One 2012 7 (8) e43881 Volepox virus (VPXV) was first isolated in 1985 from a hind foot scab of an otherwise healthy California vole (Microtus californicus). Subsequent surveys in San Mateo County, CA, revealed serological evidence suggesting that VPXV is endemic to this area, and a second viral isolate from a Pinyon mouse (Peromyscus truei) was collected in 1988. Since then, few studies have been conducted regarding the ecology, pathology, and pathogenicity of VPXV, and its prevalence and role as a potential zoonotic agent remain unknown. To increase our understanding of VPXV disease progression, we challenged 24 California mice (Peromyscus californicus) intranasally with 1.6x10(3) PFU of purified VPXV. By day five post infection (pi) we observed decreased activity level, conjunctivitis, ruffled hair, skin lesions, facial edema, and crusty noses. A mortality rate of 54% was noted by day eight pi. In addition, internal organ necrosis and hemorrhages were observed during necropsy of deceased or euthanized animals. Viral loads in tissues (brain, gonad, kidney, liver, lung, spleen, submandibular lymph node, and adrenal gland), bodily secretions (saliva, and tears), and excretions (urine, and/or feces) were evaluated and compared using real time-PCR and tissue culture. Viral loads measured as high as 2x10(9) PFU/mL in some organs. Our results suggest that VPXV can cause extreme morbidity and mortality within rodent populations sympatric with the known VPXV reservoirs. |
Progressive vaccinia: case description and laboratory-guided therapy with vaccinia immune globulin, ST-246 and CMX001
Lederman ER , Davidson W , Groff HL , Smith SK , Warkentien T , Li Y , Wilkins KA , Karem KL , Akondy RS , Ahmed R , Frace M , Shieh WJ , Zaki S , Hruby DE , Painter WP , Bergman KL , Cohen JI , Damon IK . J Infect Dis 2012 206 (9) 1372-85 Progressive vaccinia (PV) is a rare but potentially lethal complication which develops in smallpox vaccine recipients with severely impaired cellular immunity. We report a patient with PV requiring treatment with vaccinia immune globulin and who received two investigational agents, ST-246 and CMX001. We describe the various molecular, pharmacokinetic, and immunologic studies which provided guidance to escalate and then successfully discontinue therapy. Despite development of resistance to ST-246 during treatment, the patient had resolution of his PV. This case demonstrates the need for continued development of novel anti-orthopoxvirus pharmaceuticals and the importance of both intensive and timely clinical and laboratory support in management of PV. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure