Last data update: Oct 15, 2024. (Total: 47902 publications since 2009)
Records 1-30 (of 84 Records) |
Query Trace: Gubareva LV[original query] |
---|
Antiviral susceptibility of swine-origin influenza a viruses isolated from humans, United States
Gao R , Pascua PNQ , Chesnokov A , Nguyen HT , Uyeki TM , Mishin VP , Zanders N , Cui D , Jang Y , Jones J , La Cruz J , Di H , Davis CT , Gubareva LV . Emerg Infect Dis 2024 30 (11) Since 2013, a total of 167 human infections with swine-origin (variant) influenza A viruses of A(H1N1)v, A(H1N2)v, and A(H3N2)v subtypes have been reported in the United States. Analysis of 147 genome sequences revealed that nearly all had S31N substitution, an M2 channel blocker-resistance marker, whereas neuraminidase inhibitor-resistance markers were not found. Two viruses had a polymerase acidic substitution (I38M or E199G) associated with decreased susceptibility to baloxavir, an inhibitor of viral cap-dependent endonuclease (CEN). Using phenotypic assays, we established subtype-specific susceptibility baselines for neuraminidase and CEN inhibitors. When compared with either baseline or CEN-sequence-matched controls, only the I38M substitution decreased baloxavir susceptibility, by 27-fold. Human monoclonal antibodies FI6v3 and CR9114 targeting the hemagglutinin's stem showed variable (0.03 to >10 µg/mL) neutralizing activity toward variant viruses, even within the same clade. Methodology and interpretation of laboratory data described in this study provide information for risk assessment and decision-making on therapeutic control measures. |
Multicountry spread of influenza A(H1N1)pdm09 viruses with reduced oseltamivir inhibition, May 2023-February 2024
Patel MC , Nguyen HT , Pascua PNQ , Gao R , Steel J , Kondor RJ , Gubareva LV . Emerg Infect Dis 2024 30 (7) 1410-1415 Since May 2023, a novel combination of neuraminidase mutations, I223V + S247N, has been detected in influenza A(H1N1)pdm09 viruses collected in countries spanning 5 continents, mostly in Europe (67/101). The viruses belong to 2 phylogenetically distinct groups and display ≈13-fold reduced inhibition by oseltamivir while retaining normal susceptibility to other antiviral drugs. |
Influenza C virus susceptibility to antivirals with different mechanisms of action
Chesnokov A , Ivashchenko AA , Matsuzaki Y , Takashita E , Mishin VP , Ivachtchenko AV , Gubareva LV . Antimicrob Agents Chemother 2024 e0172723 Antiviral susceptibility of influenza viruses was assessed using a high-content imaging-based neutralization test. Cap-dependent endonuclease inhibitors, baloxavir and AV5116, were superior to AV5115 against type A viruses, and AV5116 was most effective against PA mutants tested. However, these three inhibitors displayed comparable activity (EC(50) 8-22 nM) against type C viruses from six lineages. Banana lectin and a monoclonal antibody, YA3, targeting the hemagglutinin-esterase protein effectively neutralized some, but not all, type C viruses. |
New insights into the neuraminidase-mediated hemagglutination activity of influenza A(H3N2) viruses
Gao R , Pascua PNQ , Nguyen HT , Chesnokov A , Champion C , Mishin VP , Wentworth DE , Gubareva LV . Antiviral Res 2023 218 105719 Influenza virus neuraminidase (NA) can act as a receptor-binding protein, a role commonly attributed to hemagglutinin (HA). In influenza A(H3N2) viruses, three NA amino acid residues have previously been associated with NA-mediated hemagglutination: T148, D151, and more recently, H150. These residues are part of the 150-loop of the NA monomer. Substitutions at 148 and 151 arise from virus propagation in laboratory cell cultures, whereas changes at 150 occurred during virus evolution in the human host. In this study, we examined the effect of natural amino acid polymorphism at position 150 on NA-mediated hemagglutination. Using the A/Puerto Rico/8/34 backbone, we generated a comprehensive panel of recombinant A(H3N2) viruses that have different NAs but shared an HA that displays poor binding to red blood cells (RBCs). None of the tested substitutions at 150 (C, H, L, R, and S) promoted NA-binding. However, we identified two new determinants of NA-binding, Q136K and T439R, that emerged during virus culturing. Similar to T148I, both Q136K and T439R reduced NA enzyme activity by 48-86% and inhibition (14- to 173-fold) by the NA inhibitor zanamivir. NA-binding was observed when a virus preparation contained approximately 10% of NA variants with either T148I or T439R, highlighting the benefit of using deep sequencing in virus characterization. Taken together, our findings provide new insights into the molecular mechanisms underlying the ability of NA to function as a binding protein. Information gained may aid in the design of new and improved NA-targeting antivirals. |
Antiviral susceptibility of clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses isolated from birds and mammals in the United States, 2022
Nguyen HT , Chesnokov A , De La Cruz J , Pascua PNQ , Mishin VP , Jang Y , Jones J , Di H , Ivashchenko AA , Killian ML , Torchetti MK , Lantz K , Wentworth DE , Davis CT , Ivachtchenko AV , Gubareva LV . Antiviral Res 2023 217 105679 Clade 2.3.4.4 b highly pathogenic avian influenza (HPAI) A (H5N1) viruses that are responsible for devastating outbreaks in birds and mammals pose a potential threat to public health. Here, we evaluated their susceptibility to influenza antivirals. Of 1015 sequences of HPAI A (H5N1) viruses collected in the United States during 2022, eight viruses (∼0.8%) had a molecular marker of drug resistance to an FDA-approved antiviral: three adamantane-resistant (M2-V27A), four oseltamivir-resistant (NA-H275Y), and one baloxavir-resistant (PA-I38T). Additionally, 31 viruses contained mutations that may reduce susceptibility to inhibitors of neuraminidase (NA) (n = 20) or cap-dependent endonuclease (CEN) (n = 11). A panel of 22 representative viruses was tested phenotypically. Overall, clade 2.3.4.4 b A (H5N1) viruses lacking recognized resistance mutations were susceptible to FDA-approved antivirals. Oseltamivir was least potent at inhibiting NA activity, while the investigational NA inhibitor AV5080 was most potent, including against NA mutants. A novel NA substitution T438N conferred 12-fold reduced inhibition by zanamivir, and in combination with the known marker N295S, synergistically affected susceptibility to all five NA inhibitors. In cell culture-based assays HINT and IRINA, the PA-I38T virus displayed 75- to 108-fold and 37- to 78-fold reduced susceptibility to CEN inhibitors baloxavir and investigational AV5116, respectively. Viruses with PA-I38M or PA-A37T showed 5- to 10-fold reduced susceptibilities. As HPAI A (H5N1) viruses continue to circulate and evolve, close monitoring of drug susceptibility is needed for risk assessment and to inform decisions regarding antiviral stockpiling. |
An optimized cell-based assay to assess influenza virus replication by measuring neuraminidase activity and its applications for virological surveillance
Patel MC , Flanigan D , Feng C , Chesnokov A , Nguyen HT , Elal AA , Steel J , Kondor RJ , Wentworth DE , Gubareva LV , Mishin VP . Antiviral Res 2022 208 105457 Year-round virological characterization of circulating epidemic influenza viruses is conducted worldwide to detect the emergence of viruses that may escape pre-existing immunity or acquire resistance to antivirals. High throughput phenotypic assays are needed to complement the sequence-based analysis of circulating viruses and improve pandemic preparedness. The recent entry of a polymerase inhibitor, baloxavir, into the global market further highlighted this need. Here, we optimized a cell-based assay that considerably streamlines antiviral and antigenic testing by replacing lengthy immunostaining and imaging procedures used in current assay with measuring the enzymatic activity of nascent neuraminidase (NA) molecules expressed on the surface of virus-infected cells. For convenience, this new assay was named IRINA (Influenza Replication Inhibition Neuraminidase-based Assay). IRINA was successfully validated to assess inhibitory activity of baloxavir on virus replication by testing a large set (>150) of influenza A and B viruses, including drug resistant strains and viruses collected during 2017-2022. To test its versatility, IRINA was utilized to evaluate neutralization activity of a broadly reactive human anti-HA monoclonal antibody, FI6, and post-infection ferret antisera, as well as the inhibition of NA enzyme activity by NA inhibitors. Performance of IRINA was tested in parallel using respective conventional assays. IRINA offers an attractive alternative to current phenotypic assays, while maintaining reproducibility and high throughput capacity. Additionally, the improved turnaround time may prove to be advantageous when conducting time sensitive studies, such as investigating a new virus outbreak. This assay can meet the needs of surveillance laboratories by providing a streamlined and cost-effective approach for virus characterization. |
Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018-2020.
Govorkova EA , Takashita E , Daniels RS , Fujisaki S , Presser LD , Patel MC , Huang W , Lackenby A , Nguyen HT , Pereyaslov D , Rattigan A , Brown SK , Samaan M , Subbarao K , Wong S , Wang D , Webby RJ , Yen HL , Zhang W , Meijer A , Gubareva LV . Antiviral Res 2022 200 105281 Global analysis of the susceptibility of influenza viruses to neuraminidase (NA) inhibitors (NAIs) and the polymerase acidic (PA) inhibitor (PAI) baloxavir was conducted by five World Health Organization Collaborating Centres for Reference and Research on Influenza during two periods (May 2018-May 2019 and May 2019-May 2020). Combined phenotypic and NA sequence-based analysis revealed that the global frequency of viruses displaying reduced or highly reduced inhibition (RI or HRI) or potential to show RI/HRI by NAIs remained low, 0.5% (165/35045) and 0.6% (159/26010) for the 2018-2019 and 2019-2020 periods, respectively. The most common amino acid substitution was NA-H275Y (N1 numbering) conferring HRI by oseltamivir and peramivir in A(H1N1)pdm09 viruses. Combined phenotypic and PA sequence-based analysis showed that the global frequency of viruses showing reduced susceptibility to baloxavir or carrying substitutions associated with reduced susceptibility was low, 0.5% (72/15906) and 0.1% (18/15692) for the 2018-2019 and 2019-2020 periods, respectively. Most (n = 61) of these viruses had I38→T/F/M/S/L/V PA amino acid substitutions. In Japan, where baloxavir use was highest, the rate was 4.5% (41/919) in the 2018-2019 period and most of the viruses (n = 32) had PA-I38T. Zoonotic viruses isolated from humans (n = 32) in different countries did not contain substitutions in NA associated with NAI RI/HRI phenotypes. One A(H5N6) virus had a dual substitution PA-I38V + PA-E199G, which may reduce susceptibility to baloxavir. Therefore, NAIs and baloxavir remain appropriate choices for the treatment of influenza virus infections, but close monitoring of antiviral susceptibility is warranted. |
Influenza polymerase inhibitor resistance: Assessment of the current state of the art - A report of the isirv Antiviral group.
Ison MG , Hayden FG , Hay AJ , Gubareva LV , Govorkova EA , Takashita E , McKimm-Breschkin JL . Antiviral Res 2021 194 105158 It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2. |
Cluster of Oseltamivir-Resistant and Hemagglutinin Antigenically Drifted Influenza A(H1N1)pdm09 Viruses, Texas, USA, January 2020
Mohan T , Nguyen HT , Kniss K , Mishin VP , Merced-Morales AA , Laplante J , St George K , Blevins P , Chesnokov A , De La Cruz JA , Kondor R , Wentworth DE , Gubareva LV . Emerg Infect Dis 2021 27 (7) 1953-1957 Four cases of oseltamivir-resistant influenza A(H1N1)pdm09 virus infection were detected among inhabitants of a border detention center in Texas, USA. Hemagglutinin of these viruses belongs to 6B.1A5A-156K subclade, which may enable viral escape from preexisting immunity. Our finding highlights the necessity to monitor both drug resistance and antigenic drift of circulating viruses. |
Susceptibility of widely diverse influenza a viruses to PB2 polymerase inhibitor pimodivir.
Patel MC , Chesnokov A , Jones J , Mishin VP , De La Cruz JA , Nguyen HT , Zanders N , Wentworth DE , Davis TC , Gubareva LV . Antiviral Res 2021 188 105035 Pimodivir exerts an antiviral effect on the early stages of influenza A virus replication by inhibiting the cap-binding function of polymerase basic protein 2 (PB2). In this study, we used a combination of sequence analysis and phenotypic methods to evaluate pimodivir susceptibility of influenza A viruses collected from humans and other hosts. Screening PB2 sequences for substitutions previously associated with reduced pimodivir susceptibility revealed a very low frequency among seasonal viruses circulating in the U.S. during 2015-2020 (<0.01%; 3/11,934) and among non-seasonal viruses collected in various countries during the same period (0.2%; 18/8971). Pimodivir potently inhibited virus replication in two assays, a single-cycle HINT and a multi-cycle FRA, with IC(50) values in a nanomolar range. Median IC(50) values determined by HINT were similar for both subtypes of seasonal viruses, A (H1N1)pdm09 and A (H3N2), across three seasons. Human seasonal viruses with PB2 substitutions S324C, S324R, or N510K displayed a 27-317-fold reduced pimodivir susceptibility. In addition, pimodivir was effective at inhibiting replication of a diverse group of animal-origin viruses that have pandemic potential, including avian viruses of A (H5N6) and A (H7N9) subtypes. A rare PB2 substitution H357N was identified in an A (H4N2) subtype poultry virus that displayed >100-fold reduced pimodivir susceptibility. Our findings demonstrate a broad inhibitory activity of pimodivir and expand the existing knowledge of amino acid substitutions that can reduce susceptibility to this investigational antiviral. |
Detection of baloxavir resistant influenza A viruses using next generation sequencing and pyrosequencing methods.
Patel MC , Mishin VP , De La Cruz JA , Chesnokov A , Nguyen HT , Wilson MM , Barnes J , Kondor RJG , Wentworth DE , Gubareva LV . Antiviral Res 2020 182 104906 Baloxavir, a new antiviral drug targeting cap-dependent endonuclease activity of polymerase acidic (PA) protein of influenza viruses, is now approved in multiple countries. Several substitutions at isoleucine 38 in PA protein (e.g., PA-I38T) have been associated with decreased baloxavir susceptibility in vitro and in vivo. In recent years, next generation sequencing (NGS) analysis and pyrosequencing have been used by CDC and U.S. Public Health Laboratories to monitor drug susceptibility of influenza viruses. Here we described an improved pyrosequencing assay for detecting influenza A viruses carrying substitutions at PA-38. Cyclic and customized orders of nucleotide dispensation were evaluated, and pyrosequencing results were compared to those generated using NGS. Our data showed that the customized nucleotide dispensation has improved the pyrosequencing assay performance in identification of double mixtures (e.g., PA-38I/T); however, identification of PA-38 variants in triple mixtures remains a challenge. While NGS analysis indicated the presence of PA-I38K in one clinical specimen and isolate, our attempts to detect this mutation by pyrosequencing or recover the virus carrying PA-I38K in cell culture were unsuccessful, raising a possibility of a rarely occurring sequencing error. Overall, pyrosequencing provides a convenient means to detect baloxavir resistant influenza viruses when NGS is unavailable or a faster turnaround time is required. |
Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2017-2018.
Takashita E , Daniels RS , Fujisaki S , Gregory , Gubareva LV , Huang W , Hurt AC , Lackenby A , Nguyen HT , Pereyaslov D , Roe M , Samaan M , Subbarao K , Tse H , Wang D , Yen H-L , Zhang W , Meijer A . Antiviral Res 2020 175 104718-104718 The global analysis of neuraminidase inhibitor (NAI) susceptibility of influenza viruses has been conducted since the 2012-13 period. In 2018 a novel cap-dependent endonuclease inhibitor, baloxavir, that targets polymerase acidic subunit (PA) was approved for the treatment of influenza virus infection in Japan and the United States. For this annual report, the susceptibilities of influenza viruses to NAIs and baloxavir were analyzed. A total of 15409 viruses, collected by World Health Organization (WHO) recognized National Influenza Centers and other laboratories between May 2017 and May 2018, were assessed for phenotypic NAI susceptibility by five WHO Collaborating Centers (CCs). The 50% inhibitory concentration (IC(50)) was determined for oseltamivir, zanamivir, peramivir and laninamivir. Reduced inhibition (RI) or highly reduced inhibition (HRI) by one or more NAIs was exhibited by 0.8% of viruses tested (n = 122). The frequency of viruses with RI or HRI has remained low since this global analysis began (2012-13: 0.6%; 2013-14: 1.9%; 2014-15: 0.5%; 2015-16: 0.8%; 2016-17: 0.2%). PA gene sequence data, available from public databases (n = 13523), were screened for amino acid substitutions associated with reduced susceptibility to baloxavir (PA E23G/K/R, PA A36V, PA A37T, PA I38F/M/T/L, PA E119D, PA E199G): 11 (0.08%) viruses possessed such substitutions. Five of them were included in phenotypic baloxavir susceptibility analysis by two WHO CCs and IC(50) values were determined. The PA variant viruses showed 6-17-fold reduced susceptibility to baloxavir. Overall, in the 2017-18 period the frequency of circulating influenza viruses with reduced susceptibility to NAIs or baloxavir was low, but continued monitoring is important. |
Susceptibility of influenza A, B, C, and D viruses to Baloxavir
Mishin VP , Patel MC , Chesnokov A , De La Cruz J , Nguyen HT , Lollis L , Hodges E , Jang Y , Barnes J , Uyeki T , Davis CT , Wentworth DE , Gubareva LV . Emerg Infect Dis 2019 25 (10) 1969-1972 Baloxavir showed broad-spectrum in vitro replication inhibition of 4 types of influenza viruses (90% effective concentration range 1.2-98.3 nmol/L); susceptibility pattern was influenza A > B > C > D. This drug also inhibited influenza A viruses of avian and swine origin, including viruses that have pandemic potential and those resistant to neuraminidase inhibitors. |
Replicative fitness of seasonal influenza A viruses with decreased susceptibility to baloxavir
Chesnokov A , Patel MC , Mishin VP , De La Cruz JA , Lollis L , Nguyen HT , Dugan V , Wentworth DE , Gubareva LV . J Infect Dis 2019 221 (3) 367-371 Susceptibility of influenza A viruses to baloxavir can be affected by changes at amino acid residue 38 in polymerase acidic (PA) protein. Information on replicative fitness of PA-I38-substituted viruses remains sparse. We demonstrated that substitutions I38L/M/S/T not only had a differential effect on baloxavir susceptibility (9- to 116-fold), but also on in vitro replicative fitness. While I38L conferred undiminished growth, other substitutions led to mild attenuation. In a ferret model, control viruses outcompeted those carrying I38M or I38T substitutions, although their advantage was limited. These findings offer insights into the attributes of baloxavir resistant viruses needed for informed risk assessment. |
Baloxavir and treatment-emergent resistance: Public health insights and next steps
Gubareva LV , Fry AM . J Infect Dis 2019 221 (3) 337-339 Drug resistance is a topic of significant concern in the treatment of infectious diseases caused by rapidly evolving RNA viruses that can persist (eg, human immunodeficiency virus and hepatitis C virus) or reinfect (eg, influenza virus). Combination drug therapy is standard of care for the treatment of infections by rapidly mutating RNA viruses [1, 2]. However, it is not a common approach for treating influenza virus infections, partly because of the limited number of anti-influenza drugs and drug targets. We now know that all of the classes of anti-influenza drugs—M2 blockers, neuraminidase inhibitors (NAIs), and the newly licensed cap-dependent endonuclease inhibitor (baloxavir marboxil)—have low genetic barriers to resistance: 1 or 2 amino acid substitutions are sufficient to gain resistance [3, 4]. |
Detection of oseltamivir-resistant zoonotic and animal influenza A viruses using the rapid influenza antiviral resistance test.
Hodges EN , Mishin VP , De la Cruz J , Guo Z , Nguyen HT , Fallows E , Stevens J , Wentworth DE , Davis CT , Gubareva LV . Influenza Other Respir Viruses 2019 13 (5) 522-7 Mutations in the influenza virus neuraminidase (NA) that cause reduced susceptibility to the NA inhibitor (NAI) oseltamivir may occur naturally or following antiviral treatment. Currently, detection uses either a traditional NA inhibition assay or gene sequencing to identify known markers associated with reduced inhibition by oseltamivir. Both methods are laborious and require trained personnel. The influenza antiviral resistance test (iART), a prototype system developed by Becton, Dickinson and Company for research use only, offers a rapid and simple method to identify such viruses. This study investigated application of iART to influenza A viruses isolated from non-human hosts with a variety of NA subtypes (N1-N9). |
Insights into the antigenic advancement of influenza A(H3N2) viruses, 2011-2018.
Jorquera PA , Mishin VP , Chesnokov A , Nguyen HT , Mann B , Garten R , Barnes J , Hodges E , De La Cruz J , Xu X , Katz J , Wentworth DE , Gubareva LV . Sci Rep 2019 9 (1) 2676 Influenza A(H3N2) viruses evade human immunity primarily by acquiring antigenic changes in the haemagglutinin (HA). HA receptor-binding features of contemporary A(H3N2) viruses hinder traditional antigenic characterization using haemagglutination inhibition and promote selection of HA mutants. Thus, alternative approaches are needed to reliably assess antigenic relatedness between circulating viruses and vaccines. We developed a high content imaging-based neutralization test (HINT) to reduce antigenic mischaracterization resulting from virus adaptation to cell culture. Ferret reference antisera were raised using clinical specimens containing viruses representing recent vaccine strains. Analysis of viruses circulating during 2011-2018 showed that gain of an N158-linked glycosylation in HA was a molecular determinant of antigenic distancing between A/Hong Kong/4801/2014-like (clade 3C.2a) and A/Texas/50/2012-like viruses (clade 3C.1), while multiple evolutionary HA F193S substitution were linked to antigenic distancing from A/Switzerland/97152963/2013-like (clade 3C.3a) and further antigenic distancing from A/Texas/50/2012-like viruses. Additionally, a few viruses carrying HA T135K and/or I192T showed reduced neutralization by A/Hong Kong/4801/2014-like antiserum. Notably, this technique elucidated the antigenic characteristics of clinical specimens, enabling direct characterization of viruses produced in vivo, and eliminating in vitro culture, which rapidly alters the genotype/phenotype. HINT is a valuable new antigenic analysis tool for vaccine strain selection. |
Assessing baloxavir susceptibility of influenza viruses circulating in the United States during the 2016/17 and 2017/18 seasons
Gubareva LV , Mishin VP , Patel MC , Chesnokov A , Nguyen HT , De La Cruz J , Spencer S , Campbell AP , Sinner M , Reid H , Garten R , Katz JM , Fry AM , Barnes J , Wentworth DE . Euro Surveill 2019 24 (3) The anti-influenza therapeutic baloxavir targets cap-dependent endonuclease activity of polymerase acidic (PA) protein. We monitored baloxavir susceptibility in the United States with next generation sequencing analysis supplemented by phenotypic one-cycle infection assay. Analysis of PA sequences of 6,891 influenza A and B viruses collected during 2016/17 and 2017/18 seasons showed amino acid substitutions: I38L (two A(H1N1)pdm09 viruses), E23G (two A(H1N1)pdm09 viruses) and I38M (one A(H3N2) virus); conferring 4-10-fold reduced susceptibility to baloxavir. |
Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016-2017
Lackenby A , Besselaar TG , Daniels RS , Fry A , Gregory V , Gubareva LV , Huang W , Hurt AC , Leang SK , Lee RTC , Lo J , Lollis L , Maurer-Stroh S , Odagiri T , Pereyaslov D , Takashita E , Wang D , Zhang W , Meijer A . Antiviral Res 2018 157 38-46 A total of 13672 viruses, collected by World Health Organization recognised National Influenza Centres between May 2016 and May 2017, were assessed for neuraminidase inhibitor susceptibility by four WHO Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance Epidemiology and Control of Influenza. The 50% inhibitory concentration (IC50) was determined for oseltamivir and zanamivir for all viruses, and for peramivir and laninamivir in a subset (n=8457). Of the viruses tested, 94% were obtained from the Western Pacific, Americas and European WHO regions, while limited viruses were available from the Eastern Mediterranean, African and South East Asian regions. Reduced inhibition (RI) by one or more neuraminidase inhibitor was exhibited by 0.2% of viruses tested (n=32). The frequency of viruses with RI has remained low since this global analysis began (2015/16: 0.8%, 2014/15: 0.5%; 2013/14: 1.9%; 2012/13: 0.6%) but 2016/17 has the lowest frequency observed to date. Analysis of 13581 neuraminidase sequences retrieved from public databases, of which 5243 sequences were from viruses not included in the phenotypic analyses, identified 58 further viruses (29 without phenotypic analyses) with amino acid substitutions associated with RI by at least one neuraminidase inhibitor. Bringing the total proportion to 0.5% (90/18915). This 2016/17 analysis demonstrates that neuraminidase inhibitors remain suitable for treatment and prophylaxis of influenza virus infections, but continued monitoring is important. An expansion of surveillance testing is paramount since several novel influenza antivirals are in late stage clinical trials with some resistance already having been identified. |
Quantification of Influenza Neuraminidase Activity by Ultra-High Performance Liquid Chromatography and Isotope Dilution Mass Spectrometry
Solano MI , Woolfitt AR , Williams TL , Pierce CL , Gubareva LV , Mishin V , Barr JR . Anal Chem 2017 89 (5) 3130-3137 Mounting evidence suggests that neuraminidase's functionality extends beyond its classical role in influenza virus infection and that antineuraminidase antibodies offer protective immunity. Therefore, a renewed interest in the development of neuraminidase (NA)-specific methods to characterize the glycoprotein and evaluate potential advantages for NA standardization in influenza vaccines has emerged. NA displays sialidase activity by cleaving off the terminal N-acetylneuraminic acid on α-2,3 or α-2,6 sialic acid containing receptors of host cells. The type and distribution of these sialic acid containing receptors is considered to be an important factor in transmission efficiency of influenza viruses between and among host species. Changes in hemagglutinin (HA) binding and NA specificity in reassortant viruses may be related to the emergence of new and potentially dangerous strains of influenza. Current methods to investigate neuraminidase activity use small derivatized sugars that are poor models for natural glycoprotein receptors and do not provide information on the linkage specificity. Here, a novel approach for rapid and accurate quantification of influenza neuraminidase activity is achieved utilizing ultra-high performance liquid chromatography (UPLC) and isotope dilution mass spectrometry (IDMS). Direct LC-MS/MS quantification of NA-released sialic acid provides precise measurement of influenza neuraminidase activity over a range of substrates. The method provides exceptional sensitivity and specificity with a limit of detection of 0.38 μM for sialic acid and the capacity to obtain accurate measurements of specific enzyme activity preference toward α-2,3-sialyllactose linkages, α-2,6-sialyllactose linkages, or whole glycosylated proteins such as fetuin. |
The Household Influenza Vaccine Effectiveness Study: Lack of antibody response and protection following receipt of 2014-2015 influenza vaccine
Petrie JG , Malosh RE , Cheng CK , Ohmit SE , Martin ET , Johnson E , Truscon R , Eichelberger MC , Gubareva LV , Fry AM , Monto AS . Clin Infect Dis 2017 65 (10) 1644-1651 Background: Antigenically drifted A(H3N2) viruses circulated extensively during the 2014-2015 influenza season. Vaccine effectiveness (VE) was low and not significant among outpatients but in a hospitalized population was 43%. At least one study paradoxically observed increased A(H3N2) infection among those vaccinated 3 consecutive years. Methods: We followed a cohort of 1341 individuals from 340 households. VE against laboratory-confirmed influenza was estimated. Hemagglutination-inhibition and neuraminidase-inhibition antibody titers were determined in subjects ≥13 years. Results: Influenza A(H3N2) was identified in 166 (12%) individuals and B(Yamagata) in 34 (2%). VE against A(H3N2) was -3% (95% confidence interval [CI]: -55%, 32%) and similarly ineffective between age groups; increased risk of infection was not observed among those vaccinated in 2 or 3 previous years. VE against influenza B(Yamagata) was 57% (95% CI: -3%, 82%) but only significantly protective in children <9 years (87% [95% CI: 43%, 97%]). Less than 20% of older children and adults had ≥4-fold antibody titer rise against influenza A(H3N2) and B antigens following vaccination; responses were surprisingly similar for antigens included in the vaccine and those similar to circulating viruses. Antibody against A/Hong Kong/4801/14, similar to circulating 2014-2015 A(H3N2) viruses and included in the 2016-2017 vaccine, did not significantly predict protection. Conclusions: Absence of VE against A(H3N2) was consistent with circulation of antigenically drifted viruses; however, generally limited antibody response following vaccination is concerning even in the context of antigenic mismatch. Although 2014-2015 vaccines were not effective in preventing A(H3N2) infection, no increased susceptibility was detected among the repeatedly vaccinated. |
Drug Susceptibility Evaluation of an Influenza A(H7N9) Virus by Analyzing Recombinant Neuraminidase Proteins.
Gubareva LV , Sleeman K , Guo Z , Yang H , Hodges E , Davis CT , Baranovich T , Stevens J . J Infect Dis 2017 216 S566-s574 Background: Neuraminidase (NA) inhibitors are the recommended antiviral medications for influenza treatment. However, their therapeutic efficacy can be compromised by NA changes that emerge naturally and/or following antiviral treatment. Knowledge of which molecular changes confer drug resistance of influenza A(H7N9) viruses (group 2NA) remains sparse. Methods: Fourteen amino acid substitutions were introduced into the NA of A/Shanghai/2/2013(H7N9). Recombinant N9 (recN9) proteins were expressed in a baculovirus system in insect cells and tested using the Centers for Disease Control and Prevention standardized NA inhibition (NI) assay with oseltamivir, zanamivir, peramivir, and laninamivir. The wild-type N9 crystal structure was determined in complex with oseltamivir, zanamivir, or sialic acid, and structural analysis was performed. Results: All substitutions conferred either reduced or highly reduced inhibition by at least 1 NA inhibitor; half of them caused reduced inhibition or highly reduced inhibition by all NA inhibitors. R292K conferred the highest increase in oseltamivir half-maximal inhibitory concentration (IC50), and E119D conferred the highest zanamivir IC50. Unlike N2 (another group 2NA), H274Y conferred highly reduced inhibition by oseltamivir. Additionally, R152K, a naturally occurring variation at the NA catalytic residue of A(H7N9) viruses, conferred reduced inhibition by laninamivir. Conclusions: The recNA method is a valuable tool for assessing the effect of NA changes on drug susceptibility of emerging influenza viruses. |
Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2015-2016
Gubareva LV , Besselaar TG , Daniels RS , Fry A , Gregory V , Huang W , Hurt AC , Jorquera PA , Lackenby A , Leang SK , Lo J , Pereyaslov D , Rebelo-de-Andrade H , Siqueira MM , Takashita E , Odagiri T , Wang D , Zhang W , Meijer A . Antiviral Res 2017 146 12-20 Four World Health Organization (WHO) Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance, Epidemiology and Control of Influenza (WHO CCs) assessed antiviral susceptibility of 14,330 influenza A and B viruses collected by WHO-recognized National Influenza Centres (NICs) between May 2015 and May 2016. Neuraminidase (NA) inhibition assay was used to determine 50% inhibitory concentration (IC50) data for NA inhibitors (NAIs) oseltamivir, zanamivir, peramivir and laninamivir. Furthermore, NA sequences from 13,484 influenza viruses were retrieved from public sequence databases and screened for amino acid substitutions (AAS) associated with reduced inhibition (RI) or highly reduced inhibition (HRI) by NAIs. Of the viruses tested by WHO CCs 93% were from three WHO regions: Western Pacific, the Americas and Europe. Approximately 0.8% (n = 113) exhibited either RI or HRI by at least one of four NAIs. As in previous seasons, the most common NA AAS was H275Y in A(H1N1)pdm09 viruses, which confers HRI by oseltamivir and peramivir. Two A(H1N1)pdm09 viruses carried a rare NA AAS, S247R, shown in this study to confer RI/HRI by the four NAIs. The overall frequency of A(H1N1)pdm09 viruses containing NA AAS associated with RI/HRI was approximately 1.8% (125/6915), which is slightly higher than in the previous 2014-15 season (0.5%). Three B/Victoria-lineage viruses contained a new AAS, NA H134N, which conferred HRI by zanamivir and laninamivir, and borderline HRI by peramivir. A single B/Victoria-lineage virus harboured NA G104E, which was associated with HRI by all four NAIs. The overall frequency of RI/HRI phenotype among type B viruses was approximately 0.6% (43/7677), which is lower than that in the previous season. Overall, the vast majority (>99%) of the viruses tested by WHO CCs were susceptible to all four NAIs, showing normal inhibition (NI). Hence, NAIs remain the recommended antivirals for treatment of influenza virus infections. Nevertheless, our data indicate that it is prudent to continue drug susceptibility monitoring using both NAI assay and sequence analysis. |
Monitoring influenza virus susceptibility to oseltamivir using a new rapid assay, iART
Gubareva LV , Fallows E , Mishin VP , Hodges E , Brooks A , Barnes J , Fry AM , Kramp W , Shively R , Wentworth DE , Weidemaier K , Jacobson R . Euro Surveill 2017 22 (18) A new rapid assay for detecting oseltamivir resistance in influenza virus, iART, was used to test 149 clinical specimens. Results were obtained for 132, with iART indicating 41 as 'resistant'. For these, sequence analysis found known and suspected markers of oseltamivir resistance, while no such markers were detected for the remaining 91 samples. Viruses isolated from the 41 specimens showed reduced or highly reduced inhibition by neuraminidase inhibition assay. iART may facilitate broader antiviral resistance testing. |
Antiviral drug-resistant influenza B viruses carrying H134N substitution in neuraminidase, Laos, February 2016
Baranovich T , Vongphrachanh P , Ketmayoon P , Sisouk T , Chomlasack K , Khanthamaly V , Nguyen HT , Mishin VP , Marjuki H , Barnes JR , Garten RJ , Stevens J , Wentworth DE , Gubareva LV . Emerg Infect Dis 2017 23 (4) 686-690 In February 2016, three influenza B/Victoria/2/87 lineage viruses exhibiting 4- to 158-fold reduced inhibition by neuraminidase inhibitors were detected in Laos. These viruses had an H134N substitution in the neuraminidase and replicated efficiently in vitro and in ferrets. Current antiviral drugs may be ineffective in controlling infections caused by viruses harboring this mutation. |
A Pyrosequencing-Based Approach to High-Throughput Identification of Influenza A(H3N2) Virus Clades Harboring Antigenic Drift Variants.
Mishin VP , Baranovich T , Garten R , Chesnokov A , Abd Elal AI , Adamczyk M , LaPlante J , George KS , Fry AM , Barnes J , Chester SC , Xu X , Katz JM , Wentworth DE , Gubareva LV . J Clin Microbiol 2016 55 (1) 145-154 Rapid evolution of influenza A(H3N2) viruses necessitates close monitoring of their antigenic properties so emergence and spread of antigenic drift variants can be rapidly identified. Changes in hemagglutinin (HA) acquired by contemporary A(H3N2) viruses hinder antigenic characterization by traditional methods, thus complicating vaccine strain selection. Sequence-based approaches have been used to infer virus antigenicity; however, they are time-consuming and mid-throughput. To facilitate virological surveillance and epidemiological studies, we have developed and validated a pyrosequencing approach that enables identification of six HA clades of contemporary A(H3N2) viruses. The identification scheme of H3 clade 3C.2, 3C.2a, 3C.2b, 3C.3, 3C.3a and 3C.3b viruses is based on the interrogation of five SNPs within three neighboring HA regions: 412-431; 465-481; and 559-571. Two bioinformatics tools, IdentiFire (Qiagen) and FireComb (developed in-house) were utilized to expedite pyrosequencing data analysis. The assay's analytical sensitivity was 10 focus forming units; and respiratory specimens with CT value < 34 typically produced good quality pyrograms. When applied to 120 A(H3N2) virus isolates and 27 respiratory specimens, the assay displayed 100% agreement with clades determined by HA sequencing coupled with phylogenetics. The multi-SNP analysis described here was readily adopted by another laboratory with pyrosequencing capabilities. Implementation of this approach enhanced virological surveillance and epidemiological studies from 2013-2016 when over 3000 A(H3N2) viruses were examined. |
Human monoclonal antibody 81.39a effectively neutralizes emerging influenza A viruses of group 1 and 2 hemagglutinins
Marjuki H , Mishin VP , Chai N , Tan MW , Newton EM , Tegeris J , Erlandson K , Willis M , Jones J , Davis T , Stevens J , Gubareva LV . J Virol 2016 90 (23) 10446-10458 The pandemic threat posed by emerging zoonotic influenza A viruses necessitate development of antiviral agents effective against various antigenic subtypes. Human monoclonal antibody (hmAb) targeting the hemagglutinin (HA) stalk offers a promising approach to control influenza virus infections. Here we investigated the ability of hmAb 81.39a to inhibit in vitro replication of human and zoonotic viruses, representing 16 HA subtypes. The majority of viruses were effectively neutralized by 81.39a, EC50 <0.01-4.9mug/ml. Among group 2 HA viruses tested, a single A(H7N9) virus was not neutralized at 50mug/ml; it contained HA2-Asp19Gly, an amino acid position previously associated with resistance to neutralization by the group 2 HA-neutralizing mAb CR8020. Notably, among group 1 HA viruses, H11-H13, and H16 subtypes were not neutralized at 50mug/ml; they shared a substitution HA2-Asp19Asn/Ala. Conversely, H9 viruses harboring HA2-Asp19Ala were fully susceptible to neutralization. Therefore, amino acid variance at HA2-Asp19 has subtype-specific adverse effects on in vitro neutralization. Mice given a single injection (15 or 45 mg/kg) at 24 or 48 hours after infection with recently emerged A(H5N2), A(H5N8), A(H6N1) or A(H7N9) viruses were protected from mortality and showed drastically reduced lung viral titers. Furthermore, 81.39a protected mice infected with A(H7N9) harboring HA2-Asp19Gly, although the antiviral effect was lessened. A(H1N1)pdm09-infected ferrets receiving a single dose (25 mg/kg) had reduced viral titers and showed less lung tissue injury, despite 24-72 hours delayed treatment. Taken together, this study provides experimental evidence for the therapeutic potential of 81.39a against diverse influenza A viruses. IMPORTANCE: Zoonotic influenza viruses, such as A(H5N1) and A(H7N9) subtypes, have caused severe disease and deaths in humans raising public health concerns. Development of novel anti-influenza therapeutics with a broad spectrum of activity against various subtypes is necessary to mitigate disease severity. Here we demonstrate that the hemagglutinin (HA) stalk-targeting human monoclonal antibody 81.39a effectively neutralized the majority of influenza A viruses tested, representing 16 HA subtypes. Furthermore, 81.39a delayed treatment significantly suppressed virus replication in the lungs, prevented dramatic body weight loss and increased survival rates of mice infected with A(H5Nx), A(H6N1) or A(H7N9) viruses. When tested in ferrets, 81.39a delayed treatment reduced viral titers, particularly in the lower respiratory tract, and substantially alleviated disease symptoms associated with severe A(H1N1)pdm09 influenza. Collectively, our data demonstrated the effectiveness of 81.39a against both seasonal and emerging influenza A viruses. |
Enhanced genetic characterization of influenza A(H3N2) viruses and vaccine effectiveness by genetic group, 2014-2015.
Flannery B , Zimmerman RK , Gubareva LV , Garten RJ , Chung JR , Nowalk MP , Jackson ML , Jackson LA , Monto AS , Ohmit SE , Belongia EA , McLean HQ , Gaglani M , Piedra PA , Mishin VP , Chesnokov AP , Spencer S , Thaker SN , Barnes JR , Foust A , Sessions W , Xu X , Katz J , Fry AM . J Infect Dis 2016 214 (7) 1010-9 BACKGROUND: During the 2014-15 US influenza season, expanded genetic characterization of circulating influenza A(H3N2) viruses was used to assess the impact of genetic variability of influenza A(H3N2) viruses on influenza vaccine effectiveness (VE). METHODS: A novel pyrosequencing assay was used to determine genetic group based on hemagglutinin (HA) gene sequences of influenza A(H3N2) viruses from patients enrolled US Flu Vaccine Effectiveness network sites. Vaccine effectiveness was estimated using a test-negative design comparing vaccination among patients infected with influenza A(H3N2) viruses and uninfected patients. RESULTS: Among 9710 enrollees, 1868 (19%) tested positive for influenza A(H3N2); genetic characterization of 1397 viruses showed 1134 (81%) belonged to one HA genetic group (3C.2a) of antigenically drifted H3N2 viruses. Effectiveness of 2014-15 influenza vaccination varied by A(H3N2) genetic group from 1% (95% confidence interval [CI], -14% to 14%) against illness caused by antigenically drifted A(H3N2) group 3C.2a viruses versus 44% (95% CI, 16% to 63%) against illness caused by vaccine-like A(H3N2) group 3C.3b viruses. CONCLUSION: Effectiveness of 2014-15 influenza vaccination varied by genetic group of influenza A(H3N2) virus. Changes in hemagglutinin genes related to antigenic drift were associated with reduced vaccine effectiveness. |
The molecular characterizations of surface proteins hemagglutinin and neuraminidase from recent H5Nx avian influenza viruses.
Yang H , Carney PJ , Mishin VP , Guo Z , Chang JC , Wentworth DE , Gubareva LV , Stevens J . J Virol 2016 90 (12) 5770-5784 During 2014, a subclade 2.3.4.4 HPAI A(H5N8) virus caused poultry outbreaks around the world. In late 2014/early 2015 the virus was detected in wild birds in Canada and the U.S. and these viruses also gave rise to reassortant progeny, composed of viral RNA segments (vRNAs) from both Eurasian and North America lineages. In particular, viruses were found with N1, N2 and N8 neuraminidase vRNAs, and are collectively referred to as H5Nx viruses. In the U. S., more than 48 million domestic birds have been affected. Here, we present a detailed structural and biochemical analysis of the surface antigens from H5N1, H5N2 and H5N8 in addition to a recent human H5N6 virus. Our results with recombinant hemagglutinin reveal that these viruses have a strict avian receptor binding preference, while recombinantly expressed neuraminidases are sensitive to FDA approved and investigational antivirals. Although H5Nx viruses currently pose a low risk to humans, it is important to maintain surveillance of these circulating viruses, and to continually assess future changes that may increase their pandemic potential. IMPORTANCE: The H5Nx viruses emerging in North America, Europe, and Asia are of great public health concern. Herein, we report a molecular and structural study of the major surface proteins from several H5Nx influenza viruses. Our results improve the understanding of these new viruses and provide important information on their receptor preference and susceptibility to antivirals, which is central to pandemic risk assessment. |
Standardizing the influenza neuraminidase inhibition assay among United States public health laboratories conducting virological surveillance
Okomo-Adhiambo M , Mishin VP , Sleeman K , Saguar E , Guevara H , Reisdorf E , Griesser RH , Spackman KJ , Mendenhall M , Carlos MP , Healey B , St George K , Laplante J , Aden T , Chester S , Xu X , Gubareva LV . Antiviral Res 2016 128 28-35 BACKGROUND: Monitoring influenza virus susceptibility to neuraminidase (NA) inhibitors (NAIs) is vital for detecting drug-resistant variants, and is primarily assessed using NA inhibition (NI) assays, supplemented by NA sequence analysis. However, differences in NI testing methodologies between surveillance laboratories results in variability of 50% inhibitory concentration (IC50) values, which impacts data sharing, reporting and interpretation. In 2011, the Centers for Disease Control and Prevention (CDC), in collaboration with the Association for Public Health Laboratories (APHL) spearheaded efforts to standardize fluorescence-based NI assay testing in the United States (U.S.), with the goal of achieving consistency of IC50 data. METHODS: For the standardization process, three participating state public health laboratories (PHLs), designated as National Surveillance Reference Centers for Influenza (NSRC-Is), assessed the NAI susceptibility of the 2011-12 CDC reference virus panel using stepwise procedures with support from the CDC reference laboratory. Next, the NSRC-Is assessed the NAI susceptibility of season 2011-12 U.S. influenza surveillance isolates (n=940), with a large subset (n=742) tested in parallel by CDC. Subsequently, U.S. influenza surveillance isolates (n=9629) circulating during the next three influenza seasons (2012-15), were independently tested by the three NSRC-Is (n=7331) and CDC (n=2298). RESULTS: The NI assay IC50s generated by respective NSRC-Is using viruses and drugs prepared by CDC were similar to those obtained with viruses and drugs prepared in-house, and were uniform between laboratories. IC50s for U.S. surveillance isolates tested during four consecutive influenza seasons (2011-15) were consistent from season to season, within and between laboratories. CONCLUSION: These results show that the NI assay is robust enough to be standardized, marking the first time IC50 data have been normalized across multiple laboratories, and used for U.S. national NAI susceptibility surveillance. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 15, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure