Last data update: Aug 15, 2025. (Total: 49733 publications since 2009)
| Records 1-5 (of 5 Records) |
| Query Trace: Davidson BA [original query] |
|---|
| Femtosecond laser-ablative aqueous synthesis of multi-drug antiviral nanoparticles
Schmitt RR , Davidson BA , He D , He GS , Bulmahn JC , Sambhara S , Knight PR , Prasad PN . Nanomedicine (Lond) 2025 1-9 BACKGROUND: Nanomedicine offers a number of innovative strategies to address major public health burdens, including complex respiratory illnesses. In this work, we introduce a multi-drug nanoparticle fabricated using femtosecond laser ablation for the treatment of influenza, SARS-CoV-2, and their co-infections. METHODS: The SARS-CoV-2 antiviral, remdesivir; the influenza antiviral, baloxavir marboxil; and the anti-inflammatory, dexamethasone, were co-crystalized and then ablated in aqueous media using a femtosecond pulsed laser and subsequently surface modified with the cationic polymer, chitosan, or poly-d-lysine. Physical and chemical properties were then characterized using multiple complimentary techniques. Finally, a clinically relevant in vitro primary mouse trachea epithelial cell-air-liquid interface culture model was used to analyze the antiviral effect of our nanoparticles against Influenza Virus A. RESULTS: Our final nanoparticle exhibited a positive zeta potential with a diameter of ~73 nm. Remdesivir, baloxavir marboxil, and dexamethasone were all present in the nanoparticle suspension at a 1:1:1 ratio. Notably, these particles exhibited a potent anti-influenza effect, decreasing the viral titer by ≈ 4 logs in comparison to vehicle controls. CONCLUSION: Overall, these findings demonstrate great promise both for the use of laser ablation to generate multi-drug nanoparticles and for the anti-viral effects of our nanoformulation against respiratory illness. |
| Influenza Virus Infects and Depletes Activated Adaptive Immune Responders
Bohannon CD , Ende Z , Cao W , Mboko WP , Ranjan P , Kumar A , Mishina M , Amoah S , Gangappa S , Mittal SK , Lovell JF , García-Sastre A , Pfeifer BA , Davidson BA , Knight P , Sambhara S . Adv Sci (Weinh) 2021 8 (16) e2100693 Influenza infections cause several million cases of severe respiratory illness, hospitalizations, and hundreds of thousands of deaths globally. Secondary infections are a leading cause of influenza's high morbidity and mortality, and significantly factored into the severity of the 1918, 1968, and 2009 pandemics. Furthermore, there is an increased incidence of other respiratory infections even in vaccinated individuals during influenza season. Putative mechanisms responsible for vaccine failures against influenza as well as other respiratory infections during influenza season are investigated. Peripheral blood mononuclear cells (PBMCs) are used from influenza vaccinated individuals to assess antigen-specific responses to influenza, measles, and varicella. The observations made in humans to a mouse model to unravel the mechanism is confirmed and extended. Infection with influenza virus suppresses an ongoing adaptive response to vaccination against influenza as well as other respiratory pathogens, i.e., Adenovirus and Streptococcus pneumoniae by preferentially infecting and killing activated lymphocytes which express elevated levels of sialic acid receptors. These findings propose a new mechanism for the high incidence of secondary respiratory infections due to bacteria and other viruses as well as vaccine failures to influenza and other respiratory pathogens even in immune individuals due to influenza viral infections. |
| A liposome-displayed hemagglutinin vaccine platform protects mice and ferrets from heterologous influenza virus challenge
Sia ZR , He X , Zhang A , Ang JC , Shao S , Seffouh A , Huang WC , D'Agostino MR , Teimouri Dereshgi A , Suryaprakash S , Ortega J , Andersen H , Miller MS , Davidson BA , Lovell JF . Proc Natl Acad Sci U S A 2021 118 (22) Recombinant influenza virus vaccines based on hemagglutinin (HA) hold the potential to accelerate production timelines and improve efficacy relative to traditional egg-based platforms. Here, we assess a vaccine adjuvant system comprised of immunogenic liposomes that spontaneously convert soluble antigens into a particle format, displayed on the bilayer surface. When trimeric H3 HA was presented on liposomes, antigen delivery to macrophages was improved in vitro, and strong functional antibody responses were induced following intramuscular immunization of mice. Protection was conferred against challenge with a heterologous strain of H3N2 virus, and naive mice were also protected following passive serum transfer. When admixed with the particle-forming liposomes, immunization reduced viral infection severity at vaccine doses as low as 2 ng HA, highlighting dose-sparing potential. In ferrets, immunization induced neutralizing antibodies that reduced the upper respiratory viral load upon challenge with a more modern, heterologous H3N2 viral strain. To demonstrate the flexibility and modular nature of the liposome system, 10 recombinant surface antigens representing distinct influenza virus strains were bound simultaneously to generate a highly multivalent protein particle that with 5 ng individual antigen dosing induced antibodies in mice that specifically recognized the constituent immunogens and conferred protection against heterologous H5N1 influenza virus challenge. Taken together, these results show that stable presentation of recombinant HA on immunogenic liposome surfaces in an arrayed fashion enhances functional immune responses and warrants further attention for the development of broadly protective influenza virus vaccines. |
| SARS-CoV-2 RBD Neutralizing Antibody Induction is Enhanced by Particulate Vaccination.
Huang WC , Zhou S , He X , Chiem K , Mabrouk MT , Nissly RH , Bird IM , Strauss M , Sambhara S , Ortega J , Wohlfert EA , Martinez-Sobrido L , Kuchipudi SV , Davidson BA , Lovell JF . Adv Mater 2020 32 (50) e2005637
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a candidate vaccine antigen that binds angiotensin-converting enzyme 2 (ACE2), leading to virus entry. Here, it is shown that rapid conversion of recombinant RBD into particulate form via admixing with liposomes containing cobalt-porphyrin-phospholipid (CoPoP) potently enhances the functional antibody response. Antigen binding via His-tag insertion into the CoPoP bilayer results in a serum-stable and conformationally intact display of the RBD on the liposome surface. Compared to other vaccine formulations, immunization using CoPoP liposomes admixed with recombinant RBD induces multiple orders of magnitude higher levels of antibody titers in mice that neutralize pseudovirus cell entry, block RBD interaction with ACE2, and inhibit live virus replication. Enhanced immunogenicity can be accounted for by greater RBD uptake into antigen-presenting cells in particulate form and improved immune cell infiltration in draining lymph nodes. QS-21 inclusion in the liposomes results in an enhanced antigen-specific polyfunctional T cell response. In mice, high dose immunization results in minimal local reactogenicity, is well-tolerated, and does not elevate serum cobalt levels. Taken together, these results confirm that particulate presentation strategies for the RBD immunogen should be considered for inducing strongly neutralizing antibody responses against SARS-CoV-2. |
| A dual-functioning 5'-PPP-NS1shRNA that activates a RIG-I antiviral pathway and suppresses influenza NS1
Singh N , Ranjan P , Cao W , Patel J , Gangappa S , Davidson BA , Sullivan JM , Prasad PN , Knight PR , Sambhara S . Mol Ther Nucleic Acids 2020 19 1413-1422 Retinoic acid-inducible gene-I (RIG-I) is a cytosolic pathogen sensor that is crucial against a number of viral infections. Many viruses have evolved to inhibit pathogen sensors to suppress host innate immune responses. In the case of influenza, nonstructural protein 1 (NS1) suppresses RIG-I function, leading to viral replication, morbidity, and mortality. We show that silencing NS1 with in-vitro-transcribed 5'-triphosphate containing NS1 short hairpin RNA (shRNA) (5'-PPP-NS1shRNA), designed using the conserved region of a number of influenza viruses, not only prevented NS1 expression but also induced RIG-I activation and type I interferon (IFN) expression, resulting in an antiviral state leading to inhibition of influenza virus replication in vitro. In addition, administration of 5'-PPP-NS1shRNA in prophylactic and therapeutic settings resulted in significant inhibition of viral replication following viral challenge in vivo in mice with corresponding increases of RIG-I, IFN-beta, and IFN-lambda, as well as a decrease in NS1 expression. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Aug 15, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure




