Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-30 (of 38 Records) |
Query Trace: Costantini V[original query] |
---|
Salivary immune responses after COVID-19 vaccination
Nguyen K , Relja B , Epperson M , Park SH , Thornburg NJ , Costantini VP , Vinjé J . PLoS One 2024 19 (9) e0307936 mRNA-based COVID-19 vaccines have played a critical role in reducing severe outcomes of COVID-19. Humoral immune responses against SARS-CoV-2 after vaccination have been extensively studied in blood; however, limited information is available on the presence and duration of SARS-CoV-2 specific antibodies in saliva and other mucosal fluids. Saliva offers a non-invasive sampling method that may also provide a better understanding of mucosal immunity at sites where the virus enters the body. Our objective was to evaluate the salivary immune response after vaccination with the COVID-19 Moderna mRNA-1273 vaccine. Two hundred three staff members of the U.S. Centers for Disease Control and Prevention were enrolled prior to receiving their first dose of the mRNA-1273 vaccine. Participants were asked to self-collect 6 saliva specimens at days 0 (prior to first dose), 14, 28 (prior to second dose), 42, and 56 using a SalivaBio saliva collection device. Saliva specimens were tested for anti-spike protein SARS-CoV-2 specific IgA and IgG enzyme immunoassays. Overall, SARS-CoV-2-specific salivary IgA titers peaked 2 weeks after each vaccine dose, followed by a sharp decrease during the following weeks. In contrast to IgA titers, IgG antibody titers increased substantially 2 weeks after the first vaccine dose, peaked 2 weeks after the second dose and persisted at an elevated level until at least 8 weeks after the first vaccine dose. Additionally, no significant differences in IgA/IgG titers were observed based on age, sex, or race/ethnicity. All participants mounted salivary IgA and IgG immune responses against SARS-CoV-2 after receiving the mRNA-1273 COVID-19 vaccine. Because of the limited follow-up time for this study, more data are needed to assess the antibody levels beyond 2 months after the first dose. Our results confirm the potential utility of saliva in assessing immune responses elicited by immunization and possibly by infection. |
Human intestinal enteroids platform to assess the infectivity of gastroenteritis viruses in wastewater
Carmona-Vicente N , Pandiscia A , Santiso-Bellón C , Perez-Cataluña A , Rodríguez-Díaz J , Costantini VP , Buesa J , Vinjé J , Sánchez G , Randazzo W . Water Res 2024 255 121481 Fecal-orally transmitted gastroenteritis viruses, particularly human noroviruses (HuNoVs), are a public health concern. Viral transmission risk through contaminated water results underexplored as they have remained largely unculturable until recently and the robust measuring of gastroenteritis viruses infectivity in a single cell line is challenging. This study primarily aimed to test the feasibility of the human intestinal enteroids (HIE) model to demonstrate the infectivity of multiple gastroenteritis viruses in wastewater. Initially, key factors affecting viral replication in HIE model were assessed, and results demonstrated that the reagent-assisted disruption of 3D HIE represents an efficient alternative to syringe pass-through, and the filtering of HuNoV stool suspensions could be avoided. Moreover, comparable replication yields of clinical strains of HuNoV genogroup I (GI), HuNoV GII, rotavirus (RV), astrovirus (HAstV), and adenoviruses (HAdV) were obtained in single and multiple co-infections. Then, the optimized HIE model was used to demonstrate the infectivity of multiple naturally occurring gastroenteritis viruses from wastewater. Thus, a total of 28 wastewater samples were subjected to (RT)-qPCR for each virus, with subsequent testing on HIE. Among these, 16 samples (57 %) showed replication of HuNoVs (n = 3), RV (n = 5), HAstV (n = 8), and/or HAdV (n = 5). Three samples showed HuNoV replication, and sequences assigned to HuNoV GI.3[P13] and HuNoV GII.4[P16] genotypes. Concurrent replication of multiple gastroenteritis viruses occurred in 4 wastewater samples. By comparing wastewater concentrate and HIE supernatant sequences, diverse HAstV and HAdV genotypes were identified in 4 samples. In summary, we successfully employed HIE to demonstrate the presence of multiple infectious human gastroenteritis viruses, including HuNoV, in naturally contaminated wastewater samples. |
Heat inactivation of aqueous viable norovirus and MS2 bacteriophage
Shaffer M , Huynh K , Costantini V , Vinjé J , Bibby K . J Appl Microbiol 2024 AIMS: This study aimed to compare the heat inactivation kinetics of viable human norovirus with the surrogate, MS2 bacteriophage as well as assess the decay of the RNA signal. METHODS AND RESULTS: Human intestinal enteroids (HIEs) were used to analyze the heat inactivation kinetics of viable human norovirus compared to the surrogate MS2 bacteriophage, which was cultured using a plaque assay. Norovirus decay rates were 0.22 min-1, 0.68 min-1, and 1.11 min-1 for 50°C, 60°C, and 70°C, respectively, and MS2 bacteriophage decay rates were 0.0065 min-1, 0.045 min-1, and 0.16 min-1 for 50°C, 60°C, and 70°C, respectively. Norovirus had significantly higher decay rates than MS2 bacteriophage at all tested temperatures (P = 0.002-0.007). No decrease of RNA titers as measured by reverse transcription-PCR for both human norovirus and MS2 bacteriophage over time was observed, indicating molecular methods do not accurately depict viable human norovirus after heat inactivation and treatment efficiency is underestimated. CONCLUSIONS: Overall, our data demonstrates that MS2 bacteriophage is a conservative surrogate to measure heat inactivation and potentially overestimates the infectious risk of norovirus. Furthermore, this study corroborates that measuring viral RNA titers, as evaluated by PCR methods, does not correlate with the persistence of viable norovirus under heat inactivation. |
Infant antibody and B-cell responses following confirmed pediatric GII.17 norovirus infections functionally distinguish GII.17 genetic clusters
Strother CA , Brewer-Jensen PD , Becker-Dreps S , Zepeda O , May S , Gonzalez F , Reyes Y , McElvany BD , Averill AM , Mallory ML , Montmayeur AM , Costantini VP , Vinjé J , Baric RS , Bucardo F , Lindesmith LC , Diehl SA . Front Immunol 2023 14 1229724 Genogroup II (GII) noroviruses are a major cause of diarrheal disease burden in children in both high- and low-income countries. GII.17 noroviruses are composed of distinct genetic clusters (I, II, IIIa, and IIIb) and have shown potential for replacing historically more prevalent GII.4 strains, but the serological basis for GII.17 antigenic diversity has not been studied in children. Utilizing samples from a birth cohort, we investigated antibody and B-cell responses to GII.17 cluster variants in confirmed GII.17 infections in young children as well as demonstrated that the distinct genetic clusters co-circulate. Polyclonal serum antibodies bound multiple clusters but showed cluster-specific blockade activity in a surrogate virus neutralization assay. Antibodies secreted by immortalized memory B cells (MBCs) from an infant GII.17 case were highly specific to GII.17 and exhibited blockade activity against this genotype. We isolated an MBC-derived GII.17-specific Immunoglobulin A (IgA) monoclonal antibody called NVA.1 that potently and selectively blocked GII.17 cluster IIIb and recognized an epitope targeted in serum from cluster IIIb-infected children. These data indicate that multiple antigenically distinct GII.17 variants co-circulate in young children, suggesting retention of cluster diversity alongside potential for immune escape given the existence of antibody-defined cluster-specific epitopes elicited during infection. |
Preadaptation of pandemic GII.4 noroviruses in hidden virus reservoirs years before emergence (preprint)
Ruis C , Lindesmith LC , Mallory ML , Brewer-Jensen PD , Bryant JM , Costantini V , Monit C , Vinjé J , Baric RS , Goldstein RA , Breuer J . bioRxiv 2019 658765 The control of pandemic pathogens depends on early prediction of pandemic variants and, more generally, understanding origins of such variants and factors that drive their global spread. This is especially important for GII.4 norovirus, where vaccines under development offer promise to prevent hundreds of millions of annual gastroenteritis cases. Previous studies have suggested that new GII.4 pandemic viruses evolve from previous pandemic variants through substitutions in the antigenic region of the VP1 protein that enable evasion of host population immunity, leading to global spread. In contrast, we show here that the acquisition of new genetic and antigenic characteristics is not the proximal driver of new pandemics. Instead, pandemic GII.4 viruses circulate undetected for years before causing a new pandemic, during which time they diversify and spread over wide geographical areas. Serological data demonstrate that by 2003, some nine years before it emerged as a new pandemic, the ancestral 2012 pandemic strain had already acquired the antigenic characteristics that allowed it to evade prevailing population immunity against the previous 2009 pandemic variant. These results provide strong evidence that viral genetic changes are necessary but not sufficient for GII.4 pandemic spread. Instead, we suggest that it is changes in host population immunity that enable pandemic spread of an antigenically-preadapted GII.4 variant. These results indicate that predicting future GII.4 pandemic variants will require surveillance of currently unsampled reservoir populations. Furthermore, a broadly acting GII.4 vaccine will be critical to prevent future pandemics.Significance Norovirus pandemics and their associated public health and economic costs could be prevented by effective vaccines. However, vaccine development and distribution will require identification of the sources and drivers of new pandemics. We here use phylogenetics and serological experiments to develop and test a new hypothesis of pandemic norovirus emergence. We find that pandemic noroviruses preadapt, diversify and spread worldwide years prior to emergence, strongly indicating that genetic changes are necessary but not sufficient to drive a new pandemic. We instead suggest that changes in population immunity enable pandemic emergence of a pre-adapted low-level variant. These findings indicate that prediction of new pandemics will require surveillance of under-sampled virus reservoirs and that norovirus vaccines will need to elicit broad immunity. |
Enteropathogen antibody dynamics and force of infection among children in low-resource settings (preprint)
Arnold BF , Martin DL , Juma J , Mkocha H , Ochieng JB , Cooley GM , Omore R , Goodhew EB , Morris JF , Costantini V , Vinje J , Lammie PJ , Priest JW . bioRxiv 2019 522920 Little is known about enteropathogen seroepidemiology among children in low-resource settings. We measured serological IgG responses to eight enteropathogens (Giardia intestinalis, Cryptosporidium parvum, Entamoeba histolytica, Salmonella enterica, enterotoxigenic Escherichia coli, Vibrio cholerae, Campylobacter jejuni, norovirus) in cohorts from Haiti, Kenya, and Tanzania. We studied antibody dynamics and force of infection across pathogens and cohorts. Enteropathogens shared common seroepidemiologic features that enabled between-pathogen comparisons of transmission. Overall, exposure was intense: for most pathogens the window of primary infection was <3 years old; for highest transmission pathogens primary infection occurred within the first year. Longitudinal profiles revealed significant IgG boosting and waning above seropositivity cutoffs, underscoring the value of longitudinal designs to estimate force of infection. Seroprevalence and force of infection were rank-preserving across pathogens, illustrating the measures provide similar information about transmission heterogeneity. Our findings suggest multiplex antibody assays are a promising approach to measure population-level enteropathogen transmission in serologic surveillance. |
Mucosal and systemic neutralizing antibodies to norovirus and rotavirus by oral immunization with recombinant rotavirus in infant mice (preprint)
Kawagishi T , Sanchez-Tacuba L , Feng N , Costantini VP , Tan M , Jiang X , Green KY , Vinje J , Ding S , Greenberg HB . bioRxiv 2022 02 Rotaviruses (RVs) preferentially replicate in the small intestine, frequently cause severe diarrheal disease, and following enteric infection generally induce variable levels of protective systemic and mucosal immune responses in humans and other animals. Rhesus rotavirus (RRV) is a simian RV that was previously used as a human RV vaccine and has been extensively studied in mice. Although RRV replicates poorly in the suckling mouse intestine, infection induces a robust and protective antibody response. The recent availability of plasmid-based RV reverse genetics systems has enabled the generation of recombinant RVs expressing foreign proteins. However, recombinant RVs have not yet been experimentally tested as potential vaccine vectors to immunize against other gastrointestinal pathogens in vivo. This is a missed opportunity because several live-attenuated RV vaccines are already widely administered to infants and young children worldwide. To explore the feasibility of using RV as a dual vaccine vector, we rescued a replication-competent recombinant RRV harboring bicistronic gene segment 7 that encodes both the native RV NSP3 protein and a human norovirus (HuNoV) VP1 protein from the predominant genotype GII.4 (rRRV-HuNoV-VP1). The rRRV-HuNoV-VP1 expressed HuNoV VP1 in infected cells in vitro and importantly, elicited both systemic and local antibody responses to HuNoV following oral infection of suckling mice. Serum IgG and fecal IgA from infected suckling mice bound to and neutralized both RV and HuNoV. These findings have encouraging practical implications for the design of RV-based next-generation multivalent enteric vaccines to target HuNoV and other human enteric pathogens while providing immunity to RV. Copyright The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. |
Development and validation of an enzyme immunoassay for detection and quantification of SARS-CoV-2 salivary IgA and IgG (preprint)
Costantini VP , Nguyen K , Lyski Z , Novosad S , Bardossy AC , Lyons AK , Gable P , Kutty PK , Lutgring JD , Brunton A , Thornburg NJ , Brown AC , McDonald LC , Messer W , Vinjé J . medRxiv 2021 Oral fluids offer a non-invasive sampling method for the detection of antibodies. Quantification of IgA and IgG antibodies in saliva allows studies of the mucosal and systemic immune response after natural infection or vaccination. We developed and validated an enzyme immunoassay (EIA) to detect and quantify salivary IgA and IgG antibodies against the prefusion-stabilized form of the SARS-CoV-2 spike protein. Normalization against total antibody isotype was performed to account for specimen differences, such as collection time and sample volume. Saliva samples collected from 187 SARS-CoV-2 confirmed cases enrolled in 2 cohorts and 373 pre-pandemic saliva samples were tested. The sensitivity of both EIAs was high (IgA: 95.5%; IgG: 89.7%) without compromising specificity (IgA: 99%; IgG: 97%). No cross reactivity with seasonal coronaviruses was observed. The limit of detection for SARS-CoV-2 salivary IgA and IgG assays were 1.98 ng/mL and 0.30 ng/mL, respectively. Salivary IgA and IgG antibodies were detected earlier in patients with mild COVID-19 symptoms than in severe cases. However, severe cases showed higher salivary antibody titers than those with a mild infection. Salivary IgA titers quickly decreased after 6 weeks in mild cases but remained detectable until at least week 10 in severe cases. Salivary IgG titers remained high for all patients, regardless of disease severity. In conclusion, EIAs for both IgA and IgG had high specificity and sensitivity for the confirmation of current or recent SARS-CoV-2 infections and evaluation of the IgA and IgG immune response. |
Mucosal and systemic neutralizing antibodies to norovirus induced in infant mice orally inoculated with recombinant rotaviruses.
Kawagishi T , Sánchez-Tacuba L , Feng N , Costantini VP , Tan M , Jiang X , Green KY , Vinjé J , Ding S , Greenberg HB . Proc Natl Acad Sci U S A 2023 120 (9) e2214421120 Rotaviruses (RVs) preferentially replicate in the small intestine and frequently cause severe diarrheal disease, and the following enteric infection generally induces variable levels of protective systemic and mucosal immune responses in humans and other animals. Rhesus rotavirus (RRV) is a simian RV that was previously used as a human RV vaccine and has been extensively studied in mice. Although RRV replicates poorly in the suckling mouse intestine, infection induces a robust and protective antibody response. The recent availability of plasmid only-based RV reverse genetics systems has enabled the generation of recombinant RVs expressing foreign proteins. However, recombinant RVs have not yet been experimentally tested as potential vaccine vectors to immunize against other gastrointestinal pathogens in vivo. This is a newly available opportunity because several live-attenuated RV vaccines are already widely administered to infants and young children worldwide. To explore the feasibility of using RV as a dual vaccine vector, we rescued replication-competent recombinant RRVs harboring bicistronic gene segment 7 that encodes the native RV nonstructural protein 3 (NSP3) protein and a human norovirus (HuNoV) VP1 protein or P domain from the predominant genotype GII.4. The rescued viruses expressed HuNoV VP1 or P protein in infected cells in vitro and elicited systemic and local antibody responses to HuNoV and RRV following oral infection of suckling mice. Serum IgG and fecal IgA from infected suckling mice bound to and neutralized both RRV and HuNoV. These findings have encouraging practical implications for the design of RV-based next-generation multivalent enteric vaccines to target HuNoV and other human enteric pathogens. |
Persistence of Human Norovirus (GII) in Surface Water: Decay Rate Constants and Inactivation Mechanisms.
Kennedy LC , Costantini VP , Huynh KA , Loeb SK , Jennings WC , Lowry S , Mattioli MC , Vinjé J , Boehm AB . Environ Sci Technol 2023 57 (9) 3671-3679 Human norovirus (HuNoV) is an important cause of acute gastroenteritis and can be transmitted by water exposures, but its persistence in water is not well understood. Loss of HuNoV infectivity in surface water was compared with persistence of intact HuNoV capsids and genome segments. Surface water from a freshwater creek was filter-sterilized, inoculated with HuNoV (GII.4) purified from stool, and incubated at 15 or 20 °C. We measured HuNoV infectivity via the human intestinal enteroid system and HuNoV persistence via reverse transcription-quantitative polymerase chain reaction assays without (genome segment persistence) or with (intact viral capsid persistence) enzymatic pretreatment to digest naked RNA. For infectious HuNoV, results ranged from no significant decay to a decay rate constant ("k") of 2.2 day(-1). In one creek water sample, genome damage was likely a dominant inactivation mechanism. In other samples from the same creek, loss of HuNoV infectivity could not be attributed to genome damage or capsid cleavage. The range in k and the difference in the inactivation mechanism observed in water from the same site could not be explained, but variable constituents in the environmental matrix could have contributed. Thus, a single k may be insufficient for modeling virus inactivation in surface waters. |
A focused multi-state model to estimate the pediatric and adolescent HIV epidemic in Thailand, 2005-2025
Desmonde S , Lolekha R , Costantini S , Siraprapasiri T , Frank S , Bakkali T , Benjarattanaporn P , Hou T , Jantaramanee S , Kuttiparambil B , Sethaputra C , Ross J , Ciaranello A . PLoS One 2022 17 (11) e0276330 BACKGROUND: We estimated the magnitude of the HIV epidemic among children and youth living with HIV (CYHIV) aged 0-25 years in Thailand, projecting forward from 2005 to 2025, and identified underreported input parameters that influence epidemic projections, in order to inform future public health and research priorities. METHODS: We developed a focused multi-state transition model incorporating perinatally-acquired HIV and non-perinatally-acquired HIV, stratified by population, including men who have sex with men (MSM), female sex workers (FSW), people who inject drugs (PWID), and the remainder of the population ("other"). We populated the model with published and programmatic data from the Thai national AIDS program when available. We projected the period from 2005-2025 and compared model results to programmatic data and projections from other models. In a scenario analysis, we projected the potential impact of pre-exposure prophylaxis (PrEP) for MSM from 2018-2025. RESULTS: The initial 2005 cohort was comprised of 66,900 CYHIV; 8% CYHIV were <5 years, 21% were 5-14 years, and 71% were 15-25 years of age. By 2020, 94% were projected to be >15 years and infections among MSM constituted 83% of all new HIV infections. The numbers of CYHIV decreased over time, projected to reach 30,760 by 2020 (-54%) and 22,640 by 2025 (-66%). The proportion of all CYHIV aged 0-25 who were diagnosed and on ART increased from 37 to 60% over the 2005-2025 period. Projections were sensitive to variations in assumptions about initial HIV prevalence and incidence among MSM, PWID, and "other" youth. CONCLUSIONS: More data on incidence rates among sexual and gender minority youth and PWID are needed to characterize the role of specific exposures and key populations in the adolescent HIV epidemic. More accurate estimates will project shifts in population and inform more targeted interventions to prevent and care for Thai CYHIV. |
Viable norovirus persistence in water microcosms
Shaffer M , Huynh K , Costantini V , Bibby K , Vinjé J . Environ Sci Technol Lett 2022 9 (10) 851-855 Human noroviruses are one of the leading causes of acute gastroenteritis worldwide. Based on quantitative microbial risk assessments, norovirus contributes the greatest infectious risk of any pathogen from exposure to sewage-contaminated water; however, these estimates have been based upon molecular (i.e., RNA-based) data as human norovirus has remained largely unculturable in the laboratory. Current approaches to assess the environmental fate of noroviruses rely on the use of culturable surrogate viruses and molecular methods. Human intestinal enteroids (HIEs) are an emerging cell culture system capable of amplifying viable norovirus. Here, we applied the HIE assay to assess both viable norovirus and norovirus RNA persistence in surface, tap, and deionized water microcosms. Viable norovirus decreased to below the detection limit in tap and deionized water microcosms and was measured in a single replicate in the surface water microcosm at study conclusion (28 days). Conversely, the norovirus RNA signal remained constant over the duration of the study, even when viable norovirus was below the limit of detection. Our findings demonstrate the disconnect between current environmental norovirus detection via molecular methods and viability as assessed through the HIE assay. These results imply that molecular norovirus monitoring is not inherently representative of infectious norovirus. © 2022 American Chemical Society. |
Immune Imprinting Drives Human Norovirus Potential for Global Spread.
Lindesmith LC , Boshier FAT , Brewer-Jensen PD , Roy S , Costantini V , Mallory ML , Zweigart M , May SR , Conrad H , O'Reilly KM , Kelly D , Celma CC , Beard S , Williams R , Tutill HJ , Becker Dreps S , Bucardo F , Allen DJ , Vinjé J , Goldstein RA , Breuer J , Baric RS . mBio 2022 13 (5) e0186122 Understanding the complex interactions between virus and host that drive new strain evolution is key to predicting the emergence potential of variants and informing vaccine development. Under our hypothesis, future dominant human norovirus GII.4 variants with critical antigenic properties that allow them to spread are currently circulating undetected, having diverged years earlier. Through large-scale sequencing of GII.4 surveillance samples, we identified two variants with extensive divergence within domains that mediate neutralizing antibody binding. Subsequent serological characterization of these strains using temporally resolved adult and child sera suggests that neither candidate could spread globally in adults with multiple GII.4 exposures, yet young children with minimal GII.4 exposure appear susceptible. Antigenic cartography of surveillance and outbreak sera indicates that continued population exposure to GII.4 Sydney 2012 and antigenically related variants over a 6-year period resulted in a broadening of immunity to heterogeneous GII.4 variants, including those identified here. We show that the strongest antibody responses in adults exposed to GII.4 Sydney 2012 are directed to previously circulating GII.4 viruses. Our data suggest that the broadening of antibody responses compromises establishment of strong GII.4 Sydney 2012 immunity, thereby allowing the continued persistence of GII.4 Sydney 2012 and modulating the cycle of norovirus GII.4 variant replacement. Our results indicate a cycle of norovirus GII.4 variant replacement dependent upon population immunity. Young children are susceptible to divergent variants; therefore, emergence of these strains worldwide is driven proximally by changes in adult serological immunity and distally by viral evolution that confers fitness in the context of immunity. IMPORTANCE In our model, preepidemic human norovirus variants harbor genetic diversification that translates into novel antigenic features without compromising viral fitness. Through surveillance, we identified two viruses fitting this profile, forming long branches on a phylogenetic tree. Neither evades current adult immunity, yet young children are likely susceptible. By comparing serological responses, we demonstrate that population immunity varies by age/exposure, impacting predicted susceptibility to variants. Repeat exposure to antigenically similar variants broadens antibody responses, providing immunological coverage of diverse variants but compromising response to the infecting variant, allowing continued circulation. These data indicate norovirus GII.4 variant replacement is driven distally by virus evolution and proximally by immunity in adults. |
Head-to-head comparison of the immunogenicity of RotaTeq and Rotarix rotavirus vaccines and factors associated with seroresponse in infants in Bangladesh: a randomised, controlled, open-label, parallel, phase 4 trial
Velasquez-Portocarrero DE , Wang X , Cortese MM , Snider CJ , Anand A , Costantini VP , Yunus M , Aziz AB , Haque W , Parashar U , Sisay Z , Soeters HM , Hyde TB , Jiang B , Zaman K . Lancet Infect Dis 2022 22 (11) 1606-1616 BACKGROUND: A head-to-head comparison of the most widely used oral rotavirus vaccines has not previously been done, particularly in a high child mortality setting. We therefore aimed to compare the immunogenicity of RotaTeq (Merck, Kenilworth, NJ, USA) and Rotarix (GlaxoSmithKline, Rixensart, Belgium) rotavirus vaccines in the same population and examined risk factors for low seroresponse. METHODS: We did a randomised, controlled, open-label, parallel, phase 4 trial in urban slums within Mirpur and Mohakahli (Dhaka, Bangladesh). We enrolled eligible participants who were healthy infants aged 6 weeks and full-term (ie, >37 weeks' gestation). We randomly assigned participants (1:1), using block randomisation via a computer-generated electronic allocation with block sizes of 8, 16, 24, and 32, to receive either three RotaTeq vaccine doses at ages 6, 10, and 14 weeks or two Rotarix doses at ages 6 and 10 weeks without oral poliovirus vaccine. Coprimary outcomes were the rotavirus-specific IgA seroconversion in both vaccines, and the comparison of the rotavirus IgA seroconversion by salivary secretor phenotype in each vaccine arm. Seroconversion at age 18 weeks in the RotaTeq arm and age of 14 weeks in the Rotarix arm was used to compare the complete series of each vaccine. Seroconversion at age 14 weeks was used to compare two RotaTeq doses versus two Rotarix doses. Seroconversion at age 22 weeks was used to compare the immunogenicity at the same age after receiving the full vaccine series. Safety was assessed for the duration of study participation. This study is registered with ClinicalTrials.gov, NCT02847026. FINDINGS: Between Sept 1 and Dec 8, 2016, a total of 1144 infants were randomly assigned to either the RotaTeq arm (n=571) or Rotarix arm (n=573); 1080 infants (531 in the RotaTeq arm and 549 in the Rotarix arm) completed the study. Rotavirus IgA seroconversion 4 weeks after the full series occurred in 390 (73%) of 531 infants age 18 weeks in the RotaTeq arm and 354 (64%) of 549 infants age 14 weeks in the Rotarix arm (p=0·01). At age 14 weeks, 4 weeks after two doses, RotaTeq recipients had lower seroconversion than Rotarix recipients (268 [50%] of 531 vs 354 [64%] of 549; p<0·0001). However, at age 22 weeks, RotaTeq recipients had higher seroconversion than Rotarix recipients (394 [74%] of 531 vs 278 [51%] of 549; p<0·0001). Among RotaTeq recipients, seroconversion 4 weeks after the third dose was higher than after the second dose (390 [73%] of 531 vs 268 [50%] of 531; p<0·0001]. In the RotaTeq arm, rotavirus IgA seroconversion was lower in non-secretors than in secretors at ages 14 weeks (p=0·08), 18 weeks (p=0·01), and 22 weeks (p=0·02). Similarly, in the Rotarix arm, rotavirus IgA seroconversion was lower in non-secretors than in secretors at ages 14 weeks (p=0·02) and 22 weeks (p=0·01). 65 (11%) of 571 infants had adverse events in the RotaTeq arm compared with 63 (11%) of 573 infants in the Rotarix arm; no adverse events were attributed to the use of either vaccine. One death due to aspiration occurred in the RotaTeq arm, which was not related to the vaccine. INTERPRETATION: RotaTeq induced a higher magnitude and longer duration of rotavirus IgA response than Rotarix in this high child mortality setting. Additional vaccination strategies should be evaluated to overcome the suboptimal performance of current oral rotavirus vaccines in these settings. FUNDING: US Centers for Disease Control and Prevention. |
Development and Validation of an Enzyme Immunoassay for Detection and Quantification of SARS-CoV-2 Salivary IgA and IgG.
Costantini VP , Nguyen K , Lyski Z , Novosad S , Bardossy AC , Lyons AK , Gable P , Kutty PK , Lutgring JD , Brunton A , Thornburg NJ , Brown AC , McDonald LC , Messer W , Vinj J . J Immunol 2022 208 (6) 1500-1508 Oral fluids offer a noninvasive sampling method for the detection of Abs. Quantification of IgA and IgG Abs in saliva allows studies of the mucosal and systemic immune response after natural infection or vaccination. We developed and validated an enzyme immunoassay (EIA) to detect and quantify salivary IgA and IgG Abs against the prefusion-stabilized form of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein expressed in suspension-adapted HEK-293 cells. Normalization against total Ab isotype was performed to account for specimen differences, such as collection time and sample volume. Saliva samples collected from 187 SARS-CoV-2 confirmed cases enrolled in 2 cohorts and 373 prepandemic saliva samples were tested. The sensitivity of both EIAs was high (IgA, 95.5%; IgG, 89.7%) without compromising specificity (IgA, 99%; IgG, 97%). No cross-reactivity with endemic coronaviruses was observed. The limit of detection for SARS-CoV-2 salivary IgA and IgG assays were 1.98 ng/ml and 0.30 ng/ml, respectively. Salivary IgA and IgG Abs were detected earlier in patients with mild COVID-19 symptoms than in severe cases. However, severe cases showed higher salivary Ab titers than those with a mild infection. Salivary IgA titers quickly decreased after 6 wk in mild cases but remained detectable until at least week 10 in severe cases. Salivary IgG titers remained high for all patients, regardless of disease severity. In conclusion, EIAs for both IgA and IgG had high specificity and sensitivity for the confirmation of current or recent SARS-CoV-2 infections and evaluation of the IgA and IgG immune response. |
Advances in understanding of the innate immune response to human norovirus infection using organoid models.
Mboko WP , Chhabra P , Valcarce MD , Costantini V , Vinj J . J Gen Virol 2022 103 (1) Norovirus is the leading cause of epidemic and endemic acute gastroenteritis worldwide and the most frequent cause of foodborne illness in the United States. There is no specific treatment for norovirus infections and therapeutic interventions are based on alleviating symptoms and limiting viral transmission. The immune response to norovirus is not completely understood and mechanistic studies have been hindered by lack of a robust cell culture system. In recent years, the human intestinal enteroid/human intestinal organoid system (HIE/HIO) has enabled successful human norovirus replication. Cells derived from HIE have also successfully been subjected to genetic manipulation using viral vectors as well as CRISPR/Cas9 technology, thereby allowing studies to identify antiviral signaling pathways important in controlling norovirus infection. RNA sequencing using HIE cells has been used to investigate the transcriptional landscape during norovirus infection and to identify antiviral genes important in infection. Other cell culture platforms such as the microfluidics-based gut-on-chip technology in combination with the HIE/HIO system also have the potential to address fundamental questions on innate immunity to human norovirus. In this review, we highlight the recent advances in understanding the innate immune response to human norovirus infections in the HIE system, including the application of advanced molecular technologies that have become available in recent years such as the CRISPR/Cas9 and RNA sequencing, as well as the potential application of single cell transcriptomics, viral proteomics, and gut-on-a-chip technology to further elucidate innate immunity to norovirus. |
Descriptive Evaluation of Antibody Responses to SARS-CoV-2 Infection in Plasma and Gingival Crevicular Fluid in a Nursing Home Cohort-Arkansas, June-August 2020.
Brown NE , Lyons AK , Schuh AJ , Stumpf MM , Harcourt JL , Tamin A , Rasheed MAU , Mills L , Lester SN , Thornburg NJ , Nguyen K , Costantini V , Vinjé J , Huang JY , Gilbert SE , Gable P , Bollinger S , Sabour S , Beshearse E , Surie D , Biedron C , Gregory CJ , Clemmons NS , Whitaker B , Coughlin MM , Seely KA , Garner K , Gulley T , Haney T , Kothari A , Patil N , Halpin AL , McDonald LC , Kutty PK , Brown AC . Infect Control Hosp Epidemiol 2021 43 (11) 1-24 OBJECTIVE: Characterize and compare SARS-CoV-2-specific immune responses in plasma and gingival crevicular fluid (GCF) from nursing home residents during and after natural infection. DESIGN: Prospective cohort. SETTING: Nursing home. PARTICIPANTS: SARS-CoV-2-infected nursing home residents. METHODS: A convenience sample of 14 SARS-CoV-2-infected nursing home residents, enrolled 4-13 days after real-time reverse transcription polymerase chain reaction diagnosis, were followed for 42 days. Post diagnosis, plasma SARS-CoV-2-specific pan-Immunoglobulin (Ig), IgG, IgA, IgM, and neutralizing antibodies were measured at 5 timepoints and GCF SARS-CoV-2-specific IgG and IgA were measured at 4 timepoints. RESULTS: All participants demonstrated immune responses to SARS-CoV-2 infection. Among 12 phlebotomized participants, plasma was positive for pan-Ig and IgG in all 12, neutralizing antibodies in 11, IgM in 10, and IgA in 9. Among 14 participants with GCF specimens, GCF was positive for IgG in 13 and IgA in 12. Immunoglobulin responses in plasma and GCF had similar kinetics; median times to peak antibody response was similar across specimen types (4 weeks for IgG; 3 weeks for IgA). Participants with pan-Ig, IgG, and IgA detected in plasma and GCF IgG remained positive through this evaluation's end 46-55 days post-diagnosis. All participants were viral culture negative by the first detection of antibodies. CONCLUSIONS: Nursing home residents had detectable SARS-CoV-2 antibodies in plasma and GCF after infection. Kinetics of antibodies detected in GCF mirrored those from plasma. Non-invasive GCF may be useful for detecting and monitoring immunologic responses in populations unable or unwilling to be phlebotomized. |
Preadaptation of pandemic GII.4 noroviruses in unsampled virus reservoirs years before emergence.
Ruis C , Lindesmith LC , Mallory ML , Brewer-Jensen PD , Bryant JM , Costantini V , Monit C , Vinjé J , Baric RS , Goldstein RA , Breuer J . Virus Evol 2020 6 (2) veaa067 The control of re-occurring pandemic pathogens requires understanding the origins of new pandemic variants and the factors that drive their global spread. This is especially important for GII.4 norovirus, where vaccines under development offer promise to prevent hundreds of millions of annual gastroenteritis cases. Previous studies have hypothesized that new GII.4 pandemic viruses arise when previously circulating pandemic or pre-pandemic variants undergo substitutions in antigenic regions that enable evasion of host population immunity, as described by conventional models of antigenic drift. In contrast, we show here that the acquisition of new genetic and antigenic characteristics cannot be the proximal driver of new pandemics. Pandemic GII.4 viruses diversify and spread over wide geographical areas over several years prior to simultaneous pandemic emergence of multiple lineages, indicating that the necessary sequence changes must have occurred before diversification, years prior to pandemic emergence. We confirm this result through serological assays of reconstructed ancestral virus capsids, demonstrating that by 2003, the ancestral 2012 pandemic strain had already acquired the antigenic characteristics that allowed it to evade prevailing population immunity against the previous 2009 pandemic variant. These results provide strong evidence that viral genetic changes are necessary but not sufficient for GII.4 pandemic spread. Instead, we suggest that it is changes in host population immunity that enable pandemic spread of an antigenically preadapted GII.4 variant. These results indicate that predicting future GII.4 pandemic variants will require surveillance of currently unsampled reservoir populations. Furthermore, a broadly acting GII.4 vaccine will be critical to prevent future pandemics. |
Human intestinal enteroids to evaluate human norovirus GII.4 inactivation by aged-green tea
Randazzo W , Costantini V , Morantz EK , Vinje J . Front Microbiol 2020 11 1917 Human noroviruses are the leading cause of epidemic and sporadic acute gastroenteritis worldwide and the most common cause of foodborne illness in the United States. Several natural compounds, such as aged-green tea extract (aged-GTE), have been suggested as ingestible antiviral agents against human norovirus based on data using murine norovirus and feline calicivirus as surrogates. However, in vitro data showing their effectiveness against infectious human norovirus are lacking. We tested the activity of aged-GTE to inhibit human norovirus in a human intestinal enteroids (HIEs) model and Tulane virus in LLC-monkey kidney (LLC-MK2) cell culture. HIE monolayers pretreated with aged-GTE at different temperatures showed complete inhibition of human norovirus GII.4 replication at concentrations as low as 1.0 mg/ml for 37degreeC, 1.75 mg/ml for 21degreeC, and 2.5 mg/ml for 7degreeC. In contrast, a moderate decrease in Tulane virus infectivity of 0.85, 0.75, and 0.65 log TCID50/ml was observed for 2.5 mg/ml aged-GTE at 37, 21, and 7degreeC, respectively. Our findings demonstrate that GTE could be an effective natural compound against human norovirus GII.4, while only minimally effective against Tulane virus. |
Virus-Host Interactions Between Nonsecretors and Human Norovirus.
Lindesmith LC , Brewer-Jensen PD , Mallory ML , Jensen K , Yount BL , Costantini V , Collins MH , Edwards CE , Sheahan TP , Vinje J , Baric RS . Cell Mol Gastroenterol Hepatol 2020 10 (2) 245-267 BACKGROUND AND AIMS: Human norovirus infection is the leading cause of acute gastroenteritis. Genetic polymorphisms, mediated by the FUT2 gene (secretor enzyme), define strain susceptibility. Secretors express a diverse set of fucosylated histoblood group antigen carbohydrates (HBGA) on mucosal cells; non-secretors (FUT2(-/-)) express a limited array of HBGAs. Thus, non-secretors have less diverse norovirus strain infections, including resistance to the epidemiologically dominant GII.4 strains. As future human norovirus vaccines will be comprised of GII.4 antigen and since secretor phenotype impacts GII.4 infection and immunity, non-secretors may immunologically mimic young children in response to GII.4 vaccination, providing a needed model to study cross-protection in the context of limited pre-exposure. METHODS: Utilizing specimens collected from the first characterized non- secretor cohort naturally infected with GII.2 human norovirus, we evaluated the breadth of serological immunity by surrogate neutralization assays, and cellular activation and cytokine production by flow cytometry. RESULTS: GII.2 infection resulted in broad antibody and cellular immunity activation that persisted for at least 30 days for T cells, monocytes and dendritic cells and for 180 days for blocking antibody. Multiple cellular lineages expressing IFN-gamma and TNF-alpha dominated the response. Both T cell and B cell responses were cross-reactive with other GII strains, but not GI strains. To promote entry mechanisms, inclusion of bile acids was essential for GII.2 binding to non-secretor HBGAs. CONCLUSION: These data support development of within-genogroup cross-reactive antibody and T cell immunity, key outcomes that may provide the foundation for eliciting broad immune responses following GII.4 vaccination in individuals with limited GII.4 immunity, including young children. |
Molecular Epidemiology of Norovirus Outbreaks in Argentina, 2013-2018.
Degiuseppe JI , Barclay L , Gomes KA , Costantini V , Vinje J , Stupka JA . J Med Virol 2020 92 (8) 1330-1333 Noroviruses are a leading cause of endemic and epidemic acute gastroenteritis in all age groups. However, in Latin America there are limited and updated data regarding circulating genotypes. The aim of this study was to assess the prevalence and genetic diversity of norovirus outbreaks in Argentina from 2013-2018. Stool samples from 29 AGE outbreaks were available for viral testing. Norovirus was detected in samples from 18 (62.1%) outbreaks (2 GI and 16 GII). Both GI outbreaks were typed as GI.6[P11] whereas 10 different GII genotypes were detected, in which GII.4 viruses were the most frequently detected (29.4%, associated with GII.P31 and GII.P16) followed by GII.1[P33] and GII.6[P7] (17.6% each). Like GII.4 viruses, GII.2 viruses were also detected in association with different polymerases (GII.P2 and GII.P16). Our findings underscore the importance of dual RdRp-VP1 typing since recombinant strains with new polymerase sequences emerge frequently suggesting a possible role in improved fitness of these viruses. This study represents the most recent multi-year assessment of the molecular epidemiology of norovirus strains associated with AGE outbreaks in Argentina. Molecular surveillance of norovirus has to be considered to monitor possible changes in dominant genotypes which may assist to inform the formulation of future vaccines. This article is protected by copyright. All rights reserved. |
Humoral and mucosal immune responses to human norovirus in the elderly
Costantini VP , Cooper EM , Hardaker HL , Lee LE , DeBess EE , Cieslak PR , Hall AJ , Vinje J . J Infect Dis 2020 221 (11) 1864-1874 BACKGROUND: Most information on mucosal and systemic immune response to norovirus infection is derived from human challenge studies, birth cohort studies, or vaccine trials in healthy adults. However, few data are available on immune responses to norovirus in the elderly. MATERIALS: To study the mucosal and systemic immune response against norovirus, 43 long-term care facilities (LTCFs) were enrolled prospectively in 2010-2014. Baseline saliva samples were collected from 17 facilities and from cases and controls up to day 84 from 10 outbreaks as well as acute and convalescent sera. RESULTS: Norovirus-specific IgA levels in baseline saliva samples were low and increased in both symptomatic patients and asymptomatic shedders at day 5 after onset. ROC analysis correctly assigned prior norovirus infection in 23 (92%) of 25 participants. Cases and asymptomatic shedders showed seroconversion for IgG (80%), IgA (78%) and blockade antibodies (87%). Salivary IgA levels strongly correlated with increased convalescent serum IgA titers and blockade antibodies. CONCLUSIONS: Salivary IgA levels strongly correlated with serum IgA titers and blockade antibodies and remained elevated 3 months after a norovirus outbreak. A single salivary sample collected on day 14 could be used to identify recent infection in a suspected outbreak or to monitor population salivary IgA. |
Enteropathogen antibody dynamics and force of infection among children in low-resource settings
Arnold BF , Martin DL , Juma J , Mkocha H , Ochieng JB , Cooley GM , Omore R , Goodhew EB , Morris JF , Costantini V , Vinje J , Lammie PJ , Priest JW . Elife 2019 8 Little is known about enteropathogen seroepidemiology among children in low-resource settings. We measured serological IgG responses to eight enteropathogens (Giardia intestinalis, Cryptosporidium parvum, Entamoeba histolytica, Salmonella enterica, enterotoxigenic Escherichia coli, Vibrio cholerae, Campylobacter jejuni, norovirus) in cohorts from Haiti, Kenya, and Tanzania. We studied antibody dynamics and force of infection across pathogens and cohorts. Enteropathogens shared common seroepidemiologic features that enabled between-pathogen comparisons of transmission. Overall, exposure was intense: for most pathogens the window of primary infection was <3 years old; for highest transmission pathogens primary infection occurred within the first year. Longitudinal profiles demonstrated significant IgG boosting and waning above seropositivity cutoffs, underscoring the value of longitudinal designs to estimate force of infection. Seroprevalence and force of infection were rank-preserving across pathogens, illustrating the measures provide similar information about transmission heterogeneity. Our findings suggest antibody response can be used to measure population-level transmission of diverse enteropathogens in serologic surveillance. |
Sera Antibody Repertoire Analyses Reveal Mechanisms of Broad and Pandemic Strain Neutralizing Responses after Human Norovirus Vaccination.
Lindesmith LC , McDaniel JR , Changela A , Verardi R , Kerr SA , Costantini V , Brewer-Jensen PD , Mallory ML , Voss WN , Boutz DR , Blazeck JJ , Ippolito GC , Vinje J , Kwong PD , Georgiou G , Baric RS . Immunity 2019 50 (6) 1530-1541.e8 Rapidly evolving RNA viruses, such as the GII.4 strain of human norovirus (HuNoV), and their vaccines elicit complex serological responses associated with previous exposure. Specific correlates of protection, moreover, remain poorly understood. Here, we report the GII.4-serological antibody repertoire-pre- and post-vaccination-and select several antibody clonotypes for epitope and structural analysis. The humoral response was dominated by GII.4-specific antibodies that blocked ancestral strains or by antibodies that bound to divergent genotypes and did not block viral-entry-ligand interactions. However, one antibody, A1431, showed broad blockade toward tested GII.4 strains and neutralized the pandemic GII.P16-GII.4 Sydney strain. Structural mapping revealed conserved epitopes, which were occluded on the virion or partially exposed, allowing for broad blockade with neutralizing activity. Overall, our results provide high-resolution molecular information on humoral immune responses after HuNoV vaccination and demonstrate that infection-derived and vaccine-elicited antibodies can exhibit broad blockade and neutralization against this prevalent human pathogen. |
Human norovirus replication in human intestinal enteroids as model to evaluate virus inactivation
Costantini V , Morantz EK , Browne H , Ettayebi K , Zeng XL , Atmar RL , Estes MK , Vinje J . Emerg Infect Dis 2018 24 (8) 1453-1464 Human noroviruses are a leading cause of epidemic and endemic acute gastroenteritis worldwide and a leading cause of foodborne illness in the United States. Recently, human intestinal enteroids (HIEs) derived from human small intestinal tissue have been shown to support human norovirus replication. We implemented the HIE system in our laboratory and tested the effect of chlorine and alcohols on human norovirus infectivity. Successful replication was observed for 6 norovirus GII genotypes and was dependent on viral load and genotype of the inoculum. GII.4 viruses had higher replication levels than other genotypes. Regardless of concentration or exposure time, alcohols slightly reduced, but did not completely inactivate, human norovirus. In contrast, complete inactivation of the 3 GII.4 viruses occurred at concentrations as low as 50 ppm of chlorine. Taken together, our data confirm the successful replication of human noroviruses in HIEs and their utility as tools to study norovirus inactivation strategies. |
High hand contamination rates during norovirus outbreaks in long-term care facilities
Park GW , Williamson KJ , DeBess E , Cieslak PR , Gregoricus N , De Nardo E , Fricker C , Costantini V , Vinje J . Infect Control Hosp Epidemiol 2018 39 (2) 1-3 We examined norovirus contamination on hands of ill patients during 12 norovirus outbreaks in 12 long-term care facilities (LTCFs). The higher frequency and norovirus titers on hands of residents compared to hands of heathcare workers highlights the importance of adhering to appropriate hand hygiene practices during norovirus outbreaks in LTCFs. Infect Control Hosp Epidemiol 2018;1-3. |
Host Genetic Susceptibility to Enteric Viruses: A Systematic Review and Metaanalysis.
Kambhampati A , Payne DC , Costantini V , Lopman BA . Clin Infect Dis 2015 62 (1) 11-18 BACKGROUND: Norovirus and rotavirus are prominent enteric viruses responsible for severe acute gastroenteritis disease burden around the world. Both viruses recognize and bind to histo-blood group antigens, which are expressed by the fucosyltransferase 2 (FUT2) gene. Individuals with a functional FUT2 gene are termed "secretors." FUT2 polymorphisms may influence viral binding patterns and, therefore, may influence host susceptibility to infection by these viruses. METHODS: We performed a systematic review of the published literature on this topic. Data were abstracted and compiled for descriptive analyses and metaanalyses. We estimated pooled odds ratios (ORs) for infection using random-effects models. RESULTS: We found that secretors were 9.9 times (95% confidence interval [CI], 3.9-24.8) as likely to be infected with genogroup II.4 noroviruses and 2.2 times as likely to be infected with genogroup II non-4 noroviruses (95% CI, 1.2-4.2) compared with nonsecretors. Secretors were also 26.6 times more susceptible to infections from P[8]-type rotaviruses compared with nonsecretors (95% CI, 8.3-85.0). CONCLUSIONS: Our analyses indicate that host genetic susceptibility to norovirus and rotavirus infection may be strain specific. As strain distribution and the proportion of genetic phenotypes vary in different countries, future studies should focus on differences in susceptibility among various ethnicities. Knowledge of innate susceptibility to rotavirus and norovirus can lead to improved understanding of both vaccine performance and individual risk of disease. |
Epidemiologic, Virologic, and Host Genetic Factors of Norovirus Outbreaks in Long-term Care Facilities.
Costantini VP , Cooper EM , Hardaker HL , Lee LE , Bierhoff M , Biggs C , Cieslak PR , Hall AJ , Vinje J . Clin Infect Dis 2015 62 (1) 1-10 BACKGROUND: In the Unites States, long-term care facilities (LTCFs) are the most common setting for norovirus outbreaks. These outbreaks provide a unique opportunity to better characterize the viral and host characteristics of norovirus disease. METHODS: We enrolled 43 LTCFs prospectively to study the epidemiology, virology, and genetic host factors of naturally occurring norovirus outbreaks. Acute and convalescent stool, serum, and saliva samples from cases, exposed and nonexposed controls were collected. Norovirus infection was confirmed using quantitative polymerase chain reaction testing of stool samples or 4-fold increase in serum antibody titers. The presence of histo-blood group antigens (secretor, ABO, and Lewis type) was determined in saliva. RESULTS: Sixty-two cases, 34 exposed controls, and 18 nonexposed controls from 10 norovirus outbreaks were enrolled. Forty-six percent of acute, 27% of convalescent case, and 11% of control stool samples tested norovirus positive. Outbreak genotypes were GII.4 (Den Haag, n = 3; New Orleans, n = 4; and Sydney, n = 2) and GI.1 (n = 1). Viral load in GII.4 Sydney outbreaks was significantly higher than in outbreaks caused by other genotypes; cases and controls shed similar amounts of virus. Forty-seven percent of cases shed virus for ≥21 days. Symptomatic infections with GII.4 Den Haag and GII.4 New Orleans were detected among nonsecretor individuals. CONCLUSIONS: Almost half of all symptomatic individuals shed virus for at least 21 days. Viral load was highest in GII.4 viruses that most recently emerged; these viruses also infect the nonsecretor population. These findings will help to guide development of targeted prevention and control measures in the elderly. |
Human norovirus culture in B cells
Jones MK , Grau KR , Costantini V , Kolawole AO , de Graaf M , Freiden P , Graves CL , Koopmans M , Wallet SM , Tibbetts SA , Schultz-Cherry S , Wobus CE , Vinje J , Karst SM . Nat Protoc 2015 10 (12) 1939-47 Human noroviruses (HuNoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HuNoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HuNoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-Sydney HuNoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HuNoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. Analysis of infection or attachment samples, including RNA extraction and RT-qPCR, requires approximately 6 h. |
Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.
Neafsey DE , Waterhouse RM , Abai MR , Aganezov SS , Alekseyev MA , Allen JE , Amon J , Arca B , Arensburger P , Artemov G , Assour LA , Basseri H , Berlin A , Birren BW , Blandin SA , Brockman AI , Burkot TR , Burt A , Chan CS , Chauve C , Chiu JC , Christensen M , Costantini C , Davidson VL , Deligianni E , Dottorini T , Dritsou V , Gabriel SB , Guelbeogo WM , Hall AB , Han MV , Hlaing T , Hughes DS , Jenkins AM , Jiang X , Jungreis I , Kakani EG , Kamali M , Kemppainen P , Kennedy RC , Kirmitzoglou IK , Koekemoer LL , Laban N , Langridge N , Lawniczak MK , Lirakis M , Lobo NF , Lowy E , MacCallum RM , Mao C , Maslen G , Mbogo C , McCarthy J , Michel K , Mitchell SN , Moore W , Murphy KA , Naumenko AN , Nolan T , Novoa EM , O'Loughlin S , Oringanje C , Oshaghi MA , Pakpour N , Papathanos PA , Peery AN , Povelones M , Prakash A , Price DP , Rajaraman A , Reimer LJ , Rinker DC , Rokas A , Russell TL , Sagnon N , Sharakhova MV , Shea T , Simao FA , Simard F , Slotman MA , Somboon P , Stegniy V , Struchiner CJ , Thomas GW , Tojo M , Topalis P , Tubio JM , Unger MF , Vontas J , Walton C , Wilding CS , Willis JH , Wu YC , Yan G , Zdobnov EM , Zhou X , Catteruccia F , Christophides GK , Collins FH , Cornman RS , Crisanti A , Donnelly MJ , Emrich SJ , Fontaine MC , Gelbart W , Hahn MW , Hansen IA , Howell PI , Kafatos FC , Kellis M , Lawson D , Louis C , Luckhart S , Muskavitch MA , Ribeiro JM , Riehle MA , Sharakhov IV , Tu Z , Zwiebel LJ , Besansky NJ . Science 2015 347 (6217) 1258522 Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure