Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-30 (of 81 Records) |
Query Trace: Benitez A[original query] |
---|
Safety of the seasonal influenza vaccine in 2 successive pregnancies
Getahun D , Liu IA , Sy LS , Glanz JM , Zerbo O , Vazquez-Benitez G , Nelson JC , Williams JT , Hambidge SJ , McLean HQ , Irving SA , Weintraub ES , Qian L . JAMA Netw Open 2024 7 (9) e2434857 IMPORTANCE: Although influenza vaccination has been found to be safe in pregnancy, few studies have assessed repeated influenza vaccination over successive pregnancies, including 2 vaccinations in a year, in terms of adverse perinatal outcomes. OBJECTIVE: To examine the association of seasonal influenza vaccination across successive pregnancies with adverse perinatal outcomes and whether the association varies by interpregnancy interval (IPI) and vaccine type (quadrivalent or trivalent). DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study included individuals with at least 2 successive singleton live-birth pregnancies between January 1, 2004, and December 31, 2018. Data were collected from the Vaccine Safety Datalink, a collaboration between the Centers for Disease Control and Prevention and integrated health care organizations. Data analysis was performed between January 8, 2021, and July 17, 2024. EXPOSURES: Influenza vaccination was identified using vaccine administration codes. The vaccinated cohort consisted of people who received influenza vaccines during the influenza season (August 1 through April 30) in 2 successive pregnancies. The comparator cohort consisted of people identified as unvaccinated during both pregnancies. MAIN OUTCOMES AND MEASURES: Main outcomes were risk of preeclampsia or eclampsia, placental abruption, fever, preterm birth, preterm premature rupture of membranes, chorioamnionitis, and small for gestational age among individuals with and without vaccination in both pregnancies. Adjusted relative risks (RRs) from Poisson regression were used to assess the magnitude of associations. The associations with adverse outcomes by IPI and vaccine type were evaluated. RESULTS: Of 82 055 people with 2 singleton pregnancies between 2004 and 2018, 44 879 (54.7%) had influenza vaccination in successive pregnancies. Mean (SD) age at the start of the second pregnancy was 32.2 (4.6) years for vaccinated individuals and 31.2 (5.0) years for unvaccinated individuals. Compared with individuals not vaccinated in both pregnancies, vaccination in successive pregnancies was not associated with increased risk of preeclampsia or eclampsia (adjusted RR, 1.10; 95% CI, 0.99-1.21), placental abruption (adjusted RR, 1.01; 95% CI, 0.84-1.21), fever (adjusted RR, 0.87; 95% CI, 0.47-1.59), preterm birth (adjusted RR, 0.83; 95% CI, 0.78-0.89), preterm premature rupture of membranes (RR, 1.00; 95% CI, 0.94-1.06), chorioamnionitis (adjusted RR, 1.03; 95% CI, 0.90-1.18), or small for gestational age birth (adjusted RR, 0.99; 95% CI, 0.93-1.05). IPI and vaccine type did not modify the observed associations. CONCLUSIONS AND RELEVANCE: In this large cohort study of successive pregnancies, influenza vaccination was not associated with increased risk of adverse perinatal outcomes, irrespective of IPI and vaccine type. Findings support recommendations to vaccinate pregnant people or those who might be pregnant during the influenza season. |
Effectiveness of the original monovalent and bivalent COVID-19 vaccines against COVID-19-associated emergency department and urgent care encounters in pregnant persons who were not immunocompromised: VISION Network, June 2022-August 2023
Avrich Ciesla A , Lazariu V , Dascomb K , Irving SA , Dixon BE , Gaglani M , Naleway AL , Grannis SJ , Ball S , Kharbanda AB , Vazquez-Benitez G , Klein NP , Natarajan K , Ong TC , Embi PJ , Fleming-Dutra KE , Link-Gelles R , Zerbo O . Open Forum Infect Dis 2024 11 (9) ofae481 Pregnant people face increased risk of severe COVID-19. Current guidelines recommend updated COVID-19 vaccination (2023-2024) for those aged ≥6 months, irrespective of pregnancy status. To refine recommendations for pregnant people, further data are needed. Using a test-negative design, we evaluated COVID-19 vaccine effectiveness against medically attended COVID-19 with COVID-19-like illness among pregnant people aged 18 to 45 years during June 2022 to August 2023. When doses were received during pregnancy, vaccine effectiveness was 52% (95% CI, 29%-67%); when received <6 months prior to pregnancy, 28% (95% CI, 11%-42%); and when received ≥6 months prior to pregnancy, 6% (95% CI, -11% to 21%). Pregnant people should stay up-to-date with recommended COVID-19 vaccination. |
Tinnitus after COVID-19 vaccination: Findings from the vaccine adverse event reporting system and the vaccine safety datalink
Yih WK , Duffy J , Su JR , Bazel S , Fireman B , Hurley L , Maro JC , Marquez P , Moro P , Nair N , Nelson J , Smith N , Sundaram M , Vasquez-Benitez G , Weintraub E , Xu S , Shimabukuro T . Am J Otolaryngol 2024 45 (6) 104448 PURPOSE: To assess the occurrence of tinnitus following COVID-19 vaccination using data mining and descriptive analyses in two U.S. vaccine safety surveillance systems. METHODS: Reports of tinnitus after COVID-19 vaccination to the Vaccine Adverse Event Reporting System (VAERS) from 2020 through 2024 were examined using empirical Bayesian data mining and by calculating reporting rates. In the Vaccine Safety Datalink (VSD) population, ICD-10 coded post-vaccination medical visits were examined using tree-based data mining, and tinnitus visit incidence rates during post-vaccination days 1-140 were calculated by age group for COVID-19 vaccines and for comparison, influenza vaccine. RESULTS: VAERS data mining did not find disproportionate reporting of tinnitus for any COVID-19 vaccine. VAERS received up to 84.82 tinnitus reports per million COVID-19 vaccine doses administered. VSD tree-based data mining found no signals for tinnitus. VSD tinnitus visit incidence rates after COVID-19 vaccines were similar to those after influenza vaccine except for the group aged ≥65 years (Moderna COVID-19 vaccine, 165 per 10,000 person-years; Pfizer-BioNTech COVID-19 vaccine, 154; influenza vaccine, 135). CONCLUSIONS: Overall, these findings do not support an increased risk of tinnitus following COVID-19 vaccination but cannot definitively exclude the possibility. Descriptive comparisons between COVID-19 and influenza vaccines were limited by lack of adjustment for potential confounding factors. |
COVID-19 vaccination in the first trimester and major structural birth defects among live births
Kharbanda EO , DeSilva MB , Lipkind HS , Romitti PA , Zhu J , Vesco KK , Boyce TG , Daley MF , Fuller CC , Getahun D , Jackson LA , Williams JTB , Zerbo O , Weintraub ES , Vazquez-Benitez G . JAMA Pediatr 2024 IMPORTANCE: COVID-19 vaccination is recommended throughout pregnancy to prevent pregnancy complications and adverse birth outcomes associated with COVID-19 disease. To date, data on birth defects after first-trimester vaccination are limited. OBJECTIVE: To evaluate the associated risks for selected major structural birth defects among live-born infants after first-trimester receipt of a messenger RNA (mRNA) COVID-19 vaccine. DESIGN, SETTING, AND PARTICIPANTS: This was a retrospective cohort study of singleton pregnancies with estimated last menstrual period (LMP) between September 13, 2020, and April 3, 2021, and ending in live birth from March 5, 2021, to January 25, 2022. Included were data from 8 health systems in California, Oregon, Washington, Colorado, Minnesota, and Wisconsin in the Vaccine Safety Datalink. EXPOSURES: Receipt of 1 or 2 mRNA COVID-19 vaccine doses in the first trimester, as part of the primary series. MAIN OUTCOMES AND MEASURES: Selected major structural birth defects among live-born infants, identified from electronic health data using validated algorithms, with neural tube defects confirmed via medical record review. RESULTS: Among 42 156 eligible pregnancies (mean [SD] maternal age, 30.9 [5.0] years) 7632 (18.1%) received an mRNA COVID-19 vaccine in the first trimester. Of 34 524 pregnancies without a first-trimester COVID-19 vaccination, 2045 (5.9%) were vaccinated before pregnancy, 13 494 (39.1%) during the second or third trimester, and 18 985 (55.0%) were unvaccinated before or during pregnancy. Compared with pregnant people unvaccinated in the first trimester, those vaccinated in the first trimester were older (mean [SD] age, 32.3 [4.5] years vs 30.6 [5.1] years) and differed by LMP date. After applying stabilized inverse probability weighting, differences in baseline characteristics between vaccinated and unvaccinated pregnant persons in the first trimester were negligible (standardized mean difference <0.20). Selected major structural birth defects occurred in 113 infants (1.48%) after first-trimester mRNA COVID-19 vaccination and in 488 infants (1.41%) without first-trimester vaccine exposure; the adjusted prevalence ratio was 1.02 (95% CI, 0.78-1.33). In secondary analyses, with major structural birth defect outcomes grouped by organ system, no significant differences between infants vaccinated or unvaccinated in the first trimester were identified. CONCLUSIONS AND RELEVANCE: In this multisite cohort study, among live-born infants, first-trimester mRNA COVID-19 vaccine exposure was not associated with an increased risk for selected major structural birth defects. |
Coronavirus Disease 2019 (COVID-19) vaccination and stillbirth in the Vaccine Safety Datalink
Denoble AE , Vazquez-Benitez G , Sheth SS , Ackerman-Banks CM , DeSilva MB , Zhu J , Daley MF , Getahun D , Klein NP , Vesco KK , Irving SA , Nelson J , Williams JTB , Hambidge SJ , Donahue JG , Weintraub ES , Kharbanda EO , Lipkind HS . Obstet Gynecol 2024 OBJECTIVE: Coronavirus disease 2019 (COVID-19) vaccination is recommended in pregnancy to reduce the risk of severe morbidity from COVID-19. However, vaccine hesitancy persists among pregnant people, with risk of stillbirth being a primary concern. Our objective was to examine the association between COVID-19 vaccination and stillbirth. METHODS: We performed a matched case-control study in the Vaccine Safety Datalink (VSD). Stillbirths and live births were selected from singleton pregnancies among persons aged 16-49 years with at least one prenatal, delivery, or postpartum visit at eight participating VSD sites. Stillbirths identified through diagnostic codes were adjudicated to confirm the outcome, date, and gestational age at fetal death. Confirmed antepartum stillbirths that occurred between February 14, 2021, and February 27, 2022, then were matched 1:3 to live births by pregnancy start date, VSD site, and maternal age at delivery. Associations among antepartum stillbirth and COVID-19 vaccination in pregnancy, vaccine manufacturer, number of vaccine doses received, and vaccination within 6 weeks before stillbirth (or index date in live births) were evaluated using conditional logistic regression. RESULTS: In the matched analysis of 276 confirmed antepartum stillbirths and 822 live births, we found no association between COVID-19 vaccination during pregnancy and stillbirth (38.4% stillbirths vs 39.3% live births in vaccinated individuals, adjusted odds ratio [aOR] 1.02, 95% CI, 0.76-1.37). Furthermore, no association between COVID-19 vaccination and stillbirth was detected by vaccine manufacturer (Moderna: aOR 1.00, 95% CI, 0.62-1.62; Pfizer-BioNTech: aOR 1.00, 95% CI, 0.69-1.43), number of vaccine doses received during pregnancy (1 vs 0: aOR 1.17, 95% CI, 0.75-1.83; 2 vs 0: aOR 0.98, 95% CI, 0.81-1.17), or COVID-19 vaccination within the 6 weeks before stillbirth or index date compared with no vaccination (aOR 1.16, 95% CI, 0.74-1.83). CONCLUSION: No association was found between COVID-19 vaccination and stillbirth. These findings further support recommendations for COVID-19 vaccination in pregnancy. |
Implementation of a rapid diagnostic assay package for cryptococcosis, histoplasmosis and tuberculosis in people living with HIV in Paraguay
Aguilar G , Lopez G , Sued O , Medina N , Caceres DH , Pereira J , Jordan A , Lezcano V , Vicenti C , Benitez G , Samudio T , Perez F . BMC Infect Dis 2024 24 (1) 406 BACKGROUND: Opportunistic infections (OIs) are common causes of mortality among people living with HIV (PLHIV). We determined prevalence and 30-day mortality due to histoplasmosis, cryptococcosis, and TB in PLHIV with advanced HIV disease (AHD). METHODS: PLHIV 18 years and older, with a CD4 + T-cell count of less than 350 cells/mm3 newly diagnosed with HIV infection or re-engaged in care after being without ART for more than 90 days (Group A). The second group included symptomatic PLHIV regardless of ART status or CD4 + T-cell count (Group B); all followed for 30 days. Detection of Histoplasma Ag (HisAg) in urine was done by enzyme immunoassay (EIA), Cryptococcus antigen (CrAg) was detected in serum and cerebrospinal fluid (CSF) specimens by lateral flow assay (LFA), and lipoarabinomannan (LAM) detection in urine was by LFA (TB LAM) and in sputum by GeneXpert for diagnosis of Mycobacterium infections. RESULTS: From August 2021 to June 2022, 491 PLHIV were enrolled; 482 (98%) had a CD4 + T-cell result, and 381 patients (79%) were classified with AHD according to CD4 + T-cell count (< 200 CD4/mm(3)). Frequency of an OI was 38% (n = 145/381). Antigen test positivity rate was 16% (72/467) for TB-LAM, 9% (43/464) for HisAg, and 11% (51/484) for CrAg. Twenty-one of 34 (62%) patients receiving CSF CrAg tests were positive, confirming meningitis. Significant differences in 30-day mortality were observed in patients with an OI (16%) vs. no OI (7%) (p = 0.002). Mortality was highest in patients with histoplasmosis (25%), co-infection (22%), cryptococcosis (18% overall; 19% for cryptococcal meningitis), and TB (10%). CONCLUSIONS: TB and fungal OIs, including co-infection, were common in PLHIV in Paraguay and had high associated mortality. Laboratories and health facilities need access to CD4 + T-cell testing and rapid diagnostic assays. |
Obstetric complications and birth outcomes after antenatal coronavirus disease 2019 (COVID-19) vaccination
Vesco KK , Denoble AE , Lipkind HS , Kharbanda EO , DeSilva MB , Daley MF , Getahun D , Zerbo O , Naleway AL , Jackson L , Williams JTB , Boyce TG , Fuller CC , Weintraub ES , Vazquez-Benitez G . Obstet Gynecol 2024 OBJECTIVE: To evaluate the association between antenatal messenger RNA (mRNA) coronavirus disease 2019 (COVID-19) vaccination and risk of adverse pregnancy outcomes. METHODS: This was a retrospective cohort study of individuals with singleton pregnancies with live deliveries between June 1, 2021, and January 31, 2022, with data available from eight integrated health care systems in the Vaccine Safety Datalink. Vaccine exposure was defined as receipt of one or two mRNA COVID-19 vaccine doses (primary series) during pregnancy. Outcomes were preterm birth (PTB) before 37 weeks of gestation, small-for-gestational age (SGA) neonates, gestational diabetes mellitus (GDM), gestational hypertension, and preeclampsia-eclampsia-HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome. Outcomes in individuals vaccinated were compared with those in propensity-matched individuals with unexposed pregnancies. Adjusted hazard ratios (aHRs) and 95% CIs were estimated for PTB and SGA using a time-dependent covariate Cox model, and adjusted relative risks (aRRs) were estimated for GDM, gestational hypertension, and preeclampsia-eclampsia-HELLP syndrome using Poisson regression with robust variance. RESULTS: Among 55,591 individuals eligible for inclusion, 23,517 (42.3%) received one or two mRNA COVID-19 vaccine doses during pregnancy. Receipt of mRNA COVID-19 vaccination varied by maternal age, race, Hispanic ethnicity, and history of COVID-19. Compared with no vaccination, mRNA COVID-19 vaccination was associated with a decreased risk of PTB (rate: 6.4 [vaccinated] vs 7.7 [unvaccinated] per 100, aHR 0.89; 95% CI, 0.83-0.94). Messenger RNA COVID-19 vaccination was not associated with SGA (8.3 vs 7.4 per 100; aHR 1.06, 95% CI, 0.99-1.13), GDM (11.9 vs 10.6 per 100; aRR 1.00, 95% CI, 0.90-1.10), gestational hypertension (10.8 vs 9.9 per 100; aRR 1.08, 95% CI, 0.96-1.22), or preeclampsia-eclampsia-HELLP syndrome (8.9 vs 8.4 per 100; aRR 1.10, 95% CI, 0.97-1.24). CONCLUSION: Receipt of an mRNA COVID-19 vaccine during pregnancy was not associated with an increased risk of adverse pregnancy outcomes; this information will be helpful for patients and clinicians when considering COVID-19 vaccination in pregnancy. |
Attitudes toward COVID-19 vaccines among pregnant and recently pregnant individuals
Williams JTB , Kurlandsky K , Breslin K , Durfee MJ , Stein A , Hurley L , Shoup JA , Reifler LM , Daley MF , Lewin BJ , Goddard K , Henninger ML , Nelson JC , Vazquez-Benitez G , Hanson KE , Fuller CC , Weintraub ES , McNeil MM , Hambidge SJ . JAMA Netw Open 2024 7 (4) e245479 IMPORTANCE: Pregnant people and infants are at high risk of severe COVID-19 outcomes. Understanding changes in attitudes toward COVID-19 vaccines among pregnant and recently pregnant people is important for public health messaging. OBJECTIVE: To assess attitudinal trends regarding COVID-19 vaccines by (1) vaccination status and (2) race, ethnicity, and language among samples of pregnant and recently pregnant Vaccine Safety Datalink (VSD) members from 2021 to 2023. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional surveye study included pregnant or recently pregnant members of the VSD, a collaboration of 13 health care systems and the US Centers for Disease Control and Prevention. Unvaccinated, non-Hispanic Black, and Spanish-speaking members were oversampled. Wave 1 took place from October 2021 to February 2022, and wave 2 took place from November 2022 to February 2023. Data were analyzed from May 2022 to September 2023. EXPOSURES: Self-reported or electronic health record (EHR)-derived race, ethnicity, and preferred language. MAIN OUTCOMES AND MEASURES: Self-reported vaccination status and attitudes toward monovalent (wave 1) or bivalent Omicron booster (wave 2) COVID-19 vaccines. Sample- and response-weighted analyses assessed attitudes by vaccination status and 3 race, ethnicity, and language groupings of interest. RESULTS: There were 1227 respondents; all identified as female, the mean (SD) age was 31.7 (5.6) years, 356 (29.0%) identified as Black race, 555 (45.2%) identified as Hispanic ethnicity, and 445 (36.3%) preferred the Spanish language. Response rates were 43.5% for wave 1 (652 of 1500 individuals sampled) and 39.5% for wave 2 (575 of 1456 individuals sampled). Respondents were more likely than nonrespondents to be White, non-Hispanic, and vaccinated per EHR. Overall, 76.8% (95% CI, 71.5%-82.2%) reported 1 or more COVID-19 vaccinations; Spanish-speaking Hispanic respondents had the highest weighted proportion of respondents with 1 or more vaccination. Weighted estimates of somewhat or strongly agreeing that COVID-19 vaccines are safe decreased from wave 1 to 2 for respondents who reported 1 or more vaccinations (76% vs 50%; χ21 = 7.8; P < .001), non-Hispanic White respondents (72% vs 43%; χ21 = 5.4; P = .02), and Spanish-speaking Hispanic respondents (76% vs 53%; χ21 = 22.8; P = .002). CONCLUSIONS AND RELEVANCE: Decreasing confidence in COVID-19 vaccine safety in a large, diverse pregnant and recently pregnant insured population is a public health concern. |
Vaccine effectiveness against SARS-CoV-2 related hospitalizations in people who had experienced homelessness or incarceration - findings from the Minnesota EHR Consortium
DeSilva MB , Knowlton G , Rai NK , Bodurtha P , Essien I , Riddles J , Mehari L , Muscoplat M , Lynfield R , Rowley EA , Chamberlain AM , Patel P , Hughes A , Dickerson M , Thompson MG , Griggs EP , Tenforde M , Winkelman TN , Benitez GV , Drawz PE . J Community Health 2023 COVID-19 disproportionately affects people experiencing homelessness or incarceration. While homelessness or incarceration alone may not impact vaccine effectiveness, medical comorbidities along with social conditions associated with homelessness or incarceration may impact estimated vaccine effectiveness. COVID-19 vaccines reduce rates of hospitalization and death; vaccine effectiveness (VE) against severe outcomes in people experiencing homelessness or incarceration is unknown. We conducted a retrospective, observational cohort study evaluating COVID-19 vaccine VE against SARS-CoV-2 related hospitalization (positive SARS-CoV-2 molecular test same week or within 3 weeks prior to hospital admission) among patients who had experienced homelessness or incarceration. We utilized data from 8 health systems in the Minnesota Electronic Health Record Consortium linked to data from Minnesota's immunization information system, Homeless Management Information System, and Department of Corrections. We included patients 18 years and older with a history of experiencing homelessness or incarceration. VE and 95% Confidence Intervals (CI) against SARS-CoV-2 hospitalization were estimated for primary series and one booster dose from Cox proportional hazard models as 100*(1-Hazard Ratio) during August 26, 2021, through October 8, 2022 adjusting for patient age, sex, comorbid medical conditions, and race/ethnicity. We included 80,051 individuals who had experienced homelessness or incarceration. Adjusted VE was 52% (95% CI, 41-60%) among those 22 weeks or more since their primary series, 66% (95% CI, 53-75%) among those less than 22 weeks since their primary series, and 69% (95% CI: 60-76%) among those with one booster. VE estimates were consistently lower during the Omicron predominance period compared with the combined Omicron and Delta periods. Despite higher exposure risk, COVID-19 vaccines provided good effectiveness against SARS-CoV-2 related hospitalizations in persons who have experienced homelessness or incarceration. |
Impact of accounting for correlation between COVID-19 and influenza vaccination in a COVID-19 vaccine effectiveness evaluation using a test-negative design
Payne AB , Ciesla AA , Rowley EAK , Weber ZA , Reese SE , Ong TC , Vazquez-Benitez G , Naleway AL , Klein NP , Embi PJ , Grannis SJ , Kharbanda AB , Gaglani M , Tenforde MW , Link-Gelles R . Vaccine 2023 41 (51) 7581-7586 Test-negative-design COVID-19 vaccine effectiveness (VE) studies use symptomatic SARS-CoV-2-positive individuals as cases and symptomatic SARS-CoV-2-negative individuals as controls to evaluate COVID-19 VE. To evaluate the potential bias introduced by the correlation of COVID-19 and influenza vaccination behaviors, we assessed changes in estimates of VE of bivalent vaccines against COVID-19-associated hospitalizations and emergency department/urgent care (ED/UC) encounters when considering influenza vaccination status or including or excluding influenza-positive controls using data from the multi-state VISION vaccine effectiveness network. Analyses included encounters during October 2022 - February 2023, a period of SARS-CoV-2 and influenza cocirculation. When considering influenza vaccination status or including or excluding influenza-positive controls, COVID-19 VE estimates were robust, with most VE estimates against COVID-19-associated hospitalization and ED/UC encounters changing less than 5 percentage points. Higher proportions of influenza-positive patients among controls, influenza vaccination coverage, or VE could impact these findings; the potential bias should continue to be assessed. |
Racial and ethnic disparities in influenza vaccination coverage among pregnant women in the United States: The contribution of vaccine-related attitudes
Daley MF , Reifler LM , Shoup JA , Glanz JM , Naleway AL , Nelson JC , Williams JTB , McLean HQ , Vazquez-Benitez G , Goddard K , Lewin BJ , Weintraub ES , McNeil MM , Razzaghi H , Singleton JA . Prev Med 2023 177 107751 OBJECTIVE: Racial and ethnic disparities in influenza vaccination coverage among pregnant women in the United States have been documented. This study assessed the contribution of vaccine-related attitudes to coverage disparities. METHODS: Surveys were conducted following the 2019-2020 and 2020-2021 influenza seasons in a US research network. Using electronic health record data to identify pregnant women, random samples were selected for surveying; non-Hispanic Black women and influenza-unvaccinated women were oversampled. Regression-based decomposition analyses were used to assess the contribution of vaccine-related attitudes to racial and ethnic differences in influenza vaccination. Data were combined across survey years, and analyses were weighted and accounted for survey design. RESULTS: Survey response rate was 41.2% (721 of 1748) for 2019-2020 and 39.3% (706 of 1798) for 2020-2021. Self-reported influenza vaccination was higher among non-Hispanic White respondents (79.4% coverage, 95% CI 73.1%-85.7%) than Hispanic (66.2% coverage, 95% CI 52.5%-79.9%) and non-Hispanic Black (55.8% coverage, 95% CI 50.2%-61.4%) respondents. For all racial and ethnic groups, a high proportion (generally >80%) reported being seen for care, recommended for influenza vaccination, and offered vaccination. In decomposition analyses, vaccine-related attitudes (e.g., worry about vaccination causing influenza; concern about vaccine safety and effectiveness) explained a statistically significant portion of the observed racial and ethnic disparities in vaccination. Maternal age, education, and health status were not significant contributors after controlling for vaccine-related attitudes. CONCLUSIONS: In a setting with relatively high influenza vaccination coverage among pregnant women, racial and ethnic disparities in coverage were identified. Vaccine-related attitudes were associated with the disparities observed. |
Genomic analysis of Chlamydia psittaci from a multistate zoonotic outbreak in two chicken processing plants
Wolff BJ , Waller JL , Benitez AJ , Gaines A , Conley AB , Rishishwar L , Chande AT , Morrison SS , Jordan IK , Diaz MH , Winchell JM . J Genomics 2023 11 40-44 Four Chlamydia psittaci isolates were recovered from clinical specimens from ill workers during a multistate outbreak at two chicken processing plants. Whole genome sequencing analyses revealed high similarity to C. psittaci genotype D. The isolates differed from each other by only two single nucleotide polymorphisms, indicating a common source. |
Clinical epidemiology and risk factors for critical outcomes among vaccinated and unvaccinated adults hospitalized with COVID-19-VISION Network, 10 States, June 2021-March 2023
Griggs EP , Mitchell PK , Lazariu V , Gaglani M , McEvoy C , Klein NP , Valvi NR , Irving SA , Kojima N , Stenehjem E , Crane B , Rao S , Grannis SJ , Embi PJ , Kharbanda AB , Ong TC , Natarajan K , Dascomb K , Naleway AL , Bassett E , DeSilva MB , Dickerson M , Konatham D , Fireman B , Allen KS , Barron MA , Beaton M , Arndorfer J , Vazquez-Benitez G , Garg S , Murthy K , Goddard K , Dixon BE , Han J , Grisel N , Raiyani C , Lewis N , Fadel WF , Stockwell MS , Mamawala M , Hansen J , Zerbo O , Patel P , Link-Gelles R , Adams K , Tenforde MW . Clin Infect Dis 2023 BACKGROUND: The epidemiology of COVID-19 continues to develop with emerging variants, expanding population-level immunity, and advances in clinical care. We describe changes in the clinical epidemiology of hospitalized COVID-19 and risk factors for critical outcomes over time. METHODS: We included adults aged ≥18 years from 10 states hospitalized with COVID-19 June 2021-March 2023 when multiple SARS-CoV-2 variants or sub-lineages predominated. We evaluated changes in baseline demographic and clinical characteristics and critical outcomes (intensive care unit admission and/or death) and used regression models to evaluate critical outcomes risk factors (risk ratios) stratified by COVID-19 vaccination status. RESULTS: 60,488 COVID-19-associated hospitalizations were included in the analysis. Among those hospitalized, from Delta period (June-December 2021) to the Omicron post-BA.4/BA.5 period (September 2022-March 2023), median age increased from 60 to 75 years, proportion vaccinated increased from 18.2% to 70.1%, while critical outcomes declined from 24.8% to 19.4% (all p < 0.001). Compared to all hospitalization events, those with critical outcomes had a higher proportion of four or more categories of medical conditions categories assessed (32.8% critical versus 23.0% all hospitalized). Critical outcome risk factors were similar for unvaccinated and vaccinated populations; presence of ≥4 medical condition categories was most strongly associated with risk of critical outcomes regardless of vaccine status (unvaccinated aRR 2.27 [95% CI: 2.14-2.41]; vaccinated aRR 1.73 [95% CI: 1.56-1.92]) across periods. CONCLUSION: The proportion of adults hospitalized with COVID-19 who experienced critical outcomes decreased with time and median patient age increased with time. Multimorbidity was mostly strongly associated with critical outcomes. |
Medically attended acute adverse events in pregnant people after Coronavirus Disease 2019 (COVID-19) booster vaccination
DeSilva MB , Haapala J , Vazquez-Benitez G , Boyce TG , Fuller CC , Daley MF , Getahun D , Hambidge SJ , Lipkind HS , Naleway AL , Nelson JC , Vesco KK , Weintraub ES , Williams JTB , Zerbo O , Kharbanda EO . Obstet Gynecol 2023 142 (1) 125-129 In this multisite, observational, matched cohort study of more than 80,000 pregnant people, receipt of an mRNA monovalent coronavirus disease 2019 (COVID-19) booster vaccination in pregnancy was not associated with increased risk for thrombocytopenia, myocarditis, venous thromboembolism, ischemic stroke, or other serious adverse events within 21 or 42 days after booster vaccination. The mRNA monovalent COVID-19 booster in pregnancy was associated with an increased risk for medically attended malaise or fatigue within 7 days of vaccination (adjusted rate ratio [aRR] 3.64, 95% CI 2.42-5.48) and lymphadenopathy or lymphadenitis within 21 days (aRR 3.25, 95% CI 1.67-6.30) or 42 days (aRR 2.18, 95% CI 1.33-3.58) of vaccination. Our findings are consistent with prior evaluations of the primary COVID-19 vaccine series and are reassuring with respect to COVID-19 booster vaccination in pregnancy. |
Safety signal identification for COVID-19 bivalent booster vaccination using tree-based scan statistics in the Vaccine Safety Datalink
Katherine Yih W , Daley MF , Duffy J , Fireman B , McClure DL , Nelson JC , Qian L , Smith N , Vazquez-Benitez G , Weintraub E , Williams JTB , Xu S , Maro JC . Vaccine 2023 41 (36) 5265-5270 BACKGROUND: Traditional active vaccine safety monitoring involves pre-specifying health outcomes and biologically plausible outcome-specific time windows of concern, limiting the adverse events that can be evaluated. In this study, we used tree-based scan statistics to look broadly for >60,000 possible adverse events after bivalent COVID-19 vaccination. METHODS: Vaccine Safety Datalink enrollees aged ≥5 years receiving Moderna or Pfizer-BioNTech bivalent COVID-19 vaccine through November 2022 were followed for 56 days post-vaccination. Incident diagnoses in inpatient or emergency department settings were analyzed for clustering within the hierarchical ICD-10-CM diagnosis code "tree" and temporally within post-vaccination follow-up. The conditional self-controlled tree-temporal scan statistic was used, conditioning on total number of cases of each diagnosis and total number of cases of any diagnosis occurring during the scanning risk window across the entire tree. P = 0.01 was the pre-specified cut-off for statistical significance. RESULTS: Analysis included 352,509 doses of Moderna and 979,189 doses of Pfizer-BioNTech bivalent vaccines. After Moderna vaccination, no statistically significant clusters were found. After Pfizer-BioNTech, there were clusters of unspecified adverse events (Days 1-3, p = 0.0001-0.0007), influenza (Days 35-56, p = 0.0001), cough (Days 44-55, p = 0.0002), and COVID-19 (Days 52-56, p = 0.0004). CONCLUSIONS: For Pfizer-BioNTech only, we detected clusters of: (1) unspecified adverse effects, as have been observed in other vaccine studies using this method, and (2) respiratory disease toward the end of follow-up. The respiratory clusters were likely due to overlap of follow-up with the spread of respiratory syncytial virus, influenza, and COVID-19, i.e., confounding by seasonality. The untargeted nature of the method and its inherent adjustment for the many diagnoses and risk intervals evaluated are unique advantages. Limitations include susceptibility to time-varying confounding, lower statistical power for assessing risks of specific outcomes than in traditional studies targeting fewer outcomes, and the possibility of missing adverse events not strongly clustered in time or within the "tree." |
COVID-19 booster vaccination in early pregnancy and surveillance for spontaneous abortion
Kharbanda EO , Haapala J , Lipkind HS , DeSilva MB , Zhu J , Vesco KK , Daley MF , Donahue JG , Getahun D , Hambidge SJ , Irving SA , Klein NP , Nelson JC , Weintraub ES , Williams JTB , Vazquez-Benitez G . JAMA Netw Open 2023 6 (5) e2314350 IMPORTANCE: Adherence to COVID-19 booster vaccine recommendations has lagged in pregnant and nonpregnant adult populations. One barrier to booster vaccination is uncertainty regarding the safety of booster doses among pregnant people. OBJECTIVE: To evaluate whether there is an association between COVID-19 booster vaccination during pregnancy and spontaneous abortion. DESIGN, SETTING, AND PARTICIPANTS: This observational, case-control, surveillance study evaluated people aged 16 to 49 years with pregnancies at 6 to 19 weeks' gestation at 8 health systems in the Vaccine Safety Datalink from November 1, 2021, to June 12, 2022. Spontaneous abortion cases and ongoing pregnancy controls were evaluated during consecutive surveillance periods, defined by calendar time. EXPOSURE: Primary exposure was receipt of a third messenger RNA (mRNA) COVID-19 vaccine dose within 28 days before spontaneous abortion or index date (midpoint of surveillance period in ongoing pregnancy controls). Secondary exposures were third mRNA vaccine doses in a 42-day window or any COVID-19 booster in 28- and 42-day windows. MAIN OUTCOMES AND MEASURES: Spontaneous abortion cases and ongoing pregnancy controls were identified from electronic health data using a validated algorithm. Cases were assigned to a single surveillance period based on pregnancy outcome date. Eligible ongoing pregnancy time was assigned to 1 or more surveillance periods as an ongoing pregnancy-period control. Generalized estimating equations were used to estimate adjusted odds ratios (AOR) with gestational age, maternal age, antenatal visits, race and ethnicity, site, and surveillance period as covariates and robust variance estimates to account for inclusion of multiple pregnancy periods per unique pregnancy. RESULTS: Among 112 718 unique pregnancies included in the study, the mean (SD) maternal age was 30.6 (5.5) years. Pregnant individuals were Asian, non-Hispanic (15.1%); Black, non-Hispanic (7.5%); Hispanic (35.6%); White, non-Hispanic (31.2%); and of other or unknown (10.6%); and 100% were female. Across eight 28-day surveillance periods, among 270 853 ongoing pregnancy-period controls, 11 095 (4.1%) had received a third mRNA COVID-19 vaccine in a 28-day window; among 14 226 cases, 553 (3.9%) had received a third mRNA COVID-19 vaccine within 28 days of the spontaneous abortion. Receipt of a third mRNA COVID-19 vaccine was not associated with spontaneous abortion in a 28-day window (AOR, 0.94; 95% CI, 0.86-1.03). Results were consistent when using a 42-day window (AOR, 0.97; 95% CI, 0.90-1.05) and for any COVID-19 booster in a 28-day (AOR, 0.94; 95% CI, 0.86-1.02) or 42-day (AOR, 0.96; 95% CI, 0.89-1.04) exposure window. CONCLUSIONS AND RELEVANCE: In this case-control surveillance study, COVID-19 booster vaccination in pregnancy was not associated with spontaneous abortion. These findings support the safety of recommendations for COVID-19 booster vaccination, including in pregnant populations. |
Risk of Spontaneous Abortion After Inadvertent Human Papillomavirus Vaccination in Pregnancy
Kharbanda EO , Vazquez-Benitez G , Lipkind HS , Sheth SS , Zhu J , Naleway AL , Klein NP , Hechter R , Daley MF , Donahue JG , Jackson ML , Kawai AT , Sukumaran L , Nordin JD . Obstet Gynecol 2018 132 (1) 35-44 OBJECTIVE: To evaluate the risk of spontaneous abortion after quadrivalent human papillomavirus (4vHPV) vaccination before and during pregnancy across seven integrated health systems within the Vaccine Safety Datalink. METHODS: Within a retrospective observational cohort, we compared risks for spontaneous abortion after 4vHPV in three exposure windows: distal (16-22 weeks before the last menstrual period [LMP]), peripregnancy (within 6 weeks before the LMP), and during pregnancy (LMP through 19 weeks of gestation). Women 12-27 years of age with a pregnancy between 2008 and 2014, with continuous insurance enrollment 8 months before and through pregnancy end, and with a live birth, stillbirth, or spontaneous abortion were included. Pregnancies were identified through validated algorithms. Spontaneous abortions and stillbirths were verified by chart review with spontaneous abortions adjudicated by clinical experts. We excluded multiple gestations, spontaneous abortions before 6 weeks of gestation, and women using medications increasing risk of spontaneous abortion. Spontaneous abortion risk after 4vHPV during pregnancy was compared with distal vaccination using time-dependent covariate Cox models. Spontaneous abortion risk for peripregnancy compared with distal vaccination was evaluated with standard Cox models. RESULTS: We identified 2,800 pregnancies with 4vHPV exposure in specified risk windows: 919 (33%) distal, 986 (35%) peripregnancy, and 895 (32%) during pregnancy. Mean age was 22.4 years in distal and peripregnancy groups compared with 21.4 years among women vaccinated during pregnancy. Among women with distal 4vHPV exposure, 96 (10.4%) experienced a spontaneous abortion. For peripregnancy and during pregnancy exposures, spontaneous abortions occurred in 110 (11.2%) and 77 (8.6%), respectively. The risk of spontaneous abortion was not increased among women who received 4vHPV during pregnancy (adjusted hazard ratio 1.10, 95% CI 0.81-1.51) or peripregnancy 1.07 (0.81-1.41). CONCLUSION: Inadvertent 4vHPV exposure during or peripregnancy was not significantly associated with an increased risk of spontaneous abortion. |
Tdap vaccination during pregnancy and risk of chorioamnionitis and related infant outcomes
Greenberg V , Vazquez-Benitez G , Kharbanda EO , Daley MF , Fu Tseng H , Klein NP , Naleway AL , Williams JTB , Donahue J , Jackson L , Weintraub E , Lipkind H , DeSilva MB . Vaccine 2023 41 (22) 3429-3435 INTRODUCTION: An increased risk of chorioamnionitis in people receiving tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccine during pregnancy has been reported. The importance of this association is unclear as additional study has not demonstrated increased adverse infant outcomes associated with Tdap vaccination in pregnancy. METHODS: We conducted a retrospective observational cohort study of pregnant people ages 15-49 years with singleton pregnancies ending in live birth who were members of 8 Vaccine Safety Datalink (VSD) sites during October 2016-September 2018. We used a time-dependent covariate Cox model with stabilized inverse probability weights applied to evaluate associations between Tdap vaccination during pregnancy and chorioamnionitis and preterm birth outcomes. We used Poisson regression with robust variance with stabilized inverse probability weights applied to evaluate the association of Tdap vaccination with adverse infant outcomes. We performed medical record reviews on a random sample of patients with ICD-10-CM-diagnosed chorioamnionitis to determine positive predictive values (PPV) of coded chorioamnionitisfor "probable clinical chorioamnionitis," "possible clinical chorioamnionitis," or "histologic chorioamnionitis." RESULTS: We included 118,211 pregnant people; 103,258 (87%) received Tdap vaccine during pregnancy; 8098 (7%) were diagnosed with chorioamnionitis. The adjusted hazard ratio for chorioamnionitis in the Tdap vaccine-exposed group compared to unexposed was 0.96 (95% CI 0.90-1.03). There was no association between Tdap vaccine and preterm birth or adverse infant outcomes associated with chorioamnionitis. Chart reviews were performed for 528 pregnant people with chorioamnionitis. The PPV for clinical (probable or possible clinical chorioamnionitis) was 48% and 59% for histologic chorioamnionitis. The PPV for the combined outcome of clinical or histologic chorioamnionitis was 81%. CONCLUSIONS AND RELEVANCE: Tdap vaccine exposure during pregnancy was not associated with chorioamnionitis, preterm birth, or adverse infant outcomes. ICD-10 codes for chorioamnionitis lack specificity for clinical chorioamnionitis and should be a recognized limitation when interpreting results. |
COVID-19 vaccine safety surveillance in early pregnancy in the United States: Design factors affecting the association between vaccine and spontaneous abortion
Vazquez-Benitez G , Haapala JL , Lipkind HS , DeSilva MB , Zhu J , Daley MF , Getahun D , Klein NP , Vesco KK , Irving SA , Nelson JC , Williams JTB , Hambidge SJ , Donahue J , Fuller CC , Weintraub ES , Olson C , Kharbanda EO . Am J Epidemiol 2023 192 (8) 1386-1395 In the Vaccine Safety Datalink (VSD), we previously reported no association between COVID-19 vaccination in early pregnancy and spontaneous abortion (SAB). The current study aims to understand how time since vaccine roll-out or other methodologic factors could affect results. Using a case-control design and generalized estimating equations, we estimated the odds ratios (OR) of COVID-19 vaccination in the 28 days before a SAB or last date of the surveillance period (index date) in ongoing pregnancies and occurrence of SAB, across cumulative 4-week periods from December 2020 through June 2021. Using data from a single site, we evaluated alternate methodologic approaches: increasing the exposure window to 42 days, modifying the index date from the last day to the midpoint of the surveillance period, and constructing a cohort design with a time-dependent exposure model. A protective effect (OR 0.78; 95% Confidence Interval (CI): 0.69-0.89), observed with 3-cumulative periods ending March 8, 2021, was attenuated when surveillance extended to June 28, 2021 (OR: 1.02; 95% CI: 0.96-1.08). We observed a lower OR for a 42-day as compared to a 28-day window. The time-dependent model showed no association. Timing of the surveillance appears to be an important factor affecting the observed vaccine-SAB association. |
Relationships between social vulnerability and COVID-19 vaccination coverage and vaccine effectiveness
Dalton AF , Weber ZA , Allen KS , Stenehjem E , Irving SA , Spark TL , Adams K , Zerbo O , Lazariu V , Dixon BE , Dascomb K , Hartmann E , Kharbanda AB , Ong TC , DeSilva MB , Beaton M , Gaglani M , Patel P , Naleway AL , Sam Kish MN , Grannis SJ , Grisel N , Sloan-Aagard C , Rao S , Raiyani C , Dickerson M , Bassett E , Fadel WF , Arndorfer J , Nanez J , Barron MA , Vazquez-Benitez G , Liao IC , Griggs EP , Reese SE , Valvi NR , Murthy K , Rowley EAK , Embi PJ , Ball S , Link-Gelles R , Tenforde MW . Clin Infect Dis 2023 76 (9) 1615-1625 BACKGROUND: COVID-19 vaccination coverage remains lower in communities with higher social vulnerability. Factors such as SARS-CoV-2 exposure risk and access to health care are often correlated with social vulnerability and may therefore contribute to a relationship between vulnerability and observed vaccine effectiveness (VE). Understanding whether these factors impact VE could contribute to our understanding of real-world VE. METHODS: We used electronic health record data from seven health systems to assess vaccination coverage among patients with medically attended COVID-19-like illness. We then used a test-negative design to assess VE for 2- and 3-dose mRNA adult (≥18 years) vaccine recipients across Social Vulnerability Index (SVI) quartiles. SVI rankings were determined by geocoding patient addresses to census tracts; rankings were grouped into quartiles for analysis. RESULTS: In July 2021, primary series vaccination coverage was higher in the least vulnerable quartile than in the most vulnerable quartile (56% vs. 36%, respectively). In February 2022, booster dose coverage among persons who had completed a primary series was higher in the least vulnerable quartile than in the most vulnerable quartile (43% vs. 30%). VE among 2-dose and 3-dose recipients during the Delta and Omicron BA.1 periods of predominance was similar across SVI quartiles. CONCLUSIONS: COVID-19 vaccination coverage varied substantially by SVI. Differences in VE estimates by SVI were minimal across groups after adjusting for baseline patient factors. However, lower vaccination coverage among more socially vulnerable groups means that the burden of illness is still disproportionately borne by the most socially vulnerable populations. |
Early Estimates of Bivalent mRNA Vaccine Effectiveness in Preventing COVID-19-Associated Emergency Department or Urgent Care Encounters and Hospitalizations Among Immunocompetent Adults - VISION Network, Nine States, September-November 2022.
Tenforde MW , Weber ZA , Natarajan K , Klein NP , Kharbanda AB , Stenehjem E , Embi PJ , Reese SE , Naleway AL , Grannis SJ , DeSilva MB , Ong TC , Gaglani M , Han J , Dickerson M , Fireman B , Dascomb K , Irving SA , Vazquez-Benitez G , Rao S , Konatham D , Patel P , Schrader KE , Lewis N , Grisel N , McEvoy C , Murthy K , Griggs EP , Rowley EAK , Zerbo O , Arndorfer J , Dunne MM , Goddard K , Ray C , Zhuang Y , Timbol J , Najdowski M , Yang DH , Hansen J , Ball SW , Link-Gelles R . MMWR Morb Mortal Wkly Rep 2022 71 (5152) 1616-1624 During June-October 2022, the SARS-CoV-2 Omicron BA.5 sublineage accounted for most of the sequenced viral genomes in the United States, with further Omicron sublineage diversification through November 2022.* Bivalent mRNA vaccines contain an ancestral SARS-CoV-2 strain component plus an updated component of the Omicron BA.4/BA.5 sublineages. On September 1, 2022, a single bivalent booster dose was recommended for adults who had completed a primary vaccination series (with or without subsequent booster doses), with the last dose administered ≥2 months earlier (1). During September 13-November 18, the VISION Network evaluated vaccine effectiveness (VE) of a bivalent mRNA booster dose (after 2, 3, or 4 monovalent doses) compared with 1) no previous vaccination and 2) previous receipt of 2, 3, or 4 monovalent-only mRNA vaccine doses, among immunocompetent adults aged ≥18 years with an emergency department/urgent care (ED/UC) encounter or hospitalization for a COVID-19-like illness.(†) VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated ED/UC encounters was 56% compared with no vaccination, 31% compared with monovalent vaccination only with last dose 2-4 months earlier, and 50% compared with monovalent vaccination only with last dose ≥11 months earlier. VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated hospitalizations was 57% compared with no vaccination, 38% compared with monovalent vaccination only with last dose 5-7 months earlier, and 45% compared with monovalent vaccination only with last dose ≥11 months earlier. Bivalent vaccines administered after 2, 3, or 4 monovalent doses were effective in preventing medically attended COVID-19 compared with no vaccination and provided additional protection compared with past monovalent vaccination only, with relative protection increasing with time since receipt of the last monovalent dose. All eligible persons should stay up to date with recommended COVID-19 vaccinations, including receiving a bivalent booster dose. Persons should also consider taking additional precautions to avoid respiratory illness this winter season, such as masking in public indoor spaces, especially in areas where COVID-19 community levels are high. |
A safety study evaluating non-COVID-19 mortality risk following COVID-19 vaccination.
Xu S , Huang R , Sy LS , Hong V , Glenn SC , Ryan DS , Morrissette K , Vazquez-Benitez G , Glanz JM , Klein NP , Fireman B , McClure D , Liles EG , Weintraub ES , Tseng HF , Qian L . Vaccine 2022 41 (3) 844-854 BACKGROUND: The safety of COVID-19 vaccines plays an important role in addressing vaccine hesitancy. We conducted a large cohort study to evaluate the risk of non-COVID-19 mortality after COVID-19 vaccination while adjusting for confounders including individual-level demographics, clinical risk factors, health care utilization, and community-level socioeconomic risk factors. METHODS: The retrospective cohort study consisted of members from seven Vaccine Safety Datalink sites from December 14, 2020 through August 31, 2021. We conducted three separate analyses for each of the three COVID-19 vaccines used in the US. Crude non-COVID-19 mortality rates were reported by vaccine type, age, sex, and race/ethnicity. The counting process model for survival analyses was used to analyze non-COVID-19 mortality where a new observation period began when the vaccination status changed upon receipt of the first dose and the second dose. We used calendar time as the basic time scale in survival analyses to implicitly adjust for season and other temporal trend factors. A propensity score approach was used to adjust for the potential imbalance in confounders between the vaccinated and comparison groups. RESULTS: For each vaccine type and across age, sex, and race/ethnicity groups, crude non-COVID-19 mortality rates among COVID-19 vaccinees were lower than those among comparators. After adjusting for confounders with the propensity score approach, the adjusted hazard ratios (aHRs) were 0.46 (95% confidence interval [CI], 0.44-0.49) after dose 1 and 0.48 (95% CI, 0.46-0.50) after dose 2 of the BNT162b2 vaccine, 0.41 (95% CI, 0.39-0.44) after dose 1 and 0.38 (95% CI, 0.37-0.40) after dose 2 of the mRNA-1273 vaccine, and 0.55 (95% CI, 0.51-0.59) after receipt of Ad26.COV2.S. CONCLUSION: While residual confounding bias remained after adjusting for several individual-level and community-level risk factors, no increased risk was found for non-COVID-19 mortality among recipients of three COVID-19 vaccines used in the US. |
A broad assessment of covid-19 vaccine safety using tree-based data-mining in the vaccine safety datalink.
Yih WK , Daley MF , Duffy J , Fireman B , McClure D , Nelson J , Qian L , Smith N , Vazquez-Benitez G , Weintraub E , Williams JTB , Xu S , Maro JC . Vaccine 2022 BACKGROUND: Except for spontaneous reporting systems, vaccine safety monitoring generally involves pre-specifying health outcomes and post-vaccination risk windows of concern. Instead, we used tree-based data-mining to look more broadly for possible adverse events after Pfizer-BioNTech, Moderna, and Janssen COVID-19 vaccination. METHODS: Vaccine Safety Datalink enrollees receiving1 dose of COVID-19 vaccine in 2020-2021 were followed for 70days after Pfizer-BioNTech or Moderna and 56days after Janssen vaccination. Incident diagnoses in inpatient or emergency department settings were analyzed for clustering within both the hierarchical ICD-10-CM code structure and the post-vaccination follow-up period. We used the self-controlled tree-temporal scan statistic and TreeScan software. Monte Carlo simulation was used to estimate p-values; p=0.01 was the pre-specified cut-off for statistical significance of a cluster. RESULTS: There were 4.1, 2.6, and 0.4 million Pfizer-BioNTech, Moderna, and Janssen vaccinees, respectively. Clusters after Pfizer-BioNTech vaccination included: (1) unspecified adverse effects, (2) common vaccine reactions, such as fever, myalgia, and headache, (3) myocarditis/pericarditis, and (4) less specific cardiac or respiratory symptoms, all with the strongest clusters generally after Dose 2; and (5) COVID-19/viral pneumonia/sepsis/respiratory failure in the first 3weeks after Dose 1. Moderna results were similar but without a significant myocarditis/pericarditis cluster. Further investigation suggested the fifth signal group was a manifestation of mRNA vaccine effectiveness after the first 3weeks. Janssen vaccinees had clusters of unspecified or common vaccine reactions, gait/mobility abnormalities, and muscle weakness. The latter two were deemed to have arisen from confounding related to practices at one site. CONCLUSIONS: We detected post-vaccination clusters of unspecified adverse effects, common vaccine reactions, and, for the mRNA vaccines, chest pain and palpitations, as well as myocarditis/pericarditis after Pfizer-BioNTech Dose 2. Unique advantages of this data mining are its untargeted nature and its inherent adjustment for the multiplicity of diagnoses and risk intervals scanned. |
Tree-based data mining for safety assessment of first COVID-19 booster doses in the Vaccine Safety Datalink.
Katherine Yih W , Daley MF , Duffy J , Fireman B , McClure D , Nelson J , Qian L , Smith N , Vazquez-Benitez G , Weintraub E , Williams JTB , Xu S , Maro JC . Vaccine 2022 41 (2) 460-466 BACKGROUND: The Centers for Disease Control and Prevention's Vaccine Safety Datalink (VSD) has been performing safety surveillance for COVID-19 vaccines since their earliest authorization in the United States. Complementing its real-time surveillance for pre-specified health outcomes using pre-specified risk intervals, the VSD conducts tree-based data-mining to look for clustering of a broad range of health outcomes after COVID-19 vaccination. This study's objective was to use this untargeted, hypothesis-generating approach to assess the safety of first booster doses of Pfizer-BioNTech (BNT162b2), Moderna (mRNA-1273), and Janssen (Ad26.COV2.S) COVID-19 vaccines. METHODS: VSD enrollees receiving a first booster of COVID-19 vaccine through April 2, 2022 were followed for 56 days. Incident diagnoses in inpatient or emergency department settings were analyzed for clustering within both the hierarchical ICD-10-CM code structure and the follow-up period. The self-controlled tree-temporal scan statistic was used, conditioning on the total number of cases for each diagnosis. P-values were estimated by Monte Carlo simulation; p = 0.01 was pre-specified as the cut-off for statistical significance of clusters. RESULTS: More than 2.4 and 1.8 million subjects received Pfizer-BioNTech and Moderna boosters after an mRNA primary series, respectively. Clusters of urticaria/allergy/rash were found during Days 10-15 after the Moderna booster (p = 0.0001). Other outcomes that clustered after mRNA boosters, mostly with p = 0.0001, included unspecified adverse effects, common vaccine-associated reactions like fever and myalgia, and COVID-19. COVID-19 clusters were in Days 1-10 after booster receipt, before boosters would have become effective. There were no noteworthy clusters after boosters following primary Janssen vaccination. CONCLUSIONS: In this untargeted data-mining study of COVID-19 booster vaccination, a cluster of delayed-onset urticaria/allergy/rash was detected after the Moderna booster, as has been reported after Moderna vaccination previously. Other clusters after mRNA boosters were of unspecified or common adverse effects and COVID-19, the latter evidently reflecting immunity to COVID-19 after 10 days. |
Protection of 2 and 3 mRNA Vaccine Doses Against Severe Outcomes Among Adults Hospitalized with COVID-19 - VISION Network, August 2021 - March 2022.
DeSilva MB , Mitchell PK , Klein NP , Dixon BE , Tenforde MW , Thompson MG , Naleway AL , Grannis SJ , Ong TC , Natarajan K , Reese SE , Zerbo O , Kharbanda AB , Patel P , Stenehjem E , Raiyani C , Irving SA , Fadel WF , Rao S , Han J , Reynolds S , Davis JM , Lewis N , McEvoy C , Dickerson M , Dascomb K , Valvi NR , Barron MA , Goddard K , Vazquez-Benitez G , Grisel N , Mamawala M , Embi PJ , Fireman B , Essien IJ , Griggs EP , Arndorfer J , Gaglani M . J Infect Dis 2022 227 (8) 961-969 BACKGROUND: We assessed COVID-19 vaccination impact on illness severity among adults hospitalized with COVID-19 August 2021-March 2022. METHODS: We evaluated differences in intensive care unit (ICU) admission, in-hospital death, and length of stay among vaccinated (2 or 3 mRNA vaccine doses) versus unvaccinated patients aged ≥18 years hospitalized for ≥24 hours with COVID-19-like illness (CLI) and positive SARS-CoV-2 molecular testing. We calculated odds ratios for ICU admission and death and subdistribution hazard ratios (SHR) for time to hospital discharge adjusted for age, geographic region, calendar time, and local virus circulation. RESULTS: We included 27,149 SARS-CoV-2 positive hospitalizations. During both Delta and Omicron-predominant periods, protection against ICU admission was strongest among 3-dose vaccinees compared with unvaccinated patients (Delta OR [CI]: 0.52 [0.28-0.96]); Omicron OR [CI]: 0.69 [0.54-0.87]). During both periods, risk of in-hospital of death was lower among vaccinated compared with unvaccinated but ORs were overlapping; during Omicron, lowest among 3-dose vaccinees (OR [CI] 0.39 [0.28-0.54]). We observed SHR >1 across all vaccination strata in both periods indicating faster discharge for vaccinated patients. CONCLUSIONS: COVID-19 vaccination was associated with lower rates of ICU admission and in-hospital death in both Delta and Omicron periods compared with being unvaccinated. |
Relative Risks of COVID-19-Associated Hospitalizations and Clinical Outcomes by Age and Race/Ethnicity-March 2020-March 2021.
Bozio CH , Butterfield K , Irving SA , Vazquez-Benitez G , Ong TC , Zheng K , Ball SW , Naleway AL , Barron M , Reed C . Open Forum Infect Dis 2022 9 (10) ofac376 BACKGROUND: Limited data exist on population-based risks and risk ratios (RRs) of coronavirus disease 2019 (COVID-19)-associated hospitalizations and clinical outcomes stratified by age and race/ethnicity. METHODS: Using data from electronic health records and claims from 4 US health systems for the period March 2020-March 2021, we calculated risk and RR by age and race/ethnicity for COVID-19-associated hospitalizations and clinical outcomes among adults (≥18 years). COVID-19-associated hospitalizations were defined based on COVID-19 discharge codes or a positive severe acute respiratory syndrome coronavirus 2 result. Proportions of acute exacerbations of underlying conditions were estimated among hospitalized patients with select underlying conditions, stratified by age and race/ethnicity. RESULTS: Among 2.6 million adults included in the patient cohort, 6879 had COVID-19-associated hospitalizations during March 2020-March 2021 (risk: 264 per 100 000 population). Compared with younger, non-Hispanic White adults, non-Hispanic Black and Hispanic adults aged ≥65 years had the highest hospitalization risk ratios (RR, 8.6; 95% CI, 7.6-9.9; and RR, 9.3; 95% CI, 8.5-10.3, respectively). Among hospitalized adults with COVID-19 and renal disease or cardiovascular disease, the highest proportion of acute renal failure (55.5%) or congestive heart failure (43.9%) occurred in older, non-Hispanic Black patients. Among hospitalized adults with chronic lung disease or asthma, the highest proportion of respiratory failure (62.9%) or asthma exacerbation (66.7%) occurred in older, Hispanic patients. CONCLUSIONS: During the first year of the US COVID-19 pandemic in this cohort, older non-Hispanic Black and Hispanic adults had the highest relative risks of COVID-19-associated hospitalization and adverse outcomes and, among those with select underlying conditions, the highest occurrences of acute exacerbations of underlying conditions. |
Estimation of COVID-19 mRNA Vaccine Effectiveness Against Medically Attended COVID-19 in Pregnancy During Periods of Delta and Omicron Variant Predominance in the United States.
Schrag SJ , Verani JR , Dixon BE , Page JM , Butterfield KA , Gaglani M , Vazquez-Benitez G , Zerbo O , Natarajan K , Ong TC , Lazariu V , Rao S , Beaver R , Ellington SR , Klein NP , Irving SA , Grannis SJ , Kiduko S , Barron MA , Midturi J , Dickerson M , Lewis N , Stockwell MS , Stenehjem E , Fadel WF , Link-Gelles R , Murthy K , Goddard K , Grisel N , Valvi NR , Fireman B , Arndorfer J , Konatham D , Ball S , Thompson MG , Naleway AL . JAMA Netw Open 2022 5 (9) e2233273 IMPORTANCE: Pregnant people are at high risk for severe COVID-19 but were excluded from mRNA vaccine trials; data on COVID-19 vaccine effectiveness (VE) are needed. OBJECTIVE: To evaluate the estimated effectiveness of mRNA vaccination against medically attended COVID-19 among pregnant people during Delta and Omicron predominance. DESIGN, SETTING, AND PARTICIPANTS: This test-negative, case-control study was conducted from June 2021 to June 2022 in a network of 306 hospitals and 164 emergency department and urgent care (ED/UC) facilities across 10 US states, including 4517 ED/UC encounters and 975 hospitalizations among pregnant people with COVID-19-like illness (CLI) who underwent SARS-CoV-2 molecular testing. EXPOSURES: Two doses (14-149 and ≥150 days prior) and 3 doses (7-119 and ≥120 days prior) of COVID-19 mRNA vaccine (≥1 dose received during pregnancy) vs unvaccinated. MAIN OUTCOMES AND MEASURES: Estimated VE against laboratory-confirmed COVID-19-associated ED/UC encounter or hospitalization, based on the adjusted odds ratio (aOR) for prior vaccination; VE was calculated as (1 - aOR) × 100%. RESULTS: Among 4517 eligible CLI-associated ED/UC encounters and 975 hospitalizations, 885 (19.6%) and 334 (34.3%) were SARS-CoV-2 positive, respectively; the median (IQR) patient age was 28 (24-32) years and 31 (26-35) years, 537 (12.0%) and 118 (12.0%) were non-Hispanic Black and 1189 (26.0%) and 240 (25.0%) were Hispanic. During Delta predominance, the estimated VE against COVID-19-associated ED/UC encounters was 84% (95% CI, 69% to 92%) for 2 doses within 14 to 149 days, 75% (95% CI, 5% to 93%) for 2 doses 150 or more days prior, and 81% (95% CI, 30% to 95%) for 3 doses 7 to 119 days prior; estimated VE against COVID-19-associated hospitalization was 99% (95% CI, 96% to 100%), 96% (95% CI, 86% to 99%), and 97% (95% CI, 79% to 100%), respectively. During Omicron predominance, for ED/UC encounters, the estimated VE of 2 doses within 14 to 149 days, 2 doses 150 or more days, 3 doses within 7 to 119 days, and 3 doses 120 or more days prior was 3% (95% CI, -49% to 37%), 42% (95% CI, -16% to 72%), 79% (95% CI, 59% to 89%), and -124% (95% CI, -414% to 2%), respectively; for hospitalization, estimated VE was 86% (95% CI, 41% to 97%), 64% (95% CI, -102% to 93%), 86% (95% CI, 28% to 97%), and -53% (95% CI, -1254% to 83%), respectively. CONCLUSIONS AND RELEVANCE: In this study, maternal mRNA COVID-19 vaccination, including booster dose, was associated with protection against medically attended COVID-19. VE estimates were higher against COVID-19-associated hospitalization than ED/UC visits and lower against the Omicron variant than the Delta variant. Protection waned over time, particularly during Omicron predominance. |
Evaluation of Acute Adverse Events after Covid-19 Vaccination during Pregnancy.
DeSilva M , Haapala J , Vazquez-Benitez G , Vesco KK , Daley MF , Getahun D , Zerbo O , Naleway A , Nelson JC , Williams JTB , Hambidge SJ , Boyce TG , Fuller CC , Lipkind HS , Weintraub E , McNeil MM , Kharbanda EO . N Engl J Med 2022 387 (2) 187-189 Pregnant women with symptomatic coronavirus disease 2019 (Covid-19) have a higher risk of adverse outcomes than do women who are not pregnant.1,2 In part because of these findings, Covid-19 vaccination has been recommended for pregnant women. However, uptake has been lower in pregnant women than among women who are not pregnant.3,4 The concern of many women regarding safety remains a barrier to maternal vaccination. |
Effectiveness of Homologous and Heterologous COVID-19 Booster Doses Following 1 Ad.26.COV2.S (Janssen [Johnson & Johnson]) Vaccine Dose Against COVID-19-Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults - VISION Network, 10 States, December 2021-March 2022.
Natarajan K , Prasad N , Dascomb K , Irving SA , Yang DH , Gaglani M , Klein NP , DeSilva MB , Ong TC , Grannis SJ , Stenehjem E , Link-Gelles R , Rowley EA , Naleway AL , Han J , Raiyani C , Benitez GV , Rao S , Lewis N , Fadel WF , Grisel N , Griggs EP , Dunne MM , Stockwell MS , Mamawala M , McEvoy C , Barron MA , Goddard K , Valvi NR , Arndorfer J , Patel P , Mitchell PK , Smith M , Kharbanda AB , Fireman B , Embi PJ , Dickerson M , Davis JM , Zerbo O , Dalton AF , Wondimu MH , Azziz-Baumgartner E , Bozio CH , Reynolds S , Ferdinands J , Williams J , Schrag SJ , Verani JR , Ball S , Thompson MG , Dixon BE . MMWR Morb Mortal Wkly Rep 2022 71 (13) 495-502 CDC recommends that all persons aged ≥18 years receive a single COVID-19 vaccine booster dose ≥2 months after receipt of an Ad.26.COV2.S (Janssen [Johnson & Johnson]) adenovirus vector-based primary series vaccine; a heterologous COVID-19 mRNA vaccine is preferred over a homologous (matching) Janssen vaccine for booster vaccination. This recommendation was made in light of the risks for rare but serious adverse events following receipt of a Janssen vaccine, including thrombosis with thrombocytopenia syndrome and Guillain-Barré syndrome(†) (1), and clinical trial data indicating similar or higher neutralizing antibody response following heterologous boosting compared with homologous boosting (2). Data on real-world vaccine effectiveness (VE) of different booster strategies following a primary Janssen vaccine dose are limited, particularly during the period of Omicron variant predominance. The VISION Network(§) determined real-world VE of 1 Janssen vaccine dose and 2 alternative booster dose strategies: 1) a homologous booster (i.e., 2 Janssen doses) and 2) a heterologous mRNA booster (i.e., 1 Janssen dose/1 mRNA dose). In addition, VE of these booster strategies was compared with VE of a homologous booster following mRNA primary series vaccination (i.e., 3 mRNA doses). The study examined 80,287 emergency department/urgent care (ED/UC) visits(¶) and 25,244 hospitalizations across 10 states during December 16, 2021-March 7, 2022, when Omicron was the predominant circulating variant.** VE against laboratory-confirmed COVID-19-associated ED/UC encounters was 24% after 1 Janssen dose, 54% after 2 Janssen doses, 79% after 1 Janssen/1 mRNA dose, and 83% after 3 mRNA doses. VE for the same vaccination strategies against laboratory-confirmed COVID-19-associated hospitalizations were 31%, 67%, 78%, and 90%, respectively. All booster strategies provided higher protection than a single Janssen dose against ED/UC visits and hospitalizations during Omicron variant predominance. Vaccination with 1 Janssen/1 mRNA dose provided higher protection than did 2 Janssen doses against COVID-19-associated ED/UC visits and was comparable to protection provided by 3 mRNA doses during the first 120 days after a booster dose. However, 3 mRNA doses provided higher protection against COVID-19-associated hospitalizations than did other booster strategies during the same time interval since booster dose. All adults who have received mRNA vaccines for their COVID-19 primary series vaccination should receive an mRNA booster dose when eligible. Adults who received a primary Janssen vaccine dose should preferentially receive a heterologous mRNA vaccine booster dose ≥2 months later, or a homologous Janssen vaccine booster dose if mRNA vaccine is contraindicated or unavailable. Further investigation of the durability of protection afforded by different booster strategies is warranted. |
Receipt of COVID-19 Vaccine During Pregnancy and Preterm or Small-for-Gestational-Age at Birth - Eight Integrated Health Care Organizations, United States, December 15, 2020-July 22, 2021.
Lipkind HS , Vazquez-Benitez G , DeSilva M , Vesco KK , Ackerman-Banks C , Zhu J , Boyce TG , Daley MF , Fuller CC , Getahun D , Irving SA , Jackson LA , Williams JTB , Zerbo O , McNeil MM , Olson CK , Weintraub E , Kharbanda EO . MMWR Morb Mortal Wkly Rep 2022 71 (1) 26-30 COVID-19 vaccines are recommended during pregnancy to prevent severe maternal morbidity and adverse birth outcomes; however, vaccination coverage among pregnant women has been low (1). Concerns among pregnant women regarding vaccine safety are a persistent barrier to vaccine acceptance during pregnancy. Previous studies of maternal COVID-19 vaccination and birth outcomes have been limited by small sample size (2) or lack of an unvaccinated comparison group (3). In this retrospective cohort study of live births from eight Vaccine Safety Datalink (VSD) health care organizations, risks for preterm birth (<37 weeks' gestation) and small-for-gestational-age (SGA) at birth (birthweight <10th percentile for gestational age) after COVID-19 vaccination (receipt of ≥1 COVID-19 vaccine doses) during pregnancy were evaluated. Risks for preterm and SGA at birth among vaccinated and unvaccinated pregnant women were compared, accounting for time-dependent vaccine exposures and propensity to be vaccinated. Single-gestation pregnancies with estimated start or last menstrual period during May 17-October 24, 2020, were eligible for inclusion. Among 46,079 pregnant women with live births and gestational age available, 10,064 (21.8%) received ≥1 COVID-19 vaccine doses during pregnancy and during December 15, 2020-July 22, 2021; nearly all (9,892; 98.3%) were vaccinated during the second or third trimester. COVID-19 vaccination during pregnancy was not associated with preterm birth (adjusted hazard ratio [aHR] = 0.91; 95% CI = 0.82-1.01). Among 40,627 live births with birthweight available, COVID-19 vaccination in pregnancy was not associated with SGA at birth (aHR = 0.95; 95% CI = 0.87-1.03). Results consistently showed no increased risk when stratified by mRNA COVID-19 vaccine dose, or by second or third trimester vaccination, compared with risk among unvaccinated pregnant women. Because of the small number of first-trimester exposures, aHRs for first-trimester vaccination could not be calculated. These data add to the evidence supporting the safety of COVID-19 vaccination during pregnancy. To reduce the risk for severe COVID-19-associated illness, CDC recommends COVID-19 vaccination for women who are pregnant, recently pregnant (including those who are lactating), who are trying to become pregnant now, or who might become pregnant in the future (4). |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure