Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-29 (of 29 Records) |
Query Trace: daSilva J[original query] |
---|
Characterization of avian influenza viruses detected in Kenyan live bird markets and wild bird habitats reveal genetically diverse subtypes and high proportion of A(H9N2), 2018-2020
Munyua P , Osoro E , Jones J , Njogu G , Yang G , Hunsperger E , Szablewski CM , Njoroge R , Marwanga D , Oyas H , Andagalu B , Ndanyi R , Otieno N , Obanda V , Nasimiyu C , Njagi O , DaSilva J , Jang Y , Barnes J , Emukule GO , Onyango CO , Davis CT . Viruses 2024 16 (9) Following the detection of highly pathogenic avian influenza (HPAI) virus in countries bordering Kenya to the west, we conducted surveillance among domestic and wild birds along the shores of Lake Victoria. In addition, between 2018 and 2020, we conducted surveillance among poultry and poultry workers in live bird markets and among wild migratory birds in various lakes that are resting sites during migration to assess introduction and circulation of avian influenza viruses in these populations. We tested 7464 specimens (oropharyngeal (OP) and cloacal specimens) from poultry and 6531 fresh fecal specimens from wild birds for influenza A viruses by real-time RT-PCR. Influenza was detected in 3.9% (n = 292) of specimens collected from poultry and 0.2% (n = 10) of fecal specimens from wild birds. On hemagglutinin subtyping, most of the influenza A positives from poultry (274/292, 93.8%) were H9. Of 34 H9 specimens randomly selected for further subtyping, all were H9N2. On phylogenetic analysis, these viruses were genetically similar to other H9 viruses detected in East Africa. Only two of the ten influenza A-positive specimens from the wild bird fecal specimens were successfully subtyped; sequencing analysis of one specimen collected in 2018 was identified as a low-pathogenicity avian influenza H5N2 virus of the Eurasian lineage, and the second specimen, collected in 2020, was subtyped as H11. A total of 18 OP and nasal specimens from poultry workers with acute respiratory illness (12%) were collected; none were positive for influenza A virus. We observed significant circulation of H9N2 influenza viruses in poultry in live bird markets in Kenya. During the same period, low-pathogenic H5N2 virus was detected in a fecal specimen collected in a site hosting a variety of migratory and resident birds. Although HPAI H5N8 was not detected in this survey, these results highlight the potential for the introduction and establishment of highly pathogenic avian influenza viruses in poultry populations and the associated risk of spillover to human populations. |
Late-season influenza vaccine effectiveness against medically attended outpatient illness, United States, December 2022-April 2023
Chung JR , Shirk P , Gaglani M , Mutnal MB , Nowalk MP , Moehling Geffel K , House SL , Curley T , Wernli KJ , Kiniry EL , Martin ET , Vaughn IA , Murugan V , Lim ES , Saade E , Faryar K , Williams OL , Walter EB , Price AM , Barnes JR , DaSilva J , Kondor R , Ellington S , Flannery B . Influenza Other Respir Viruses 2024 18 (6) e13342 BACKGROUND: The 2022-23 US influenza season peaked early in fall 2022. METHODS: Late-season influenza vaccine effectiveness (VE) against outpatient, laboratory-confirmed influenza was calculated among participants of the US Influenza VE Network using a test-negative design. RESULTS: Of 2561 participants enrolled from December 12, 2022 to April 30, 2023, 91 laboratory-confirmed influenza cases primarily had A(H1N1)pdm09 (6B.1A.5a.2a.1) or A(H3N2) (3C.2a1b.2a.2b). Overall, VE was 30% (95% confidence interval -9%, 54%); low late-season activity precluded estimation for most subgroups. CONCLUSIONS: 2022-23 late-season outpatient influenza VE was not statistically significant. Genomic characterization may improve the identification of influenza viruses that circulate postinfluenza peak. |
Immune response kinetics to SARS-CoV-2 infection and COVID-19 vaccination among nursing home residents-Georgia, October 2020-July 2022
Chisty ZA , Li DD , Haile M , Houston H , DaSilva J , Overton R , Schuh AJ , Haynie J , Clemente J , Branch AG , Arons MM , Tsang CA , Pellegrini GJ Jr , Bugrysheva J , Ilutsik J , Mohelsky R , Comer P , Hundia SB , Oh H , Stuckey MJ , Bohannon CD , Rasheed MAU , Epperson M , Thornburg NJ , McDonald LC , Brown AC , Kutty PK . PLoS One 2024 19 (4) e0301367 BACKGROUND: Understanding the immune response kinetics to SARS-CoV-2 infection and COVID-19 vaccination is important in nursing home (NH) residents, a high-risk population. METHODS: An observational longitudinal evaluation of 37 consenting vaccinated NH residents with/without SARS-CoV-2 infection from October 2020 to July 2022 was conducted to characterize the immune response to spike protein due to infection and/or mRNA COVID-19 vaccine. Antibodies (IgG) to SARS-CoV-2 full-length spike, nucleocapsid, and receptor binding domain protein antigens were measured, and surrogate virus neutralization capacity was assessed using Meso Scale Discovery immunoassays. The participant's spike exposure status varied depending on the acquisition of infection or receipt of a vaccine dose. Longitudinal linear mixed effects modeling was used to describe trajectories based on the participant's last infection or vaccination; the primary series mRNA COVID-19 vaccine was considered two spike exposures. Mean antibody titer values from participants who developed an infection post receipt of mRNA COVID-19 vaccine were compared with those who did not. In a subset of participants (n = 15), memory B cell (MBC) S-specific IgG (%S IgG) responses were assessed using an ELISPOT assay. RESULTS: The median age of the 37 participants at enrollment was 70.5 years; 30 (81%) had prior SARS-CoV-2 infection, and 76% received Pfizer-BioNTech and 24% Moderna homologous vaccines. After an observed augmented effect with each spike exposure, a decline in the immune response, including %S IgG MBCs, was observed over time; the percent decline decreased with increasing spike exposures. Participants who developed an infection at least two weeks post-receipt of a vaccine were observed to have lower humoral antibody levels than those who did not develop an infection post-receipt. CONCLUSIONS: These findings suggest that understanding the durability of immune responses in this vulnerable NH population can help inform public health policy regarding the timing of booster vaccinations as new variants display immune escape. |
Genetic drift and purifying selection shape within-host influenza A virus populations during natural swine infections
VanInsberghe D , McBride DS , DaSilva J , Stark TJ , Lau MSY , Shepard SS , Barnes JR , Bowman AS , Lowen AC , Koelle K . PLoS Pathog 2024 20 (4) e1012131 Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype swine IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intrahost Single Nucleotide Variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics. |
Performance of Repeat BinaxNOW SARS-CoV-2 Antigen Testing in a Community Setting, Wisconsin, November-December 2020 (preprint)
Shah MM , Salvatore PP , Ford L , Kamitani E , Whaley MJ , Mitchell K , Currie DW , Morgan CN , Segaloff HE , Lecher S , Somers T , Van Dyke ME , Bigouette JP , Delaney A , DaSilva J , O'Hegarty M , Boyle-Estheimer L , Abdirizak F , Karpathy SE , Meece J , Ivanic L , Goffard K , Gieryn D , Sterkel A , Bateman A , Kahrs J , Langolf K , Zochert T , Knight NW , Hsu CH , Kirking HL , Tate JE . medRxiv 2021 2021.04.05.21254834 Repeating the BinaxNOW antigen test for SARS-CoV-2 by two groups of readers within 30 minutes resulted in high concordance (98.9%) in 2,110 encounters. BinaxNOW test sensitivity was 77.2% (258/334) compared to real-time reverse transcription-polymerase chain reaction. Repeating antigen testing on the same day did not significantly improve test sensitivity while specificity remained high.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was funded by the Centers for Disease Control and Prevention.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy. See e.g., 45 C.F.R. part 46.102(l)(2), 21 C.F.R. part 56; 42 U.S.C. 241(d); 5 U.S.C. 552a; 44 U.S.C. 3501 et seq.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData will be made available upon reasonable request. |
Avian influenza A viruses reassort and diversify differently in mallards and mammals (preprint)
Ganti K , Bagga A , DaSilva J , Shepard SS , Barnes JR , Shriner S , Koelle K , Lowen AC . bioRxiv 2021 2021.02.08.430042 Reassortment among co-infecting influenza A viruses (IAVs) is an important source of viral diversity and can facilitate expansion into novel host species. Indeed, reassortment played a key role in the evolution of the last three pandemic IAVs. Observed patterns of reassortment within a coinfected host are likely to be shaped by several factors, including viral load, the extent of viral mixing within the host and the stringency of selection. These factors in turn are expected to vary among the diverse host species that IAV infects. To investigate host differences in IAV reassortment, here we examined reassortment of two distinct avian IAV within their natural host (mallards) and a mammalian model system (guinea pigs). Animals were co-inoculated with A/wildbird/California/187718-36/2008 (H3N8) and A/mallard/Colorado/P66F1-5/2008 (H4N6) viruses. Longitudinal samples were collected from the cloaca of mallards or the nasal tract of guinea pigs and viral genetic exchange was monitored by genotyping clonal isolates from these samples. Relative to those in guinea pigs, viral populations in mallards showed higher frequencies of reassortant genotypes and were characterized by higher genotype richness and diversity. In line with these observations, analysis of pairwise segment combinations revealed lower linkage disequilibrium in mallards as compared to guinea pigs. No clear longitudinal patterns in richness, diversity or linkage disequilibrium were present in either host. Our results reveal mallards to be a highly permissive host for IAV reassortment and suggest that reduced viral mixing limits avian IAV reassortment in a mammalian host.Competing Interest StatementThe authors have declared no competing interest. |
Longitudinal serologic and viral testing post-SARS-CoV-2 infection and post-receipt of mRNA COVID-19 vaccine in a nursing home cohort-Georgia, October 2020-April 2021 (preprint)
Tobolowsky FA , Waltenburg MA , Moritz ED , Haile M , DaSilva JC , Schuh AJ , Thornburg NJ , Westbrook A , McKay SL , LaVoie SP , Folster JM , Harcourt JL , Tamin A , Stumpf MM , Mills L , Freeman B , Lester S , Beshearse E , Lecy KD , Brown LG , Fajardo G , Negley J , McDonald LC , Kutty PK , Brown AC , Bhatnagar A , Bryant-Genevier J , Currie DW , Campbell D , Gilbert SE , Hatfield KM , Jackson DA , Jernigan JA , Dawson JL , Hudson MJ , Joseph K , Reddy SC , Wilson MM . medRxiv 2022 01 (10) e0275718 Importance: There are limited data describing SARS-CoV-2-specific immune responses and their durability following infection and vaccination in nursing home residents. Objective(s): To evaluate the quantitative titers and durability of binding antibodies detected after SARSCoV-2 infection and subsequent COVID-19 vaccination. Design(s): A prospective longitudinal evaluation included nine visits over 150 days; visits included questionnaire administration, blood collection for serology, and paired anterior nasal specimen collection for testing by BinaxNOWTM COVID-19 Ag Card (BinaxNOW), reverse transcription polymerase chain reaction (RT-PCR), and viral culture. Setting(s): A nursing home during and after a SARS-CoV-2 outbreak. Participant(s): 11 consenting SARS-CoV-2-positive nursing home residents. Main Outcomes and Measures: SARS-CoV-2 testing (BinaxNOWTM, RT-PCR, viral culture); quantitative titers of binding SARS-CoV-2 antibodies post-infection and post-vaccination (beginning after the first dose of the primary series). Result(s): Of 10 participants with post-infection serology results, 9 (90%) had detectable Pan-Ig, IgG, and IgA antibodies and 8 (80%) had detectable IgM antibodies. At first antibody detection post-infection, two-thirds (6/9, 67%) of participants were RT-PCR-positive but none were culture positive. Ten participants received vaccination; all had detectable Pan-Ig, IgG, and IgA antibodies through their final observation <=90 days post-first dose. Post-vaccination geometric means of IgG titers were 10-200-fold higher than post-infection. Conclusions and Relevance: Nursing home residents in this cohort mounted robust immune responses to SARS-CoV-2 post-infection and post-vaccination. The augmented antibody responses post-vaccination are potential indicators of enhanced protection that vaccination may confer on previously infected nursing home residents. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Influenza A virus multicycle replication yields comparable viral population emergence in human respiratory and ocular cell types
Kieran TJ , DaSilva J , Stark TJ , York IA , Pappas C , Barnes JR , Maines TR , Belser JA . Microbiol Spectr 2023 11 (4) e0116623 While primarily considered a respiratory pathogen, influenza A virus (IAV) is nonetheless capable of spreading to, and replicating in, numerous extrapulmonary tissues in humans. However, within-host assessments of genetic diversity during multicycle replication have been largely limited to respiratory tract tissues and specimens. As selective pressures can vary greatly between anatomical sites, there is a need to examine how measures of viral diversity may vary between influenza viruses exhibiting different tropisms in humans, as well as following influenza virus infection of cells derived from different organ systems. Here, we employed human primary tissue constructs emulative of the human airway or corneal surface, and we infected both with a panel of human- and avian-origin IAV, inclusive of H1 and H3 subtype human viruses and highly pathogenic H5 and H7 subtype viruses, which are associated with both respiratory disease and conjunctivitis following human infection. While both cell types supported productive replication of all viruses, airway-derived tissue constructs elicited greater induction of genes associated with antiviral responses than did corneal-derived constructs. We used next-generation sequencing to examine viral mutations and population diversity, utilizing several metrics. With few exceptions, generally comparable measures of viral diversity and mutational frequency were detected following homologous virus infection of both respiratory-origin and ocular-origin tissue constructs. Expansion of within-host assessments of genetic diversity to include IAV with atypical clinical presentations in humans or in extrapulmonary cell types can provide greater insight into understanding those features most prone to modulation in the context of viral tropism. IMPORTANCE Influenza A virus (IAV) can infect tissues both within and beyond the respiratory tract, leading to extrapulmonary complications, such as conjunctivitis or gastrointestinal disease. Selective pressures governing virus replication and induction of host responses can vary based on the anatomical site of infection, yet studies examining within-host assessments of genetic diversity are typically only conducted in cells derived from the respiratory tract. We examined the contribution of influenza virus tropism on these properties two different ways: by using IAV associated with different tropisms in humans, and by infecting human cell types from two different organ systems susceptible to IAV infection. Despite the diversity of cell types and viruses employed, we observed generally similar measures of viral diversity postinfection across all conditions tested; these findings nonetheless contribute to a greater understanding of the role tissue type contributes to the dynamics of virus evolution within a human host. |
Early and increased influenza activity among children - Tennessee, 2022-23 influenza season
Thomas CM , White EB , Kojima N , Fill MA , Hanna S , Jones TF , Newhouse CN , Orejuela K , Roth E , Winders S , Chandler DR , Grijalva CG , Schaffner W , Schmitz JE , DaSilva J , Kirby MK , Mellis AM , Rolfes MA , Sumner KM , Flannery B , Talbot HK , Dunn JR . MMWR Morb Mortal Wkly Rep 2023 72 (3) 49-54 Influenza seasons typically begin in October and peak between December and February (1); however, the 2022-23 influenza season in Tennessee began in late September and was characterized by high pediatric hospitalization rates during November. This report describes a field investigation conducted in Tennessee during November 2022, following reports of increasing influenza hospitalizations. Data from surveillance networks, patient surveys, and whole genome sequencing of influenza virus specimens were analyzed to assess influenza activity and secondary illness risk. Influenza activity increased earlier than usual among all age groups, and rates of influenza-associated hospitalization among children were high in November, reaching 12.6 per 100,000 in children aged <5 years, comparable to peak levels typically seen in high-severity seasons. Circulating influenza viruses were genetically similar to vaccine components. Among persons who received testing for influenza at outpatient clinics, children were twice as likely to receive a positive influenza test result as were adults. Among household contacts exposed to someone with influenza, children were more than twice as likely to become ill compared with adults. As the influenza season continues, it is important for all persons, especially those at higher risk for severe disease, to protect themselves from influenza. To prevent influenza and severe influenza complications, all persons aged ≥6 months should get vaccinated, avoid contact with ill persons, and take influenza antivirals if recommended and prescribed. |
Longitudinal serologic and viral testing post-SARS-CoV-2 infection and post-receipt of mRNA COVID-19 vaccine in a nursing home cohort-Georgia, October 2020‒April 2021.
Tobolowsky FA , Waltenburg MA , Moritz ED , Haile M , DaSilva JC , Schuh AJ , Thornburg NJ , Westbrook A , McKay SL , LaVoie SP , Folster JM , Harcourt JL , Tamin A , Stumpf MM , Mills L , Freeman B , Lester S , Beshearse E , Lecy KD , Brown LG , Fajardo G , Negley J , McDonald LC , Kutty PK , Brown AC , Bhatnagar A , Bryant-Genevier J , Currie DW , Campbell D , Gilbert SE , Hatfield KM , Jackson DA , Jernigan JA , Dawson JL , Hudson MJ , Joseph K , Reddy SC , Wilson MM . PLoS One 2022 17 (10) e0275718 There are limited data describing SARS-CoV-2-specific immune responses and their durability following infection and vaccination in nursing home residents. We conducted a prospective longitudinal evaluation of 11 consenting SARS-CoV-2-positive nursing home residents to evaluate the quantitative titers and durability of binding antibodies detected after SARS-CoV-2 infection and subsequent COVID-19 vaccination. The evaluation included nine visits over 150 days from October 25, 2020, through April 1, 2021. Visits included questionnaire administration, blood collection for serology, and paired anterior nasal specimen collection for testing by BinaxNOW™ COVID-19 Ag Card (BinaxNOW), reverse transcription polymerase chain reaction (RT-PCR), and viral culture. We evaluated quantitative titers of binding SARS-CoV-2 antibodies post-infection and post-vaccination (beginning after the first dose of the primary series). The median age among participants was 74 years; one participant was immunocompromised. Of 10 participants with post-infection serology results, 9 (90%) had detectable Pan-Ig, IgG, and IgA antibodies, and 8 (80%) had detectable IgM antibodies. At first antibody detection post-infection, two-thirds (6/9, 67%) of participants were RT-PCR-positive, but none were culture- positive. Ten participants received vaccination; all had detectable Pan-Ig, IgG, and IgA antibodies through their final observation ≤90 days post-first dose. Post-vaccination geometric means of IgG titers were 10-200-fold higher than post-infection. Nursing home residents in this cohort mounted robust immune responses to SARS-CoV-2 post-infection and post-vaccination. The augmented antibody responses post-vaccination are potential indicators of enhanced protection that vaccination may confer on previously infected nursing home residents. |
Influenza Activity and Composition of the 2022-23 Influenza Vaccine - United States, 2021-22 Season.
Merced-Morales A , Daly P , Abd Elal AI , Ajayi N , Annan E , Budd A , Barnes J , Colon A , Cummings CN , Iuliano AD , DaSilva J , Dempster N , Garg S , Gubareva L , Hawkins D , Howa A , Huang S , Kirby M , Kniss K , Kondor R , Liddell J , Moon S , Nguyen HT , O'Halloran A , Smith C , Stark T , Tastad K , Ujamaa D , Wentworth DE , Fry AM , Dugan VG , Brammer L . MMWR Morb Mortal Wkly Rep 2022 71 (29) 913-919 Before the emergence of SARS-CoV-2, the virus that causes COVID-19, influenza activity in the United States typically began to increase in the fall and peaked in February. During the 2021-22 season, influenza activity began to increase in November and remained elevated until mid-June, featuring two distinct waves, with A(H3N2) viruses predominating for the entire season. This report summarizes influenza activity during October 3, 2021-June 11, 2022, in the United States and describes the composition of the Northern Hemisphere 2022-23 influenza vaccine. Although influenza activity is decreasing and circulation during summer is typically low, remaining vigilant for influenza infections, performing testing for seasonal influenza viruses, and monitoring for novel influenza A virus infections are important. An outbreak of highly pathogenic avian influenza A(H5N1) is ongoing; health care providers and persons with exposure to sick or infected birds should remain vigilant for onset of symptoms consistent with influenza. Receiving a seasonal influenza vaccine each year remains the best way to protect against seasonal influenza and its potentially severe consequences. |
Drug resistance and use of long-acting ART.
daSilva J , Siedner M , McCluskey S , Chandiwana N , Venter F , Raizes E . Lancet HIV 2022 9 (6) e374-e375 The approval, in 2021, of long-acting cabotegravir plus rilpivirine as the first long-term antiretroviral therapy (ART) has engendered enthusiasm for its use among patients with adherence challenges, given its potential to address stigma and other challenges associated with daily pill intake. Several factors could prevent the implementation of long-acting cabotegravir plus rilpivirine in resource-poor settings, such as cold chain requirement; inactivity of long-acting cabotegravir plus rilpivirine against hepatitis B; and the requirement for dosing once a month or every 2 months, which conflicts with differentiated service delivery models that allow patients to attend clinics every 6 months. However, the greatest challenge to implementation of long-acting cabotegravir plus rilpivirine in sub-Saharan Africa involves its efficacy in the face of widespread non-nucleoside reverse-transcriptase inhibitor resistance (NNRTI). |
Interim estimates of 2021-22 seasonal influenza vaccine effectiveness - United States, February 2022
Chung JR , Kim SS , Kondor RJ , Smith C , Budd AP , Tartof SY , Florea A , Talbot HK , Grijalva CG , Wernli KJ , Phillips CH , Monto AS , Martin ET , Belongia EA , McLean HQ , Gaglani M , Reis M , Geffel KM , Nowalk MP , DaSilva J , Keong LM , Stark TJ , Barnes JR , Wentworth DE , Brammer L , Burns E , Fry AM , Patel MM , Flannery B . MMWR Morb Mortal Wkly Rep 2022 71 (10) 365-370 In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months except when contraindicated (1). Currently available influenza vaccines are designed to protect against four influenza viruses: A(H1N1)pdm09 (the 2009 pandemic virus), A(H3N2), B/Victoria lineage, and B/Yamagata lineage. Most influenza viruses detected this season have been A(H3N2) (2). With the exception of the 2020-21 season, when data were insufficient to generate an estimate, CDC has estimated the effectiveness of seasonal influenza vaccine at preventing laboratory-confirmed, mild/moderate (outpatient) medically attended acute respiratory infection (ARI) each season since 2004-05. This interim report uses data from 3,636 children and adults with ARI enrolled in the U.S. Influenza Vaccine Effectiveness Network during October 4, 2021-February 12, 2022. Overall, vaccine effectiveness (VE) against medically attended outpatient ARI associated with influenza A(H3N2) virus was 16% (95% CI = -16% to 39%), which is considered not statistically significant. This analysis indicates that influenza vaccination did not reduce the risk for outpatient medically attended illness with influenza A(H3N2) viruses that predominated so far this season. Enrollment was insufficient to generate reliable VE estimates by age group or by type of influenza vaccine product (1). CDC recommends influenza antiviral medications as an adjunct to vaccination; the potential public health benefit of antiviral medications is magnified in the context of reduced influenza VE. CDC routinely recommends that health care providers continue to administer influenza vaccine to persons aged ≥6 months as long as influenza viruses are circulating, even when VE against one virus is reduced, because vaccine can prevent serious outcomes (e.g., hospitalization, intensive care unit (ICU) admission, or death) that are associated with influenza A(H3N2) virus infection and might protect against other influenza viruses that could circulate later in the season. |
Active surveillance and early detection of community transmission of SARS-CoV-2 Mu variant (B.1.621) in the Brazilian Amazon.
Oliveira GS , Silva-Flannery L , daSilva JF , Siza C , Esteves RJ , Marston BJ , Morgan J , Plucinski M , Roca TP , Silva Ampd , Pereira SS , Salcedo JMV , Pereira D , Naveca FG , VieiraDall'Acqua DS . J Med Virol 2022 94 (7) 3410-3415 Through active surveillance and contact tracing from outpatients, we aimed to identify and characterize SARS-CoV-2 variants circulating in Porto Velho, Rondnia a city in the Brazilian Amazon. As part of a prospective cohort, we gather information from 2,506 individuals among COVID-19 patients and household contacts. Epidemiological data, nasopharyngeal swabs, and blood samples were collected from all participants. Nasopharyngeal swabs were tested for antigen rapid diagnostic test and reverse transcription polymerase chain reaction (RT-PCR) followed by genomic sequencing. Blood samples underwent ELISA testing for IgA, IgG and IgM antibody levels. From 757 specimens sequenced, three were identified as Mu variant, none of the individuals carrying this variant had travel history in the previous 15 days before diagnosis. One case was asymptomatic and two presented mild symptoms. Two infected individuals from different household caring virus with additional amino acid substitutions ORF7a P45L and ORF1a T1055A compared to the Mu virus reference sequence. One patient presented IgG levels. Our results highlight that genomic surveillance for SARS-CoV-2 variants can assist in detecting the emergency of SARS-CoV-2 variants in the community, prior to its identification in other parts of the country. This article is protected by copyright. All rights reserved. |
Performance of Repeat BinaxNOW SARS-CoV-2 Antigen Testing in a Community Setting, Wisconsin, November-December 2020.
Shah MM , Salvatore PP , Ford L , Kamitani E , Whaley MJ , Kaitlin M , Currie DW , Morgan CN , Segaloff HE , Lecher S , Somers T , Van Dyke ME , Bigouette JP , Delaney A , DaSilva J , O'Hegarty M , Boyle-Estheimer L , Abdirizak F , Karpathy SE , Meece J , Ivanic L , Goffard K , Gieryn D , Sterkel A , Bateman A , Kahrs J , Langolf K , Zochert T , Knight NW , Hsu CH , Kirking HL , Tate JE . Clin Infect Dis 2021 73 S54-S57 Repeating the BinaxNOW antigen test for SARS-CoV-2 by two groups of readers within 30 minutes resulted in high concordance (98.9%) in 2,110 encounters. BinaxNOW test sensitivity was 77.2% (258/334) compared to real-time reverse transcription-polymerase chain reaction. Same day antigen testing did not significantly improve test sensitivity while specificity remained high. |
Avian Influenza A Viruses Reassort and Diversify Differently in Mallards and Mammals
Ganti K , Bagga A , DaSilva J , Shepard SS , Barnes JR , Shriner S , Koelle K , Lowen AC . Viruses 2021 13 (3) Reassortment among co-infecting influenza A viruses (IAVs) is an important source of viral diversity and can facilitate expansion into novel host species. Indeed, reassortment played a key role in the evolution of the last three pandemic IAVs. Observed patterns of reassortment within a coinfected host are likely to be shaped by several factors, including viral load, the extent of viral mixing within the host and the stringency of selection. These factors in turn are expected to vary among the diverse host species that IAV infects. To investigate host differences in IAV reassortment, here we examined reassortment of two distinct avian IAVs within their natural host (mallards) and a mammalian model system (guinea pigs). Animals were co-inoculated with A/wildbird/California/187718-36/2008 (H3N8) and A/mallard/Colorado/P66F1-5/2008 (H4N6) viruses. Longitudinal samples were collected from the cloaca of mallards or the nasal tract of guinea pigs and viral genetic exchange was monitored by genotyping clonal isolates from these samples. Relative to those in guinea pigs, viral populations in mallards showed higher frequencies of reassortant genotypes and were characterized by higher genotype richness and diversity. In line with these observations, analysis of pairwise segment combinations revealed lower linkage disequilibrium in mallards as compared to guinea pigs. No clear longitudinal patterns in richness, diversity or linkage disequilibrium were present in either host. Our results reveal mallards to be a highly permissive host for IAV reassortment and suggest that reduced viral mixing limits avian IAV reassortment in a mammalian host. |
Interim estimates of 2019-20 seasonal influenza vaccine effectiveness - United States, February 2020
Dawood FS , Chung JR , Kim SS , Zimmerman RK , Nowalk MP , Jackson ML , Jackson LA , Monto AS , Martin ET , Belongia EA , McLean HQ , Gaglani M , Dunnigan K , Foust A , Sessions W , DaSilva J , Le S , Stark T , Kondor RJ , Barnes JR , Wentworth DE , Brammer L , Fry AM , Patel MM , Flannery B . MMWR Morb Mortal Wkly Rep 2020 69 (7) 177-182 During the 2019-20 influenza season, influenza-like illness (ILI)* activity first exceeded the national baseline during the week ending November 9, 2019, signaling the earliest start to the influenza season since the 2009 influenza A(H1N1) pandemic. Activity remains elevated as of mid-February 2020. In the United States, annual vaccination against seasonal influenza is recommended for all persons aged >/=6 months (1). During each influenza season, CDC estimates seasonal influenza vaccine effectiveness in preventing laboratory-confirmed influenza associated with medically attended acute respiratory illness (ARI). This interim report used data from 4,112 children and adults enrolled in the U.S. Influenza Vaccine Effectiveness Network (U.S. Flu VE Network) during October 23, 2019-January 25, 2020. Overall, vaccine effectiveness (VE) against any influenza virus associated with medically attended ARI was 45% (95% confidence interval [CI] = 36%-53%). VE was estimated to be 50% (95% CI = 39%-59%) against influenza B/Victoria viruses and 37% (95% CI = 19%-52%) against influenza A(H1N1)pdm09, indicating that vaccine has significantly reduced medical visits associated with influenza so far this season. Notably, vaccination provided substantial protection (VE = 55%; 95% CI = 42%-65%) among children and adolescents aged 6 months-17 years. Interim VE estimates are consistent with those from previous seasons, ranging from 40%-60% when influenza vaccines were antigenically matched to circulating viruses. CDC recommends that health care providers continue to administer influenza vaccine to persons aged >/=6 months because influenza activity is ongoing, and the vaccine can still prevent illness, hospitalization, and death associated with currently circulating influenza viruses as well as other influenza viruses that might circulate later in the season. |
Early season pediatric influenza B/Victoria virus infections associated with a recently emerged virus subclade - Louisiana, 2019
Owusu D , Hand J , Tenforde MW , Feldstein LR , DaSilva J , Barnes J , Lee G , Tran J , Sokol T , Fry AM , Brammer L , Rolfes MA . MMWR Morb Mortal Wkly Rep 2020 69 (2) 40-43 Multiple genetically distinct influenza B/Victoria lineage viruses have cocirculated in the United States recently, circulating sporadically during the 2018-19 season and more frequently early during the 2019-20 season (1). The beginning of the 2019-20 influenza season in Louisiana was unusually early and intense, with infections primarily caused by influenza B/Victoria lineage viruses. One large pediatric health care facility in New Orleans (facility A) reported 1,268 laboratory-confirmed influenza B virus infections, including 23 hospitalizations from July 31 to November 21, 2019, a time when influenza activity is typically low. During this period, Louisiana also reported one pediatric death associated with influenza B virus infection. An investigation of the influenza B virus infections in Louisiana, including medical and vaccine record abstraction on 198 patients, primarily from facility A, with sporadic cases from other facilities in the state, found that none of the patients had received 2019-20 seasonal influenza vaccine, in part because influenza activity began before influenza vaccination typically occurs. Among 83 influenza B viruses sequenced from 198 patients in Louisiana, 81 (98%) belonged to the recently emerged B/Victoria V1A.3 genetic subclade. Nationally, to date, B/Victoria viruses are the most commonly reported influenza viruses among persons aged <25 years (2). Of the 198 patients in the investigation, 95% were aged <18 years. Although most illnesses were uncomplicated, the number of hospitalizations, clinical complications, and the reported pediatric death in Louisiana serve as a reminder that, even though influenza B viruses are less common than influenza A viruses in most seasons, influenza B virus infection can be severe in children. All persons aged >/=6 months should receive an annual influenza vaccination if they have not already received it (3). Antiviral treatment of influenza is recommended as soon as possible for all hospitalized patients and for outpatients at high risk for influenza complications (including children aged <2 years and persons with underlying medical conditions) (4). |
An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody protects mice from morbidity without interfering with the development of protective immunity to subsequent homologous challenge
Wilson JR , Belser JA , DaSilva J , Guo Z , Sun X , Gansebom S , Bai Y , Stark TJ , Chang J , Carney P , Levine MZ , Barnes J , Stevens J , Maines TR , Tumpey TM , York IA . Virology 2017 511 214-221 The emergence of A(H7N9) virus strains with resistance to neuraminidase (NA) inhibitors highlights a critical need to discover new countermeasures for treatment of A(H7N9) virus-infected patients. We previously described an anti-NA mAb (3c10-3) that has prophylactic and therapeutic efficacy in mice lethally challenged with A(H7N9) virus when delivered intraperitoneally (i.p.). Here we show that intrananasal (i.n.) administration of 3c10-3 protects 100% of mice from mortality when treated 24h post-challenge and further characterize the protective efficacy of 3c10-3 using a nonlethal A(H7N9) challenge model. Administration of 3c10-3 i.p. 24h prior to challenge resulted in a significant decrease in viral lung titers and deep sequencing analysis indicated that treatment did not consistently select for viral variants in NA. Furthermore, prophylactic administration of 3c10-3 did not inhibit the development of protective immunity to subsequent homologous virus re-challenge. Taken together, 3c10-3 highlights the potential use of anti-NA mAb to mitigate influenza virus infection. |
Cross-reactivity of the 31 kDa antigen of Angiostrongylus cantonensis - dealing with the immunodiagnosis of meningoencephalitis
Morassutti AL , Rascoe LN , Handali S , DASilva AJ , Wilkins PP , Graeff-Teixeira C . Parasitology 2016 144 (4) 1-5 The primary causative agent of eosinophilic meningoencephalitis (EoM) in endemic regions is the nematode Angiostrongylus cantonensis. The occurrence of EoM was previously restricted to countries in Southeast Asia and the Pacific Islands; however, more recently, it has been reported from other regions, including Brazil. The commonly used diagnosis is detection of specific antibody reactivity to the 31 kDa antigen, which is derived from female worm somatic extracts. Here we report the occurrence of cross-reactivity to this antigen in sera from other parasitic infections, especially those that may cause EoM, such as gnathostomiasis, toxocariasis, hydatidosis and strongyloidiasis. We also demonstrated that the cross-reactivity, in part, is dependent of the concentration of antigen used in Western blot assays. We discuss the importance of these findings on the interpretation of this test. |
Use of the novel therapeutic agent miltefosine for the treatment of primary amebic meningoencephalitis: report of one fatal and one surviving case
Cope JR , Conrad DA , Cohen N , Cotilla M , Dasilva A , Jackson J , Visvesvara G . Clin Infect Dis 2015 62 (6) 774-6 Primary amebic meningoencephalitis (PAM) is a fulminant central nervous system infection caused by the thermophilic free-living ameba Naegleria fowleri. Few survivals have been documented and adequate treatment is lacking. We report two PAM cases, one fatal and one surviving, treated with the novel antiparasitic agent miltefosine. |
Ascariasis in humans and pigs on small-scale farms, Maine, USA, 2010-2013
Miller LA , Colby K , Manning SE , Hoenig D , McEvoy E , Montgomery S , Mathison B , de Almeida M , Bishop H , Dasilva A , Sears S . Emerg Infect Dis 2015 21 (2) 332-4 Ascaris is a genus of parasitic nematodes that can cause infections in humans and pigs. During 2010-2013, we identified 14 cases of ascariasis in persons who had contact with pigs in Maine, USA. Ascaris spp. are important zoonotic pathogens, and prevention measures are needed, including health education, farming practice improvements, and personal and food hygiene. |
Risk for transmission of Naegleria fowleri from solid organ transplantation
Roy SL , Metzger R , Chen JG , Laham FR , Martin M , Kipper SW , Smith LE , Lyon GM 3rd , Haffner J , Ross JE , Rye AK , Johnson W , Bodager D , Friedman M , Walsh DJ , Collins C , Inman B , Davis BJ , Robinson T , Paddock C , Zaki SR , Kuehnert M , DaSilva A , Qvarnstrom Y , Sriram R , Visvesvara GS . Am J Transplant 2013 14 (1) 163-71 Primary amebic meningoencephalitis (PAM) caused by the free-living ameba (FLA) Naegleria fowleri is a rare but rapidly fatal disease of the central nervous system (CNS) affecting predominantly young, previously healthy persons. No effective chemotherapeutic prophylaxis or treatment has been identified. Recently, three transplant-associated clusters of encephalitis caused by another FLA, Balamuthia mandrillaris, have occurred, prompting questions regarding the suitability of extra-CNS solid organ transplantation from donors with PAM. During 1995-2012, 21 transplant recipients of solid organs donated by five patients with fatal cases of PAM were reported in the United States. None of the recipients developed PAM, and several recipients tested negative for N. fowleri by serology. However, historical PAM case reports and animal experiments with N. fowleri, combined with new postmortem findings from four patients with PAM, suggest that extra-CNS dissemination of N. fowleri can occur and might pose a risk for disease transmission via transplantation. The risks of transplantation with an organ possibly harboring N. fowleri should be carefully weighed for each individual recipient against the potentially greater risk of delaying transplantation while waiting for another suitable organ. In this article, we present a case series and review existing data to inform such risk assessments. |
Molecular diagnosis of malaria by photo-induced electron transfer fluorogenic primers: PET-PCR.
Lucchi NW , Narayanan J , Karell MA , Xayavong M , Kariuki S , Dasilva AJ , Hill V , Udhayakumar V . PLoS One 2013 8 (2) e56677 There is a critical need for developing new malaria diagnostic tools that are sensitive, cost effective and capable of performing large scale diagnosis. The real-time PCR methods are particularly robust for large scale screening and they can be used in malaria control and elimination programs. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. falciparum and the Plasmodium genus by real-time PCR. A total of 119 samples consisting of different malaria species and mixed infections were used to test the utility of the novel PET-PCR primers in the diagnosis of clinical samples. The sensitivity and specificity were calculated using a nested PCR as the gold standard and the novel primer sets demonstrated 100% sensitivity and specificity. The limits of detection for P. falciparum was shown to be 3.2 parasites/microl using both Plasmodium genus and P. falciparum-specific primers and 5.8 parasites/microl for P. ovale, 3.5 parasites/microl for P. malariae and 5 parasites/microl for P. vivax using the genus specific primer set. Moreover, the reaction can be duplexed to detect both Plasmodium spp. and P. falciparum in a single reaction. The PET-PCR assay does not require internal probes or intercalating dyes which makes it convenient to use and less expensive than other real-time PCR diagnostic formats. Further validation of this technique in the field will help to assess its utility for large scale screening in malaria control and elimination programs. |
Real-time loop-mediated isothermal amplification (RealAmp) for the species-specific identification of Plasmodium vivax.
Patel JC , Oberstaller J , Xayavong M , Narayanan J , Debarry JD , Srinivasamoorthy G , Villegas L , Escalante AA , Dasilva A , Peterson DS , Barnwell JW , Kissinger JC , Udhayakumar V , Lucchi NW . PLoS One 2013 8 (1) e54986 Plasmodium vivax infections remain a major source of malaria-related morbidity and mortality. Early and accurate diagnosis is an integral component of effective malaria control programs. Conventional molecular diagnostic methods provide accurate results but are often resource-intensive, expensive, have a long turnaround time and are beyond the capacity of most malaria-endemic countries. Our laboratory has recently developed a new platform called RealAmp, which combines loop-mediated isothermal amplification (LAMP) with a portable tube scanner real-time isothermal instrument for the rapid detection of malaria parasites. Here we describe new primers for the detection of P. vivax using the RealAmp method. Three pairs of amplification primers required for this method were derived from a conserved DNA sequence unique to the P. vivax genome. The amplification was carried out at 64 degrees C using SYBR Green or SYTO-9 intercalating dyes for 90 minutes with the tube scanner set to collect fluorescence signals at 1-minute intervals. Clinical samples of P. vivax and other human-infecting malaria parasite species were used to determine the sensitivity and specificity of the primers by comparing with an 18S ribosomal RNA-based nested PCR as the gold standard. The new set of primers consistently detected laboratory-maintained isolates of P. vivax from different parts of the world. The primers detected P. vivax in the clinical samples with 94.59% sensitivity (95% CI: 87.48-98.26%) and 100% specificity (95% CI: 90.40-100%) compared to the gold standard nested-PCR method. The new primers also proved to be more sensitive than the published species-specific primers specifically developed for the LAMP method in detecting P. vivax. |
First report of human babesiosis in Australia
Senanayake SN , Paparini A , Latimer M , Andriolo K , Dasilva AJ , Wilson H , Xayavong MV , Collignon PJ , Jeans P , Irwin PJ . Med J Aust 2012 196 (5) 350-2 We report the first human case of babesiosis in Australia, thought to be locally acquired. |
International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients
Schijman AG , Bisio M , Orellana L , Sued M , Duffy T , Mejia Jaramillo AM , Cura C , Auter F , Veron V , Qvarnstrom Y , Deborggraeve S , Hijar G , Zulantay I , Lucero RH , Velazquez E , Tellez T , Sanchez Leon Z , Galvao L , Nolder D , Monje Rumi M , Levi JE , Ramirez JD , Zorrilla P , Flores M , Jercic MI , Crisante G , Anez N , De Castro AM , Gonzalez CI , Acosta Viana K , Yachelini P , Torrico F , Robello C , Diosque P , Triana Chavez O , Aznar C , Russomando G , Buscher P , Assal A , Guhl F , Sosa Estani S , DaSilva A , Britto C , Luquetti A , Ladzins J . PLoS Negl Trop Dis 2011 5 (1) e931 BACKGROUND: A century after its discovery, Chagas disease still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The purpose of this study was to evaluate the performance of PCR methods in detection of Trypanosoma cruzi DNA by an external quality evaluation. METHODOLOGY/FINDINGS: An international collaborative study was launched by expert PCR laboratories from 16 countries. Currently used strategies were challenged against serial dilutions of purified DNA from stocks representing T. cruzi discrete typing units (DTU) I, IV and VI (set A), human blood spiked with parasite cells (set B) and Guanidine Hidrochloride-EDTA blood samples from 32 seropositive and 10 seronegative patients from Southern Cone countries (set C). Forty eight PCR tests were reported for set A and 44 for sets B and C; 28 targeted minicircle DNA (kDNA), 13 satellite DNA (Sat-DNA) and the remainder low copy number sequences. In set A, commercial master mixes and Sat-DNA Real Time PCR showed better specificity, but kDNA-PCR was more sensitive to detect DTU I DNA. In set B, commercial DNA extraction kits presented better specificity than solvent extraction protocols. Sat-DNA PCR tests had higher specificity, with sensitivities of 0.05-0.5 parasites/mL whereas specific kDNA tests detected 5.10(-3) par/mL. Sixteen specific and coherent methods had a Good Performance in both sets A and B (10 fg/microl of DNA from all stocks, 5 par/mL spiked blood). The median values of sensitivities, specificities and accuracies obtained in testing the Set C samples with the 16 tests determined to be good performing by analyzing Sets A and B samples varied considerably. Out of them, four methods depicted the best performing parameters in all three sets of samples, detecting at least 10 fg/microl for each DNA stock, 0.5 par/mL and a sensitivity between 83.3-94.4%, specificity of 85-95%, accuracy of 86.8-89.5% and kappa index of 0.7-0.8 compared to consensus PCR reports of the 16 good performing tests and 63-69%, 100%, 71.4-76.2% and 0.4-0.5, respectively compared to serodiagnosis. Method LbD2 used solvent extraction followed by Sybr-Green based Real time PCR targeted to Sat-DNA; method LbD3 used solvent DNA extraction followed by conventional PCR targeted to Sat-DNA. The third method (LbF1) used glass fiber column based DNA extraction followed by TaqMan Real Time PCR targeted to Sat-DNA (cruzi 1/cruzi 2 and cruzi 3 TaqMan probe) and the fourth method (LbQ) used solvent DNA extraction followed by conventional hot-start PCR targeted to kDNA (primer pairs 121/122). These four methods were further evaluated at the coordinating laboratory in a subset of human blood samples, confirming the performance obtained by the participating laboratories. CONCLUSION/SIGNIFICANCE: This study represents a first crucial step towards international validation of PCR procedures for detection of T. cruzi in human blood samples. |
Hospitalization and mortality among primarily non-breastfed children during a large outbreak of diarrhea and malnutrition in Botswana, 2006
Creek TL , Kim A , Lu L , Bowen A , Masunge J , Arvelo W , Smit M , Mach O , Legwaila K , Motswere C , Zaks L , Finkbeiner T , Povinelli L , Maruping M , Ngwaru G , Tebele G , Bopp C , Puhr N , Johnston SP , Dasilva AJ , Bern C , Beard RS , Davis MK . J Acquir Immune Defic Syndr 2009 53 (1) 14-9 BACKGROUND: In 2006, a pediatric diarrhea outbreak occurred in Botswana, coinciding with heavy rains. Surveillance recorded a 3 times increase in cases and a 25 fold increase in deaths between January and March. Botswana has high HIV prevalence among pregnant women (33.4% in 2005), and an estimated 35% of all infants under the age of 6 months are not breastfed. METHODS: We followed all children <5 years old with diarrhea in the country's second largest referral hospital at the peak of the outbreak by chart review, interviewed mothers, and conducted laboratory testing for HIV and enteric pathogens. RESULTS: Of 153 hospitalized children with diarrhea, 97% were <2 years old; 88% of these were not breastfeeding. HIV was diagnosed in 18% of children and 64% of mothers. Cryptosporidium and enteropathogenic Escherichia coli were common; many children had multiple pathogens. Severe acute malnutrition (kwashiorkor or marasmus) developed in 38 (25%) patients, and 33 (22%) died. Kwashiorkor increased risk for death (relative risk 2.0; P = 0.05); only one breastfeeding child died. Many children who died had been undersupplied with formula. CONCLUSIONS: Most of the severe morbidity and mortality in this outbreak occurred in children who were HIV negative and not breastfed. Feeding and nutritional factors were the most important determinants of severe illness and death. Breastfeeding is critical to infant survival in the developing world, and support for breastfeeding among HIV-negative women, and HIV-positive women who cannot formula feed safely, may prevent further high-mortality outbreaks. |
Human zoonotic enteropathogens in a constructed free-surface flow wetland
Graczyk TK , Lucy FE , Mashinsky Y , Andrew Thompson RC , Koru O , Dasilva AJ . Parasitol Res 2009 105 (2) 423-8 Effluents from a small-scale free-surface flow constructed wetland, used for polishing of secondary treated wastewater, contained significantly higher concentrations of potentially viable Giardia duodenalis cysts and Enterocytozoon bieneusi spores than did wetland influents consisting of secondary treated wastewater. Zoonotic Assemblage A of G. duodenalis cysts was identified in wetland inflows, while Assemblage A and two nonhuman infective Assemblages (i.e., C, and E) were present in wetland effluents. E. bieneusi spores represented genotype K based on DNA sequencing analysis of internal transcribed spacer. The study demonstrated that: (1) free-surface flow small-scale constructed wetlands may not provide sufficient remediation for human zoonotic protozoa and fungi present in secondary treated wastewater; (2) dogs and livestock can substantially contribute human-pathogenic protozoan and fungal microorganisms to engineered vegetated wetland systems; and (3) large volumes of wetland effluents can contribute to contamination of surface waters used for recreation and drinking water abstraction and therefore represent a serious public health threat. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure