Last data update: Jan 27, 2025. (Total: 48650 publications since 2009)
Records 1-30 (of 96 Records) |
Query Trace: Yoder J[original query] |
---|
Waterborne disease outbreaks associated with splash pads - United States, 1997-2022
Lawinger H , Khan A , Lysen C , Oppert M , Hill VR , Yoder JS , Roberts VA , Mattioli MC , Hlavsa MC . MMWR Surveill Summ 2024 73 (8) 1-15 PROBLEM/CONDITION: Splash pads are recreational interactive water venues that spray or jet water on users. Splash pads are intended for children aged <5 years and designed so that water typically does not collect in areas accessible to users, thereby minimizing the risk for drowning. Splash pads were first found to be associated with waterborne disease outbreaks in 1997. PERIOD COVERED: 1997-2022. DESCRIPTION OF SYSTEM: Since 1971, waterborne disease outbreaks have been voluntarily reported to CDC by state, local, and territorial health departments using a standard paper form via the Waterborne Disease and Outbreak Surveillance System (WBDOSS). Beginning in 2009, WBDOSS reporting was made available exclusively through the National Outbreak Reporting System, a web-based platform. This report characterizes waterborne disease outbreaks associated with splash pads reported to CDC that occurred during 1997-2022. RESULTS: During 1997-2022, public health officials from 23 states and Puerto Rico reported 60 waterborne disease outbreaks associated with splash pads. These reported outbreaks resulted in 10,611 cases, 152 hospitalizations, 99 emergency department visits, and no reported deaths. The 40 (67%) outbreaks confirmed to be caused, in part, by Cryptosporidium resulted in 9,622 (91%) cases and 123 (81%) hospitalizations. Two outbreaks suspected to be caused by norovirus resulted in 72 (73%) emergency department visits. INTERPRETATION: Waterborne pathogens that cause acute gastrointestinal illness can be transmitted by ingesting water contaminated with feces from infected persons. Chlorine is the primary barrier to pathogen transmission in splash pad water. However, Cryptosporidium is tolerant to chlorine and is the most common cause of reported waterborne disease outbreaks associated with splash pads. PUBLIC HEALTH ACTION: Public health officials and the aquatics sector can use the findings in this report to promote the prevention of splash pad-associated outbreaks (e.g., recommended user behaviors) and guide the construction, operation, and management of splash pads. Public health practitioners and the aquatics sector also can collaborate to voluntarily adopt CDC's Model Aquatic Health Code recommendations to prevent waterborne illness associated with splash pads. |
Wastewater surveillance for influenza A virus and H5 subtype concurrent with the highly pathogenic avian influenza A(H5N1) virus outbreak in cattle and poultry and associated human cases - United States, May 12-July 13, 2024
Louis S , Mark-Carew M , Biggerstaff M , Yoder J , Boehm AB , Wolfe MK , Flood M , Peters S , Stobierski MG , Coyle J , Leslie MT , Sinner M , Nims D , Salinas V , Lustri L , Bojes H , Shetty V , Burnor E , Rabe A , Ellison-Giles G , Yu AT , Bell A , Meyer S , Lynfield R , Sutton M , Scholz R , Falender R , Matzinger S , Wheeler A , Ahmed FS , Anderson J , Harris K , Walkins A , Bohra S , O'Dell V , Guidry VT , Christensen A , Moore Z , Wilson E , Clayton JL , Parsons H , Kniss K , Budd A , Mercante JW , Reese HE , Welton M , Bias M , Webb J , Cornforth D , Santibañez S , Soelaeman RH , Kaur M , Kirby AE , Barnes JR , Fehrenbach N , Olsen SJ , Honein MA . MMWR Morb Mortal Wkly Rep 2024 73 (37) 804-809 ![]() ![]() As part of the response to the highly pathogenic avian influenza A(H5N1) virus outbreak in U.S. cattle and poultry and the associated human cases, CDC and partners are monitoring influenza A virus levels and detection of the H5 subtype in wastewater. Among 48 states and the District of Columbia that performed influenza A testing of wastewater during May 12-July 13, 2024, a weekly average of 309 sites in 38 states had sufficient data for analysis, and 11 sites in four states reported high levels of influenza A virus. H5 subtype testing was conducted at 203 sites in 41 states, with H5 detections at 24 sites in nine states. For each detection or high level, CDC and state and local health departments evaluated data from other influenza surveillance systems and partnered with wastewater utilities and agriculture departments to investigate potential sources. Among the four states with high influenza A virus levels detected in wastewater, three states had corresponding evidence of human influenza activity from other influenza surveillance systems. Among the 24 sites with H5 detections, 15 identified animal sources within the sewershed or adjacent county, including eight milk-processing inputs. Data from these early investigations can help health officials optimize the use of wastewater surveillance during the upcoming respiratory illness season. |
Campylobacteriosis outbreak linked to municipal water, Nebraska, USA, 2021(1)
Jansen L , Birn R , Koirala S , Oppegard S , Loeck B , Hamik J , Wyckoff E , Spindola D , Dempsey S , Bartling A , Roundtree A , Kahler A , Lane C , Hogan N , Strockbine N , McKeel H , Yoder J , Mattioli M , Donahue M , Buss B . Emerg Infect Dis 2024 30 (10) 1998-2005 ![]() In September 2021, eight campylobacteriosis cases were identified in a town in Nebraska, USA. We assessed potential exposures for a case-control analysis. We conducted whole-genome sequencing on Campylobacter isolates from patients' stool specimens. We collected large-volume dead-end ultrafiltration water samples for Campylobacter and microbial source tracking testing at the Centers for Disease Control and Prevention. We identified 64 cases in 2 waves of illnesses. Untreated municipal tap water consumption was strongly associated with illness (wave 1 odds ratio 15.36; wave 2 odds ratio 16.11). Whole-genome sequencing of 12 isolates identified 2 distinct Campylobacter jejuni subtypes (1 subtype/wave). The town began water chlorination, after which water testing detected coliforms. One dead-end ultrafiltration sample yielded nonculturable Campylobacter and avian-specific fecal rRNA genomic material. Our investigation implicated contaminated, untreated, municipal water as the source. Results of microbial source tracking supported mitigation with continued water chlorination. No further campylobacteriosis cases attributable to water were reported. |
Rare variants in CAPN2 increase risk for isolated hypoplastic left heart syndrome
Blue EE , White JJ , Dush MK , Gordon WW , Wyatt BH , White P , Marvin CT , Helle E , Ojala T , Priest JR , Jenkins MM , Almli LM , Reefhuis J , Pangilinan F , Brody LC , McBride KL , Garg V , Shaw GM , Romitti PA , Nembhard WN , Browne ML , Werler MM , Kay DM , Mital S , Chong JX , Nascone-Yoder NM , Bamshad MJ . HGG Adv 2023 4 (4) 100232 ![]() Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect (CHD) characterized by hypoplasia of the left ventricle and aorta along with stenosis or atresia of the aortic and mitral valves. HLHS represents only ∼4%-8% of all CHDs but accounts for ∼25% of deaths. HLHS is an isolated defect (i.e., iHLHS) in 70% of families, the vast majority of which are simplex. Despite intense investigation, the genetic basis of iHLHS remains largely unknown. We performed exome sequencing on 331 families with iHLHS aggregated from four independent cohorts. A Mendelian-model-based analysis demonstrated that iHLHS was not due to single, large-effect alleles in genes previously reported to underlie iHLHS or CHD in >90% of families in this cohort. Gene-based association testing identified increased risk for iHLHS associated with variation in CAPN2 (p = 1.8 × 10(-5)), encoding a protein involved in functional adhesion. Functional validation studies in a vertebrate animal model (Xenopus laevis) confirmed CAPN2 is essential for cardiac ventricle morphogenesis and that in vivo loss of calpain function causes hypoplastic ventricle phenotypes and suggest that human CAPN2(707C>T) and CAPN2(1112C>T) variants, each found in multiple individuals with iHLHS, are hypomorphic alleles. Collectively, our findings show that iHLHS is typically not a Mendelian condition, demonstrate that CAPN2 variants increase risk of iHLHS, and identify a novel pathway involved in HLHS pathogenesis. |
Estimating waterborne infectious disease burden by exposure route, United States, 2014
Gerdes ME , Miko S , Kunz JM , Hannapel EJ , Hlavsa MC , Hughes MJ , Stuckey MJ , Francois Watkins LK , Cope JR , Yoder JS , Hill VR , Collier SA . Emerg Infect Dis 2023 29 (7) 1357-1366 More than 7.15 million cases of domestically acquired infectious waterborne illnesses occurred in the United States in 2014, causing 120,000 hospitalizations and 6,600 deaths. We estimated disease incidence for 17 pathogens according to recreational, drinking, and nonrecreational nondrinking (NRND) water exposure routes by using previously published estimates. In 2014, a total of 5.61 million (95% credible interval [CrI] 2.97-9.00 million) illnesses were linked to recreational water, 1.13 million (95% CrI 255,000-3.54 million) to drinking water, and 407,000 (95% CrI 72,800-1.29 million) to NRND water. Recreational water exposure was responsible for 36%, drinking water for 40%, and NRND water for 24% of hospitalizations from waterborne illnesses. Most direct costs were associated with pathogens found in biofilms. Estimating disease burden by water exposure route helps direct prevention activities. For each exposure route, water management programs are needed to control biofilm-associated pathogen growth; public health programs are needed to prevent biofilm-associated diseases. |
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US (preprint)
Cramer EY , Ray EL , Lopez VK , Bracher J , Brennen A , Castro Rivadeneira AJ , Gerding A , Gneiting T , House KH , Huang Y , Jayawardena D , Kanji AH , Khandelwal A , Le K , Mühlemann A , Niemi J , Shah A , Stark A , Wang Y , Wattanachit N , Zorn MW , Gu Y , Jain S , Bannur N , Deva A , Kulkarni M , Merugu S , Raval A , Shingi S , Tiwari A , White J , Abernethy NF , Woody S , Dahan M , Fox S , Gaither K , Lachmann M , Meyers LA , Scott JG , Tec M , Srivastava A , George GE , Cegan JC , Dettwiller ID , England WP , Farthing MW , Hunter RH , Lafferty B , Linkov I , Mayo ML , Parno MD , Rowland MA , Trump BD , Zhang-James Y , Chen S , Faraone SV , Hess J , Morley CP , Salekin A , Wang D , Corsetti SM , Baer TM , Eisenberg MC , Falb K , Huang Y , Martin ET , McCauley E , Myers RL , Schwarz T , Sheldon D , Gibson GC , Yu R , Gao L , Ma Y , Wu D , Yan X , Jin X , Wang YX , Chen Y , Guo L , Zhao Y , Gu Q , Chen J , Wang L , Xu P , Zhang W , Zou D , Biegel H , Lega J , McConnell S , Nagraj VP , Guertin SL , Hulme-Lowe C , Turner SD , Shi Y , Ban X , Walraven R , Hong QJ , Kong S , van de Walle A , Turtle JA , Ben-Nun M , Riley S , Riley P , Koyluoglu U , DesRoches D , Forli P , Hamory B , Kyriakides C , Leis H , Milliken J , Moloney M , Morgan J , Nirgudkar N , Ozcan G , Piwonka N , Ravi M , Schrader C , Shakhnovich E , Siegel D , Spatz R , Stiefeling C , Wilkinson B , Wong A , Cavany S , España G , Moore S , Oidtman R , Perkins A , Kraus D , Kraus A , Gao Z , Bian J , Cao W , Lavista Ferres J , Li C , Liu TY , Xie X , Zhang S , Zheng S , Vespignani A , Chinazzi M , Davis JT , Mu K , Pastore YPiontti A , Xiong X , Zheng A , Baek J , Farias V , Georgescu A , Levi R , Sinha D , Wilde J , Perakis G , Bennouna MA , Nze-Ndong D , Singhvi D , Spantidakis I , Thayaparan L , Tsiourvas A , Sarker A , Jadbabaie A , Shah D , Della Penna N , Celi LA , Sundar S , Wolfinger R , Osthus D , Castro L , Fairchild G , Michaud I , Karlen D , Kinsey M , Mullany LC , Rainwater-Lovett K , Shin L , Tallaksen K , Wilson S , Lee EC , Dent J , Grantz KH , Hill AL , Kaminsky J , Kaminsky K , Keegan LT , Lauer SA , Lemaitre JC , Lessler J , Meredith HR , Perez-Saez J , Shah S , Smith CP , Truelove SA , Wills J , Marshall M , Gardner L , Nixon K , Burant JC , Wang L , Gao L , Gu Z , Kim M , Li X , Wang G , Wang Y , Yu S , Reiner RC , Barber R , Gakidou E , Hay SI , Lim S , Murray C , Pigott D , Gurung HL , Baccam P , Stage SA , Suchoski BT , Prakash BA , Adhikari B , Cui J , Rodríguez A , Tabassum A , Xie J , Keskinocak P , Asplund J , Baxter A , Oruc BE , Serban N , Arik SO , Dusenberry M , Epshteyn A , Kanal E , Le LT , Li CL , Pfister T , Sava D , Sinha R , Tsai T , Yoder N , Yoon J , Zhang L , Abbott S , Bosse NI , Funk S , Hellewell J , Meakin SR , Sherratt K , Zhou M , Kalantari R , Yamana TK , Pei S , Shaman J , Li ML , Bertsimas D , Skali Lami O , Soni S , Tazi Bouardi H , Ayer T , Adee M , Chhatwal J , Dalgic OO , Ladd MA , Linas BP , Mueller P , Xiao J , Wang Y , Wang Q , Xie S , Zeng D , Green A , Bien J , Brooks L , Hu AJ , Jahja M , McDonald D , Narasimhan B , Politsch C , Rajanala S , Rumack A , Simon N , Tibshirani RJ , Tibshirani R , Ventura V , Wasserman L , O'Dea EB , Drake JM , Pagano R , Tran QT , Ho LST , Huynh H , Walker JW , Slayton RB , Johansson MA , Biggerstaff M , Reich NG . medRxiv 2021 2021.02.03.21250974 ![]() Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. In 2020, the COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized hundreds of thousands of specific predictions from more than 50 different academic, industry, and independent research groups. This manuscript systematically evaluates 23 models that regularly submitted forecasts of reported weekly incident COVID-19 mortality counts in the US at the state and national level. One of these models was a multi-model ensemble that combined all available forecasts each week. The performance of individual models showed high variability across time, geospatial units, and forecast horizons. Half of the models evaluated showed better accuracy than a naïve baseline model. In combining the forecasts from all teams, the ensemble showed the best overall probabilistic accuracy of any model. Forecast accuracy degraded as models made predictions farther into the future, with probabilistic accuracy at a 20-week horizon more than 5 times worse than when predicting at a 1-week horizon. This project underscores the role that collaboration and active coordination between governmental public health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.Competing Interest StatementAV, MC, and APP report grants from Metabiota Inc outside the submitted work.Funding StatementFor teams that reported receiving funding for their work, we report the sources and disclosures below. CMU-TimeSeries: CDC Center of Excellence, gifts from Google and Facebook. CU-select: NSF DMS-2027369 and a gift from the Morris-Singer Foundation. COVIDhub: This work has been supported by the US Centers for Disease Control and Prevention (1U01IP001122) and the National Institutes of General Medical Sciences (R35GM119582). The content is solely the responsibility of the authors and does not necessarily represent the official views of CDC, NIGMS or the National Institutes of Health. Johannes Bracher was supported by the Helmholtz Foundation via the SIMCARD Information& Data Science Pilot Project. Tilmann Gneiting gratefully acknowledges support by the Klaus Tschira Foundation. DDS-NBDS: NSF III-1812699. EPIFORECASTS-ENSEMBLE1: Wellcome Trust (210758/Z/18/Z) GT_CHHS-COVID19: William W. George Endowment, Virginia C. and Joseph C. Mello Endowments, NSF DGE-1650044, NSF MRI 1828187, research cyberinfrastructure resources and services provided by the Partnership for an Advanced Computing Environment (PACE) at Georgia Tech, and the following benefactors at Georgia Tech: Andrea Laliberte, Joseph C. Mello, Richard Rick E. & Charlene Zalesky, and Claudia & Paul Raines GT-DeepCOVID: CDC MInD-Healthcare U01CK000531-Supplement. NSF (Expeditions CCF-1918770, CAREER IIS-2028586, RAPID IIS-2027862, Medium IIS-1955883, NRT DGE-1545362), CDC MInD program, ORNL and funds/computing resources from Georgia Tech and GTRI. IHME: This work was supported by the Bill & Melinda Gates Foundation, as well as funding from the state of Washington and the National Science Foundation (award no. FAIN: 2031096). IowaStateLW-STEM: Iowa State University Plant Sciences Institute Scholars Program, NSF DMS-1916204, NSF CCF-1934884, Laurence H. Baker Center for Bioinformatics and Biological Statistics. JHU_IDD-CovidSP: State of California, US Dept of Health and Human Services, US Dept of Homeland Security, US Office of Foreign Disaster Assistance, Johns Hopkins Health System, Office of the Dean at Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University Modeling and Policy Hub, Centers fo Disease Control and Prevention (5U01CK000538-03), University of Utah Immunology, Inflammation, & Infectious Disease Initiative (26798 Seed Grant). LANL-GrowthRate: LANL LDRD 20200700ER. MOBS-GLEAM_COVID: COVID Supplement CDC-HHS-6U01IP001137-01. NotreDame-mobility and NotreDame-FRED: NSF RAPID DEB 2027718 UA-EpiCovDA: NSF RAPID Grant # 2028401. UCSB-ACTS: NSF RAPID IIS 2029626. UCSD-NEU: Google Faculty Award, DARPA W31P4Q-21-C-0014, COVID Supplement CDC-HHS-6U01IP001137-01. UMass-MechBayes: NIGMS R35GM119582, NSF 1749854. UMich-RidgeTfReg: The University of Michigan Physics Department and the University of Michigan Office of Research.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:UMass-Amherst IRBAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data and code referred to in the manuscript are publicly available. https://github.com/reichlab/covid19-forecast-hub/ https://github.com/reichlab/covidEnsembles https://zoltardata.com/project/44 |
Notes from the field: Campylobacteriosis outbreak associated with consumption of raw water - Montana, 2022
Hinnenkamp R , Sorenson S , Evanson E , Yoder J , Mattioli M . MMWR Morb Mortal Wkly Rep 2023 72 (15) 411-412 Consumption of raw water (water that has not been disinfected or filtered) has become an emerging trend in the United States and could pose serious health consequences (1). Drinking water collected directly from outdoor freshwater sources such as lakes, rivers, and streams that has not been adequately treated (i.e., to remove pathogens) can cause disease and outbreaks (2). This report describes how a community in Western Montana responded to an outbreak of 19 cases of diarrheal illness associated with consuming untreated surface water. | | On May 9, 2022, Sanders County, Montana, reported to the state health department six active cases of Campylobacter infection in their community; this case count represented a substantial increase above the 5-year average of six reported cases annually during 2017–2021. All infected persons reported drinking water from watering point A, an outlet of surface water from a creek near Paradise, Montana (Figure), before their onset of symptoms, which began on or after May 4. During the next 6 weeks, 13 additional cases of Campylobacter jejuni infection among persons exposed to the same water source were identified through laboratory testing (two by culture-independent confirmation and four by culture confirmation) or epidemiologic linkage (seven). One person was hospitalized, and no deaths were reported. |
Microbial characterization, factors contributing to contamination, and household use of cistern water, U.S. Virgin Islands
Rao Gouthami , Kahler Amy , Voth-Gaeddert Lee E , Cranford Hannah , Libbey Stephen , Galloway Renee , Molinari Noelle-Angelique , Ellis Esther M , Yoder Jonathan S , Mattioli Mia C , Ellis Brett R . ACS ES T Water 2022 2 (12) 2634-2644 Households in the United States Virgin Islands (USVI) heavily rely on roof-harvested rainwater stored in cisterns for their daily activities. However, there are insufficient data on cistern water microbiological and physicochemical characteristics to inform appropriate cistern water management. Cistern and kitchen tap water samples were collected from 399 geographically representative households across St. Croix, St. Thomas, and St. John and an administered survey captured household site and cistern characteristics and water use behaviors. Water samples were analyzed for Escherichia coli by culture, and a subset of cistern water samples (N = 47) were analyzed for Salmonella, Naegleria fowleri, pathogenic Leptospira, Cryptosporidium, Giardia, and human-specific fecal contamination using real-time polymerase chain reaction (PCR). Associations between E. coli cistern contamination and cistern and site characteristics were evaluated to better understand possible mechanisms of contamination. E. coli was detected in 80% of cistern water samples and in 58% of kitchen tap samples. For the subset of samples tested by PCR, at least one of the pathogens was detected in 66% of cisterns. Our results suggest that covering overflow pipes with screens, decreasing animal presence at the household, and preventing animals or insects from entering the cisterns can decrease the likelihood of E. coli contamination in USVI cistern water. |
Fight the bite: implementation of mosquito-based curriculum in elementary, middle, and high schools in Florida
Parker-Crockett C , Rampold SD , Galindo S , Bunch JC , Yoder H , Thoron A , Andenoro A , Connelly CR , Lucky A , Telg R . J Agric Educ 2022 63 (2) 37-51 Mosquitoes are both a nuisance and public health threat. In recent decades, outbreaks of dengue, chikungunya, and Zika in Florida have raised awareness of the importance of domestic and peri-domestic container mosquitoes, Aedes aegypti and Aedes albopictus. The synanthropic nature of these species, coupled with their preference for human bloodmeals, makes them a concern of and target for mosquito control. However, mosquito control programs (MCPs) often struggle to sustainably manage these mosquitoes because of the cryptic and abundant nature of their larval habitats, and negative public opinion towards MCPs and the use of insecticides. Fortunately, mosquito control can be improved by the actions of homeowners and residents as they have regular access to their own property and containers. School-based education programs can provide a means to community-wide education regarding mosquito control. We developed and delivered a mosquito education program to elementary, middle, and high school students. Knowledge of mosquitoes significantly improved in participating elementary and middle/ high school students. This knowledge was partially retained according to a follow-up test that was administered. Additionally, attitudes towards mosquito control and at-home control methods significantly improved following the instruction. The improvements in knowledge and attitudes observed in students suggest they can and should be targeted for mosquito education campaigns by mosquito control programs and educators. |
Characterization of reported legionellosis outbreaks associated with buildings served by public drinking water systems: United States, 2001-2017
Holsinger H , Tucker N , Regli S , Studer K , Roberts VA , Collier S , Hannapel E , Edens C , Yoder JS , Rotert K . J Water Health 2022 20 (4) 702-711 This study examined 184 legionellosis outbreaks in the United States reported to the Centers for Disease Control and Prevention's Waterborne Disease and Outbreak Surveillance System, from 2001 to 2017. Drinking water characteristics examined include source water type, disinfectant type, exposure setting, geographical distribution by U.S. Census Divisions, and the public water system size (population served). This study found that most of the reported drinking water-associated legionellosis outbreaks occurred in eastern United States, including 35% in the South Atlantic, 32% in the Middle Atlantic, and 16% in the East North Central Census Divisions were linked with building water systems in healthcare and hotel settings; and were associated with buildings receiving drinking water from public water systems serving >10,000 people. Targeted evaluations and interventions may be useful to further determine the combination of factors, such as disinfectant residual type and drinking water system size that may lead to legionellosis outbreaks. |
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States.
Cramer EY , Ray EL , Lopez VK , Bracher J , Brennen A , Castro Rivadeneira AJ , Gerding A , Gneiting T , House KH , Huang Y , Jayawardena D , Kanji AH , Khandelwal A , Le K , Mühlemann A , Niemi J , Shah A , Stark A , Wang Y , Wattanachit N , Zorn MW , Gu Y , Jain S , Bannur N , Deva A , Kulkarni M , Merugu S , Raval A , Shingi S , Tiwari A , White J , Abernethy NF , Woody S , Dahan M , Fox S , Gaither K , Lachmann M , Meyers LA , Scott JG , Tec M , Srivastava A , George GE , Cegan JC , Dettwiller ID , England WP , Farthing MW , Hunter RH , Lafferty B , Linkov I , Mayo ML , Parno MD , Rowland MA , Trump BD , Zhang-James Y , Chen S , Faraone SV , Hess J , Morley CP , Salekin A , Wang D , Corsetti SM , Baer TM , Eisenberg MC , Falb K , Huang Y , Martin ET , McCauley E , Myers RL , Schwarz T , Sheldon D , Gibson GC , Yu R , Gao L , Ma Y , Wu D , Yan X , Jin X , Wang YX , Chen Y , Guo L , Zhao Y , Gu Q , Chen J , Wang L , Xu P , Zhang W , Zou D , Biegel H , Lega J , McConnell S , Nagraj VP , Guertin SL , Hulme-Lowe C , Turner SD , Shi Y , Ban X , Walraven R , Hong QJ , Kong S , van de Walle A , Turtle JA , Ben-Nun M , Riley S , Riley P , Koyluoglu U , DesRoches D , Forli P , Hamory B , Kyriakides C , Leis H , Milliken J , Moloney M , Morgan J , Nirgudkar N , Ozcan G , Piwonka N , Ravi M , Schrader C , Shakhnovich E , Siegel D , Spatz R , Stiefeling C , Wilkinson B , Wong A , Cavany S , España G , Moore S , Oidtman R , Perkins A , Kraus D , Kraus A , Gao Z , Bian J , Cao W , Lavista Ferres J , Li C , Liu TY , Xie X , Zhang S , Zheng S , Vespignani A , Chinazzi M , Davis JT , Mu K , Pastore YPiontti A , Xiong X , Zheng A , Baek J , Farias V , Georgescu A , Levi R , Sinha D , Wilde J , Perakis G , Bennouna MA , Nze-Ndong D , Singhvi D , Spantidakis I , Thayaparan L , Tsiourvas A , Sarker A , Jadbabaie A , Shah D , Della Penna N , Celi LA , Sundar S , Wolfinger R , Osthus D , Castro L , Fairchild G , Michaud I , Karlen D , Kinsey M , Mullany LC , Rainwater-Lovett K , Shin L , Tallaksen K , Wilson S , Lee EC , Dent J , Grantz KH , Hill AL , Kaminsky J , Kaminsky K , Keegan LT , Lauer SA , Lemaitre JC , Lessler J , Meredith HR , Perez-Saez J , Shah S , Smith CP , Truelove SA , Wills J , Marshall M , Gardner L , Nixon K , Burant JC , Wang L , Gao L , Gu Z , Kim M , Li X , Wang G , Wang Y , Yu S , Reiner RC , Barber R , Gakidou E , Hay SI , Lim S , Murray C , Pigott D , Gurung HL , Baccam P , Stage SA , Suchoski BT , Prakash BA , Adhikari B , Cui J , Rodríguez A , Tabassum A , Xie J , Keskinocak P , Asplund J , Baxter A , Oruc BE , Serban N , Arik SO , Dusenberry M , Epshteyn A , Kanal E , Le LT , Li CL , Pfister T , Sava D , Sinha R , Tsai T , Yoder N , Yoon J , Zhang L , Abbott S , Bosse NI , Funk S , Hellewell J , Meakin SR , Sherratt K , Zhou M , Kalantari R , Yamana TK , Pei S , Shaman J , Li ML , Bertsimas D , Skali Lami O , Soni S , Tazi Bouardi H , Ayer T , Adee M , Chhatwal J , Dalgic OO , Ladd MA , Linas BP , Mueller P , Xiao J , Wang Y , Wang Q , Xie S , Zeng D , Green A , Bien J , Brooks L , Hu AJ , Jahja M , McDonald D , Narasimhan B , Politsch C , Rajanala S , Rumack A , Simon N , Tibshirani RJ , Tibshirani R , Ventura V , Wasserman L , O'Dea EB , Drake JM , Pagano R , Tran QT , Ho LST , Huynh H , Walker JW , Slayton RB , Johansson MA , Biggerstaff M , Reich NG . Proc Natl Acad Sci U S A 2022 119 (15) e2113561119 ![]() SignificanceThis paper compares the probabilistic accuracy of short-term forecasts of reported deaths due to COVID-19 during the first year and a half of the pandemic in the United States. Results show high variation in accuracy between and within stand-alone models and more consistent accuracy from an ensemble model that combined forecasts from all eligible models. This demonstrates that an ensemble model provided a reliable and comparatively accurate means of forecasting deaths during the COVID-19 pandemic that exceeded the performance of all of the models that contributed to it. This work strengthens the evidence base for synthesizing multiple models to support public-health action. |
Demographic differences in use of household tap water in a representative sample of US adults, FallStyles 2019
Vanden Esschert K , Barrett CE , Collier SA , Garcia-Williams AG , Hannapel E , Yoder JS , Benedict KM . J Water Health 2021 19 (6) 1014-1020 Tap water that is safe to consume may cause respiratory illness (e.g., Legionnaires' disease) when water conditions allow for proliferation and aerosolization of biofilm-associated pathogens. This study assessed household tap water consumption, exposure to aerosolized tap water, and associated demographics. A nationally representative FallStyles survey administered by Porter Novelli Public Services was sent to 4,677 US adult panelists in October 2019. There were 3,624 adults who completed the survey (77.5% response rate). Respondents were asked about self-reported use of household tap water for consumption (i.e., drinking, rinsing produce, or making ice) and use through water-aerosolizing devices (e.g., showerheads, humidifiers). Demographics included gender, age, race/ethnicity, education, income, region, and health status. Weighted analyses using complex sample survey procedures were used to assess tap water exposure by route and demographics. Most US adults are exposed to aerosolized tap water through showering (80.6%), and one in five are exposed through other water-aerosolizing devices (20.3%). Consumption and showering were greatest among older, White, higher educated, and higher-income adults. Aerosolized tap water can transmit waterborne pathogens and cause respiratory illness, especially among older age groups and people with weakened immune systems. These results will help target health messages for using water-aerosolizing devices safely. |
Public health branch incident management and support as part of the Federal Government response during the emergency phase of Hurricanes Irma and Maria in Puerto Rico and the US Virgin Islands
Cruz MA , Rivera-González LO , Irvin-Barnwell E , Cabrera-Marquez J , Ellis E , Ellis B , Qi B , Maniglier-Poulet C , Gerding JA , Shumate A , Andujar A , Yoder J , Laco J , Santana A , Bayleyegn T , Luna-Pinto C , Rodriguez LO , Roth J , Bermingham J , Funk RH , Raheem M . J Emerg Manag 2021 19 (8) 63-77 On September 6 and 20, 2017, Hurricanes Irma and Maria made landfall as major hurricanes in the US Caribbean Territories of the Virgin Islands and Puerto Rico with devastating effects. As part of the initial response, a public health team (PHT) was initially deployed as part of the US Department of Health and Human Services Incident Response Coordination Team. As a result of increased demands for additional expertise and resources, a public health branch (PHB) was established for coordinating a broad spectrum of public health response activities in support of the affected territories. This paper describes the conceptual framework for organizing these activities; summarizes some key public health activities and roles; outlines partner support and coordination with key agencies; and defines best practices and areas for improvement in disaster future operations. © 2021 Weston Medical Publishing. All rights reserved. |
A Million Persons, A Million Dreams: A Vision For A National Center Of Radiation Epidemiology And Biology
Boice JD Jr , Quinn B , Al-Nabulsi I , Ansari A , Blake PK , Blattnig SR , Caffrey EA , Cohen SS , Golden AP , Held KD , Jokisch DW , Leggett RW , Mumma MT , Samuels C , Till JE , Tolmachev SY , Yoder RC , Zhou JY , Dauer LT . Int J Radiat Biol 2021 98 (4) 1-50 BACKGROUND: Epidemiologic studies of radiation-exposed populations form the basis for human safety standards. They also help shape public health policy and evidence-based health practices by identifying and quantifying health risks of exposure in defined populations. For more than a century, epidemiologists have studied the consequences of radiation exposures, yet the health effects of low levels delivered at a low-dose rate remain equivocal. MATERIALS AND METHODS: The Million Person Study (MPS) of U.S. Radiation Workers and Veterans was designed to examine health effects following chronic exposures in contrast with brief exposures as experienced by the Japanese atomic bomb survivors. Radiation associations for rare cancers, intakes of radionuclides, and differences between men and women are being evaluated, as well as noncancers such as cardiovascular disease and conditions such as dementia and cognitive function. The first international symposium, held November 6, 2020, provided a broad overview of the MPS. Representatives from four U.S. government agencies addressed the importance of this research for their respective missions: U.S. Department of Energy (DOE), the Centers for Disease Control and Prevention (CDC), the U.S. Department of Defense (DOD), and the National Aeronautical Space Agency (NASA). The major components of the MPS were discussed and recent findings summarized. The importance of radiation dosimetry, an essential feature of each MPS investigation, was emphasized. RESULTS: The seven components of the MPS are DOE workers, nuclear weapons test participants, nuclear power plant workers, industrial radiographers, medical radiation workers, nuclear submariners, other U.S. Navy personnel, and radium dial painters. The MPS cohorts include tens of thousands of workers with elevated intakes of alpha particle emitters for which organ-specific doses are determined. Findings to date for chronic radiation exposure suggest that leukemia risk is lower than after acute exposure; lung cancer risk is much lower and there is little difference in risks between men and women; an increase in ischemic heart disease is yet to be seen; esophageal cancer is frequently elevated but not myelodysplastic syndrome; and Parkinson's disease may be associated with radiation exposure. CONCLUSIONS: The MPS has provided provocative insights into the possible range of health effects following low-level chronic radiation exposure. When the 34 MPS cohorts are completed and combined, a powerful evaluation of radiation-effects will be possible. This final article in the MPS special issue summarizes the findings to date and the possibilities for the future. A National Center for Radiation Epidemiology and Biology is envisioned. |
Using Wastewater Surveillance Data to Support the COVID-19 Response - United States, 2020-2021.
Kirby AE , Walters MS , Jennings WC , Fugitt R , LaCross N , Mattioli M , Marsh ZA , Roberts VA , Mercante JW , Yoder J , Hill VR . MMWR Morb Mortal Wkly Rep 2021 70 (36) 1242-1244 ![]() Wastewater surveillance, the measurement of pathogen levels in wastewater, is used to evaluate community-level infection trends, augment traditional surveillance that leverages clinical tests and services (e.g., case reporting), and monitor public health interventions (1). Approximately 40% of persons infected with SARS-CoV-2, the virus that causes COVID-19, shed virus RNA in their stool (2); therefore, community-level trends in SARS-CoV-2 infections, both symptomatic and asymptomatic (2) can be tracked through wastewater testing (3-6). CDC launched the National Wastewater Surveillance System (NWSS) in September 2020 to coordinate wastewater surveillance programs implemented by state, tribal, local, and territorial health departments to support the COVID-19 pandemic response. In the United States, wastewater surveillance was not previously implemented at the national level. As of August 2021, NWSS includes 37 states, four cities, and two territories. This report summarizes NWSS activities and describes innovative applications of wastewater surveillance data by two states, which have included generating alerts to local jurisdictions, allocating mobile testing resources, evaluating irregularities in traditional surveillance, refining health messaging, and forecasting clinical resource needs. NWSS complements traditional surveillance and enables health departments to intervene earlier with focused support in communities experiencing increasing concentrations of SARS-CoV-2 in wastewater. The ability to conduct wastewater surveillance is not affected by access to health care or the clinical testing capacity in the community. Robust, sustainable implementation of wastewater surveillance requires public health capacity for wastewater testing, analysis, and interpretation. Partnerships between wastewater utilities and public health departments are needed to leverage wastewater surveillance data for the COVID-19 response for rapid assessment of emerging threats and preparedness for future pandemics. |
COVID-19 Vaccination Coverage Among Adolescents Aged 12-17 Years - United States, December 14, 2020-July 31, 2021.
Murthy BP , Zell E , Saelee R , Murthy N , Meng L , Meador S , Reed K , Shaw L , Gibbs-Scharf L , McNaghten AD , Patel A , Stokley S , Flores S , Yoder JS , Black CL , Harris LQ . MMWR Morb Mortal Wkly Rep 2021 70 (35) 1206-1213 Although severe COVID-19 illness and hospitalization are more common among adults, these outcomes can occur in adolescents (1). Nearly one third of adolescents aged 12-17 years hospitalized with COVID-19 during March 2020-April 2021 required intensive care, and 5% of those hospitalized required endotracheal intubation and mechanical ventilation (2). On December 11, 2020, the Food and Drug Administration (FDA) issued Emergency Use Authorization (EUA) of the Pfizer-BioNTech COVID-19 vaccine for adolescents aged 16-17 years; on May 10, 2021, the EUA was expanded to include adolescents aged 12-15 years; and on August 23, 2021, FDA granted approval of the vaccine for persons aged ≥16 years. To assess progress in adolescent COVID-19 vaccination in the United States, CDC assessed coverage with ≥1 dose* and completion of the 2-dose vaccination series(†) among adolescents aged 12-17 years using vaccine administration data for 49 U.S. states (all except Idaho) and the District of Columbia (DC) during December 14, 2020-July 31, 2021. As of July 31, 2021, COVID-19 vaccination coverage among U.S. adolescents aged 12-17 years was 42.4% for ≥1 dose and 31.9% for series completion. Vaccination coverage with ≥1 dose varied by state (range = 20.2% [Mississippi] to 70.1% [Vermont]) and for series completion (range = 10.7% [Mississippi] to 60.3% [Vermont]). By age group, 36.0%, 40.9%, and 50.6% of adolescents aged 12-13, 14-15, and 16-17 years, respectively, received ≥1 dose; 25.4%, 30.5%, and 40.3%, respectively, completed the vaccine series. Improving vaccination coverage and implementing COVID-19 prevention strategies are crucial to reduce COVID-19-associated morbidity and mortality among adolescents and to facilitate safer reopening of schools for in-person learning. |
Guidance for Implementing COVID-19 Prevention Strategies in the Context of Varying Community Transmission Levels and Vaccination Coverage.
Christie A , Brooks JT , Hicks LA , Sauber-Schatz EK , Yoder JS , Honein MA . MMWR Morb Mortal Wkly Rep 2021 70 (30) 1044-1047 COVID-19 vaccination remains the most effective means to achieve control of the pandemic. In the United States, COVID-19 cases and deaths have markedly declined since their peak in early January 2021, due in part to increased vaccination coverage (1). However, during June 19-July 23, 2021, COVID-19 cases increased approximately 300% nationally, followed by increases in hospitalizations and deaths, driven by the highly transmissible B.1.617.2 (Delta) variant* of SARS-CoV-2, the virus that causes COVID-19. Available data indicate that the vaccines authorized in the United States (Pfizer-BioNTech, Moderna, and Janssen [Johnson & Johnson]) offer high levels of protection against severe illness and death from infection with the Delta variant and other currently circulating variants of the virus (2). Despite widespread availability, vaccine uptake has slowed nationally with wide variation in coverage by state (range = 33.9%-67.2%) and by county (range = 8.8%-89.0%).(†) Unvaccinated persons, as well as persons with certain immunocompromising conditions (3), remain at substantial risk for infection, severe illness, and death, especially in areas where the level of SARS-CoV-2 community transmission is high. The Delta variant is more than two times as transmissible as the original strains circulating at the start of the pandemic and is causing large, rapid increases in infections, which could compromise the capacity of some local and regional health care systems to provide medical care for the communities they serve. Until vaccination coverage is high and community transmission is low, public health practitioners, as well as schools, businesses, and institutions (organizations) need to regularly assess the need for prevention strategies to avoid stressing health care capacity and imperiling adequate care for both COVID-19 and other non-COVID-19 conditions. CDC recommends five critical factors be considered to inform local decision-making: 1) level of SARS-CoV-2 community transmission; 2) health system capacity; 3) COVID-19 vaccination coverage; 4) capacity for early detection of increases in COVID-19 cases; and 5) populations at increased risk for severe outcomes from COVID-19. Among strategies to prevent COVID-19, CDC recommends all unvaccinated persons wear masks in public indoor settings. Based on emerging evidence on the Delta variant (2), CDC also recommends that fully vaccinated persons wear masks in public indoor settings in areas of substantial or high transmission. Fully vaccinated persons might consider wearing a mask in public indoor settings, regardless of transmission level, if they or someone in their household is immunocompromised or is at increased risk for severe disease, or if someone in their household is unvaccinated (including children aged <12 years who are currently ineligible for vaccination). |
Knowledge, attitudes, and practices around hand drying in public bathrooms during the COVID-19 pandemic in the United States.
Marcenac P , Kim S , Molinari N , Person M , Frankson R , Berendes D , McDonald C , Yoder J , Hill V , Garcia-Williams A . Am J Infect Control 2021 49 (9) 1186-1188 Hand drying is the critical, final step of handwashing. A cross-sectional survey of U.S. adults assessed self-reported hand drying practices in public bathrooms and found increased preference for using electric hand dryers, wiping hands on clothing, and shaking hands and decreased preference for using paper towels during the COVID-19 pandemic relative to before. Respondents expressed concerns about contacting SARS-CoV-2 when touching surfaces in public bathrooms which may be influencing self-reported drying method preference. |
Geographic range of recreational water-associated primary amebic meningoencephalitis, United States, 1978-2018
Gharpure R , Gleason M , Salah Z , Blackstock AJ , Hess-Homeier D , Yoder JS , Ali IKM , Collier SA , Cope JR . Emerg Infect Dis 2021 27 (1) 271-274 Naegleria fowleri is a free-living ameba that causes primary amebic meningoencephalitis (PAM), a rare but usually fatal disease. We analyzed trends in recreational water exposures associated with PAM cases reported during 1978-2018 in the United States. Although PAM incidence remained stable, the geographic range of exposure locations expanded northward. |
Estimate of burden and direct healthcare cost of infectious waterborne disease in the United States
Collier SA , Deng L , Adam EA , Benedict KM , Beshearse EM , Blackstock AJ , Bruce BB , Derado G , Edens C , Fullerton KE , Gargano JW , Geissler AL , Hall AJ , Havelaar AH , Hill VR , Hoekstra RM , Reddy SC , Scallan E , Stokes EK , Yoder JS , Beach MJ . Emerg Infect Dis 2021 27 (1) 140-149 Provision of safe drinking water in the United States is a great public health achievement. However, new waterborne disease challenges have emerged (e.g., aging infrastructure, chlorine-tolerant and biofilm-related pathogens, increased recreational water use). Comprehensive estimates of the health burden for all water exposure routes (ingestion, contact, inhalation) and sources (drinking, recreational, environmental) are needed. We estimated total illnesses, emergency department (ED) visits, hospitalizations, deaths, and direct healthcare costs for 17 waterborne infectious diseases. About 7.15 million waterborne illnesses occur annually (95% credible interval [CrI] 3.88 million-12.0 million), results in 601,000 ED visits (95% CrI 364,000-866,000), 118,000 hospitalizations (95% CrI 86,800-150,000), and 6,630 deaths (95% CrI 4,520-8,870) and incurring US $3.33 billion (95% CrI 1.37 billion-8.77 billion) in direct healthcare costs. Otitis externa and norovirus infection were the most common illnesses. Most hospitalizations and deaths were caused by biofilm-associated pathogens (nontuberculous mycobacteria, Pseudomonas, Legionella), costing US $2.39 billion annually. |
Surveillance for harmful algal bloom events and associated human and animal illnesses - One Health Harmful Algal Bloom System, United States, 2016-2018
Roberts VA , Vigar M , Backer L , Veytsel GE , Hilborn ED , Hamelin EI , Vanden Esschert KL , Lively JY , Cope JR , Hlavsa MC , Yoder JS . MMWR Morb Mortal Wkly Rep 2020 69 (50) 1889-1894 Harmful algal bloom events can result from the rapid growth, or bloom, of photosynthesizing organisms in natural bodies of fresh, brackish, and salt water. These events can be exacerbated by nutrient pollution (e.g., phosphorus) and warming waters and other climate change effects (1); have a negative impact on the health of humans, animals, and the environment; and damage local economies (2,3). U.S. harmful algal bloom events of public health concern are centered on a subset of phytoplankton: diatoms, dinoflagellates, and cyanobacteria (also called blue-green algae). CDC launched the One Health Harmful Algal Bloom System (OHHABS) in 2016 to inform efforts to prevent human and animal illnesses associated with harmful algal bloom events. A total of 18 states reported 421 harmful algal bloom events, 389 cases of human illness, and 413 cases of animal illness that occurred during 2016-2018. The majority of harmful algal bloom events occurred during May-October (413; 98%) and in freshwater bodies (377; 90%). Human and animal illnesses primarily occurred during June-September (378; 98%) and May-September (410; 100%). Gastrointestinal or generalized illness signs or symptoms were the most frequently reported (>40% of human cases and >50% of animal cases); however, multiple other signs and symptoms were reported. Surveillance data from harmful algal bloom events, exposures, and health effects provide a systematic description of these occurrences and can be used to inform control and prevention of harmful algal bloom-associated illnesses. |
Adoption of Strategies to Mitigate Transmission of COVID-19 During a Statewide Primary Election - Delaware, September 2020.
Leidman E , Hall NB , Kirby AE , Garcia-Williams AG , Aponte J , Yoder JS , Hong R , Albence A , Coronado F , Massetti GM . MMWR Morb Mortal Wkly Rep 2020 69 (43) 1571-1575 Elections occurring during the coronavirus disease 2019 (COVID-19) pandemic have been affected by notable changes in the methods of voting, the number and type of polling locations, and in-person voting procedures (1). To mitigate transmission of COVID-19 at polling locations, jurisdictions have adopted changes to protocols and procedures, informed by CDC's interim guidance, developed in collaboration with the Election Assistance Commission (2). The driving principle for this guidance is that voting practices with lower infection risk will be those which reduce the number of voters who congregate indoors in polling locations by offering a variety of methods for voting and longer voting periods. The guidance for in-person voting includes considerations for election officials, poll workers, and voters to maintain healthy environments and operations. To assess knowledge and adoption of mitigation strategies, CDC collaborated with the Delaware Department of Health and Social Services and the Delaware State Election Commission on a survey of poll workers who served during the statewide primary election on September 15, 2020. Among 522 eligible poll workers, 93% correctly answered all three survey questions about COVID-19 transmission. Respondents noted that most voters and poll workers wore masks. However, masks were not always worn correctly (i.e., covering both the nose and mouth). Responses suggest that mitigation measures recommended for both poll workers and voters were widely adopted and feasible, but also highlighted gaps in infection prevention control efforts. Strengthening of measures intended to minimize the risk of poll workers acquiring COVID-19 from ill voters, such as additional training and necessary personal protective equipment (PPE), as well as support for alternative voting options for ill voters, are needed. Adherence to mitigation measures is important not only to protect voters but also to protect poll workers, many of whom are older adults, and thus at higher risk for severe COVID-19-associated illness. Enhanced attention to reducing congregation in polling locations, correct mask use, and providing safe voting options for ill voters are critical considerations to minimize risk to voters and poll workers. Evidence from the Delaware election supports the feasibility and acceptability of implementing current CDC guidance for election officials, poll workers, and voters for mitigating COVID-19 transmission at polling locations (2). |
Melioidosis in a resident of Texas with no recent travel history, United States
Cossaboom CM , Marinova-Petkova A , Strysko J , Rodriguez G , Maness T , Ocampo J , Gee JE , Elrod MG , Gulvik CA , Liu L , Bower WA , Hoffmaster AR , Blaney DD , Salzer JS , Yoder JS , Mattioli MC , Sidwa TJ , Ringsdorf L , Morrow G , Ledezma E , Kieffer A . Emerg Infect Dis 2020 26 (6) 1295-1299 To our knowledge, environmental isolation of Burkholderia pseudomallei, the causative agent of melioidosis, from the continental United States has not been reported. We report a case of melioidosis in a Texas resident. Genomic analysis indicated that the isolate groups with B. pseudomallei isolates from patients in the same region, suggesting possible endemicity to this region. |
Epidemiology and clinical characteristics of primary amebic meningoencephalitis caused by Naegleria fowleri: A global review
Gharpure R , Bliton J , Goodman A , Ali IKM , Yoder J , Cope JR . Clin Infect Dis 2020 73 (1) e19-e27 BACKGROUND: Primary amebic meningoencephalitis (PAM) is a rapidly progressive and often fatal condition caused by the free-living ameba Naegleria fowleri. To estimate the global occurrence, characterize the epidemiology, and describe the clinical features of PAM, we report a series of PAM cases published in the international literature and reported to CDC. METHODS: We performed a literature search of PAM case reports published through 2018. Additionally, we included cases reported through CDC's Free-Living Ameba surveillance or diagnosed via CDC's Free-Living and Intestinal Amebas Laboratory. Cases were classified as confirmed, probable, or suspect on the basis of confirmatory testing, presentation, exposure, and disease course. RESULTS: A total of 381 PAM cases were identified. From 1965 to 2016, the number of reported cases increased an average of 1.6% per year. Seven reported survivors were classified as confirmed.The most commonly reported exposure associated with PAM was swimming/diving, and the most common class of water source was lakes/ponds/reservoirs. Patients were predominantly male (75%), with a median age of 14 years. Confirmed and probable cases were similar in their survival, course of illness, and CSF findings. CONCLUSIONS: PAM is a rare but deadly disease with worldwide occurrence. Improved clinician awareness, resulting in earlier diagnosis and treatment, may contribute to increased survival among PAM patients. The probable case definition used in this study appears to capture cases of PAM, as evidenced by similarities in outcomes, clinical course, and CSF profile to confirmed cases. In the absence of confirmatory testing, clinicians could use this case definition to identify cases of PAM. |
Early-onset neonatal sepsis 2015 to 2017, the rise of Escherichia coli, and the need for novel prevention strategies
Stoll BJ , Puopolo KM , Hansen NI , Sanchez PJ , Bell EF , Carlo WA , Cotten CM , D'Angio CT , Kazzi SNJ , Poindexter BB , Van Meurs KP , Hale EC , Collins MV , Das A , Baker CJ , Wyckoff MH , Yoder BA , Watterberg KL , Walsh MC , Devaskar U , Laptook AR , Sokol GM , Schrag SJ , Higgins RD . JAMA Pediatr 2020 174 (7) e200593 Importance: Early-onset sepsis (EOS) remains a potentially fatal newborn condition. Ongoing surveillance is critical to optimize prevention and treatment strategies. Objective: To describe the current incidence, microbiology, morbidity, and mortality of EOS among a cohort of term and preterm infants. Design, Setting, and Participants: This prospective surveillance study included a cohort of infants born at a gestational age (GA) of at least 22 weeks and birth weight of greater than 400 g from 18 centers of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network from April 1, 2015, to March 31, 2017. Data were analyzed from June 14, 2019, to January 28, 2020. Main Outcomes and Measures: Early-onset sepsis defined by isolation of pathogenic species from blood or cerebrospinal fluid culture within 72 hours of birth and antibiotic treatment for at least 5 days or until death. Results: A total of 235 EOS cases (127 male [54.0%]) were identified among 217480 newborns (1.08 [95% CI, 0.95-1.23] cases per 1000 live births). Incidence varied significantly by GA and was highest among infants with a GA of 22 to 28 weeks (18.47 [95% CI, 14.57-23.38] cases per 1000). No significant differences in EOS incidence were observed by sex, race, or ethnicity. The most frequent pathogens were Escherichia coli (86 [36.6%]) and group B streptococcus (GBS; 71 [30.2%]). E coli disease primarily occurred among preterm infants (68 of 131 [51.9%]); GBS disease primarily occurred among term infants (54 of 104 [51.9%]), with 24 of 45 GBS cases (53.3%) seen in infants born to mothers with negative GBS screening test results. Intrapartum antibiotics were administered to 162 mothers (68.9%; 110 of 131 [84.0%] preterm and 52 of 104 [50.0%] term), most commonly for suspected chorioamnionitis. Neonatal empirical antibiotic treatment most frequently included ampicillin and gentamicin. All GBS isolates were tested, but only 18 of 81 (22.2%) E coli isolates tested were susceptible to ampicillin; 6 of 77 E coli isolates (7.8%) were resistant to both ampicillin and gentamicin. Nearly all newborns with EOS (220 of 235 [93.6%]) displayed signs of illness within 72 hours of birth. Death occurred in 38 of 131 infected infants with GA of less than 37 weeks (29.0%); no term infants died. Compared with earlier surveillance (2006-2009), the rate of E coli infection increased among very low-birth-weight (401-1500 g) infants (8.68 [95% CI, 6.50-11.60] vs 5.07 [95% CI, 3.93-6.53] per 1000 live births; P = .008). Conclusions and Relevance: In this study, EOS incidence and associated mortality disproportionately occurred in preterm infants. Contemporary cases have demonstrated the limitations of current GBS prevention strategies. The increase in E coli infections among very low-birth-weight infants warrants continued study. Ampicillin and gentamicin remained effective antibiotics in most cases, but ongoing surveillance should monitor antibiotic susceptibilities of EOS pathogens. |
COVID-19 Among Workers in Meat and Poultry Processing Facilities - 19 States, April 2020.
Dyal JW , Grant MP , Broadwater K , Bjork A , Waltenburg MA , Gibbins JD , Hale C , Silver M , Fischer M , Steinberg J , Basler CA , Jacobs JR , Kennedy ED , Tomasi S , Trout D , Hornsby-Myers J , Oussayef NL , Delaney LJ , Patel K , Shetty V , Kline KE , Schroeder B , Herlihy RK , House J , Jervis R , Clayton JL , Ortbahn D , Austin C , Berl E , Moore Z , Buss BF , Stover D , Westergaard R , Pray I , DeBolt M , Person A , Gabel J , Kittle TS , Hendren P , Rhea C , Holsinger C , Dunn J , Turabelidze G , Ahmed FS , deFijter S , Pedati CS , Rattay K , Smith EE , Luna-Pinto C , Cooley LA , Saydah S , Preacely ND , Maddox RA , Lundeen E , Goodwin B , Karpathy SE , Griffing S , Jenkins MM , Lowry G , Schwarz RD , Yoder J , Peacock G , Walke HT , Rose DA , Honein MA . MMWR Morb Mortal Wkly Rep 2020 69 (18) Congregate work and residential locations are at increased risk for infectious disease transmission including respiratory illness outbreaks. SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is primarily spread person to person through respiratory droplets. Nationwide, the meat and poultry processing industry, an essential component of the U.S. food infrastructure, employs approximately 500,000 persons, many of whom work in proximity to other workers (1). Because of reports of initial cases of COVID-19, in some meat processing facilities, states were asked to provide aggregated data concerning the number of meat and poultry processing facilities affected by COVID-19 and the number of workers with COVID-19 in these facilities, including COVID-19-related deaths. Qualitative data gathered by CDC during on-site and remote assessments were analyzed and summarized. During April 9-27, aggregate data on COVID-19 cases among 115 meat or poultry processing facilities in 19 states were reported to CDC. Among these facilities, COVID-19 was diagnosed in 4,913 (approximately 3%) workers, and 20 COVID-19-related deaths were reported. Facility barriers to effective prevention and control of COVID-19 included difficulty distancing workers at least 6 feet (2 meters) from one another (2) and in implementing COVID-19-specific disinfection guidelines.* Among workers, socioeconomic challenges might contribute to working while feeling ill, particularly if there are management practices such as bonuses that incentivize attendance. Methods to decrease transmission within the facility include worker symptom screening programs, policies to discourage working while experiencing symptoms compatible with COVID-19, and social distancing by workers. Source control measures (e.g., the use of cloth face covers) as well as increased disinfection of high-touch surfaces are also important means of preventing SARS-CoV-2 exposure. Mitigation efforts to reduce transmission in the community should also be considered. Many of these measures might also reduce asymptomatic and presymptomatic transmission (3). Implementation of these public health strategies will help protect workers from COVID-19 in this industry and assist in preserving the critical meat and poultry production infrastructure (4). |
Shigella sonnei Outbreak Investigation During a Municipal Water Crisis-Genesee and Saginaw Counties, Michigan, 2016.
McClung RP , Karwowski M , Castillo C , McFadden J , Collier S , Collins J , Soehnlen M , Dietrich S , Trees E , Wilt G , Harrington C , Miller A , Adam E , Reses H , Cope J , Fullerton K , Hill V , Yoder J . Am J Public Health 2020 110 (6) e1-e8 ![]() ![]() Objectives. To investigate a shigellosis outbreak in Genesee County, Michigan (including the City of Flint), and Saginaw County, Michigan, in 2016 and address community concerns about the role of the Flint water system.Methods. We met frequently with community members to understand concerns and develop the investigation. We surveyed households affected by the outbreak, analyzed Shigella isolate data, examined the geospatial distribution of cases, and reviewed available water quality data.Results. We surveyed 83 households containing 158 cases; median age was 10 years. Index case-patients from 55 of 83 households (66%) reported contact with a person outside their household who wore diapers or who had diarrhea in the week before becoming ill; results were similar regardless of household drinking water source. Genomic diversity was not consistent with a point source. In Flint, no space-time clustering was identified, and average free chlorine residual values remained above recommended levels throughout the outbreak period.Conclusions. The outbreak was most likely caused by person-to-person contact and not by the Flint water system. Consistent community engagement was essential to the design and implementation of the investigation. (Am J Public Health. Published online ahead of print April 16, 2020: e1-e8. doi:10.2105/AJPH.2020.305577). |
Evolving epidemiology of reported giardiasis cases in the United States, 1995-2016
Coffey CM , Collier SA , Gleason ME , Yoder JS , Kirk MD , Richardson AM , Fullerton KE , Benedict KM . Clin Infect Dis 2020 72 (5) 764-770 BACKGROUND: Giardiasis is the most common intestinal parasitic disease of humans identified in the United States and an important waterborne disease. In the United States, giardiasis has been variably reportable since 1992 and was made a nationally notifiable disease in 2002. Our objective was to describe the epidemiology of US giardiasis cases from 1995-2016 using National Notifiable Disease Surveillance System data. METHODS: Negative binomial regression models were used to compare incidence rates by age groups (0-4, 5-9, 10-19, 20-29, 30-39, 40-49, 50-64 and >/=65 years) during three time periods (1995-2001, 2002-2010 and 2011-2016). RESULTS: From 1995-2016, the average number of reported cases were 19 781 per year (range 14 623-27 778 cases). The annual incidence of reported giardiasis in the US decreased across all age groups. This decrease differs by age group and sex and may reflect either changes in surveillance methods (for example changes to case definitions or reporting practices) or changes in exposure. Incidence rates in males and older age groups did not decrease to the same extent as rates in females and children. CONCLUSIONS: Trends suggest that differences in exposures by sex and age group are important to the epidemiology of giardiasis. Further investigation into the risk factors of populations with higher rates of giardiasis will support prevention and control efforts. |
Supporting local health departments and partners to prepare for and respond to water emergencies
Galan D , Smith T , Yoder J . J Public Health Manag Pract 2020 26 (1) 91-93 Access to safe water is critical for protecting public health, and the United States is generally recognized as having one of the most reliable and safest drinking water supplies in the world.1,2 Under the Safe Drinking Water Act, instituted by Congress in 1974, the US Environmental Protection Agency ensures and protects the quality of the public drinking water supplies nationwide by setting standards and regulating contaminants.3 More than 300 million Americans, approximately 94% of the US population, get their water from a community water system, with an average American family using more than 300 gallons of water per day at home.4,5 |
Response and remediation actions following the detection of Naegleria fowleri in two treated drinking water distribution systems, Louisiana, 2013-2014
Cope JR , Kahler AM , Causey J , Williams JG , Kihlken J , Benjamin C , Ames AP , Forsman J , Zhu Y , Yoder JS , Seidel CJ , Hill VR . J Water Health 2019 17 (5) 777-787 Naegleria fowleri causes the usually fatal disease primary amebic meningoencephalitis (PAM), typically in people who have been swimming in warm, untreated freshwater. Recently, some cases in the United States were associated with exposure to treated drinking water. In 2013, a case of PAM was reported for the first time in association with the exposure to water from a US treated drinking water system colonized with culturable N. fowleri. This system and another were found to have multiple areas with undetectable disinfectant residual levels. In response, the water distribution systems were temporarily converted from chloramine disinfection to chlorine to inactivate N. fowleri and reduced biofilm in the distribution systems. Once >1.0 mg/L free chlorine residual was attained in all systems for 60 days, water testing was performed; N. fowleri was not detected in water samples after the chlorine conversion. This investigation highlights the importance of maintaining adequate residual disinfectant levels in drinking water distribution systems. Water distribution system managers should be knowledgeable about the ecology of their systems, understand potential water quality changes when water temperatures increase, and work to eliminate areas in which biofilm growth may be problematic and affect water quality. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 27, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure