Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-30 (of 55 Records) |
Query Trace: Womack C[original query] |
---|
Effectiveness of original monovalent and bivalent COVID-19 vaccines against COVID-19-associated hospitalization and severe in-hospital outcomes among adults in the United States, September 2022-August 2023
DeCuir J , Surie D , Zhu Y , Lauring AS , Gaglani M , McNeal T , Ghamande S , Peltan ID , Brown SM , Ginde AA , Steinwand A , Mohr NM , Gibbs KW , Hager DN , Ali H , Frosch A , Gong MN , Mohamed A , Johnson NJ , Srinivasan V , Steingrub JS , Khan A , Busse LW , Duggal A , Wilson JG , Qadir N , Chang SY , Mallow C , Kwon JH , Exline MC , Shapiro NI , Columbus C , Vaughn IA , Ramesh M , Safdar B , Mosier JM , Casey JD , Talbot HK , Rice TW , Halasa N , Chappell JD , Grijalva CG , Baughman A , Womack KN , Rhoads JP , Swan SA , Johnson C , Lewis N , Ellington S , Dawood FS , McMorrow M , Self WH . Influenza Other Respir Viruses 2024 18 (11) e70027 BACKGROUND: Assessments of COVID-19 vaccine effectiveness are needed to monitor the protection provided by updated vaccines against severe COVID-19. We evaluated the effectiveness of original monovalent and bivalent (ancestral strain and Omicron BA.4/5) COVID-19 vaccination against COVID-19-associated hospitalization and severe in-hospital outcomes. METHODS: During September 8, 2022 to August 31, 2023, adults aged ≥ 18 years hospitalized with COVID-19-like illness were enrolled at 26 hospitals in 20 US states. Using a test-negative case-control design, we estimated vaccine effectiveness (VE) with multivariable logistic regression adjusted for age, sex, race/ethnicity, admission date, and geographic region. RESULTS: Among 7028 patients, 2924 (41.6%) were COVID-19 case patients, and 4104 (58.4%) were control patients. Compared to unvaccinated patients, absolute VE against COVID-19-associated hospitalization was 6% (-7%-17%) for original monovalent doses only (median time since last dose [IQR] = 421 days [304-571]), 52% (39%-61%) for a bivalent dose received 7-89 days earlier, and 13% (-10%-31%) for a bivalent dose received 90-179 days earlier. Absolute VE against COVID-19-associated invasive mechanical ventilation or death was 51% (34%-63%) for original monovalent doses only, 61% (35%-77%) for a bivalent dose received 7-89 days earlier, and 50% (11%-71%) for a bivalent dose received 90-179 days earlier. CONCLUSION: Bivalent vaccination provided protection against COVID-19-associated hospitalization and severe in-hospital outcomes within 3 months of receipt, followed by a decline in protection to a level similar to that remaining from previous original monovalent vaccination by 3-6 months. These results underscore the benefit of remaining up to date with recommended COVID-19 vaccines. |
Maternal risk conditions and outcomes by levels of maternal care
DeSisto CL , Ewing AC , Diop H , Easter SR , Harvey E , Kane DJ , Naiman-Sessions M , Osei-Poku G , Riley M , Shanholtzer B , Stach AM , Dronamraju R , Catalano A , Clark EA , Madni SA , Womack LS , Kuklina EV , Goodman DA , Kilpatrick SJ , Menard MK . J Womens Health (Larchmt) 2024 Objectives: To (1) determine associations between maternal risk conditions and severe adverse outcomes that may benefit from risk-appropriate care and (2) assess whether associations between risk conditions and outcomes vary by level of maternal care (LoMC). Methods: We used the 2017-2019 National Inpatient Sample (NIS) to calculate associations between maternal risk conditions and severe adverse outcomes. Risk conditions included severe preeclampsia, placenta accreta spectrum (PAS) conditions, and cardiac conditions. Outcomes included disseminated intravascular coagulation (DIC) with blood products transfusion or shock, pulmonary edema or acute respiratory distress syndrome (ARDS), stroke, acute renal failure, and a composite cardiac outcome. Then we used 2019 delivery hospitalization data from five states linked to hospital LoMC. We calculated associations between risk conditions and outcomes overall and stratified by LoMC and assessed for effect modification by LoMC. Results: We found positive measures of association between risk conditions and outcomes. Among patients with severe preeclampsia or PAS, the magnitudes of the associations with DIC with blood products transfusion or shock, pulmonary edema or ARDS, and acute renal failure were lower in Level III/IV compared with <Level III facilities. Among patients with cardiac conditions, the magnitudes of the associations with these outcomes, along with stroke, were also lower in Level III/IV compared with <Level III facilities. The proportion of patients with risk conditions that delivered in <Level III facilities was 19.8-46.8%. Conclusions: Odds of severe adverse outcomes among women with selected risk conditions were lower for births occurring at higher-level facilities, supporting the benefit of risk-appropriate care. |
Effectiveness of updated 2023-2024 (monovalent XBB.1.5) COVID-19 vaccination against SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineage hospitalization and a comparison of clinical severity-IVY Network, 26 hospitals, October 18, 2023-March 9, 2024
Ma KC , Surie D , Lauring AS , Martin ET , Leis AM , Papalambros L , Gaglani M , Columbus C , Gottlieb RL , Ghamande S , Peltan ID , Brown SM , Ginde AA , Mohr NM , Gibbs KW , Hager DN , Saeed S , Prekker ME , Gong MN , Mohamed A , Johnson NJ , Srinivasan V , Steingrub JS , Khan A , Hough CL , Duggal A , Wilson JG , Qadir N , Chang SY , Mallow C , Kwon JH , Parikh B , Exline MC , Vaughn IA , Ramesh M , Safdar B , Mosier J , Harris ES , Shapiro NI , Felzer J , Zhu Y , Grijalva CG , Halasa N , Chappell JD , Womack KN , Rhoads JP , Baughman A , Swan SA , Johnson CA , Rice TW , Casey JD , Blair PW , Han JH , Ellington S , Lewis NM , Thornburg N , Paden CR , Atherton LJ , Self WH , Dawood FS , DeCuir J . Clin Infect Dis 2024 BACKGROUND: Assessing variant-specific COVID-19 vaccine effectiveness (VE) and severity can inform public health risk assessments and decisions about vaccine composition. BA.2.86 and its descendants, including JN.1 (referred to collectively as "JN lineages"), emerged in late 2023 and exhibited substantial divergence from co-circulating XBB lineages. METHODS: We analyzed patients hospitalized with COVID-19-like illness at 26 hospitals in 20 U.S. states admitted October 18, 2023-March 9, 2024. Using a test-negative, case-control design, we estimated effectiveness of an updated 2023-2024 (Monovalent XBB.1.5) COVID-19 vaccine dose against sequence-confirmed XBB and JN lineage hospitalization using logistic regression. Odds of severe outcomes, including intensive care unit (ICU) admission and invasive mechanical ventilation (IMV) or death, were compared for JN versus XBB lineage hospitalizations using logistic regression. RESULTS: 585 case-patients with XBB lineages, 397 case-patients with JN lineages, and 4,580 control-patients were included. VE in the first 7-89 days after receipt of an updated dose was 54.2% (95% CI = 36.1%-67.1%) against XBB lineage hospitalization and 32.7% (95% CI = 1.9%-53.8%) against JN lineage hospitalization. Odds of ICU admission (adjusted odds ratio [aOR] 0.80; 95% CI = 0.46-1.38) and IMV or death (aOR 0.69; 95% CI = 0.34-1.40) were not significantly different among JN compared to XBB lineage hospitalizations. CONCLUSIONS: Updated 2023-2024 COVID-19 vaccination provided protection against both XBB and JN lineage hospitalization, but protection against the latter may be attenuated by immune escape. Clinical severity of JN lineage hospitalizations was not higher relative to XBB. |
Prevalence and correlates of suspected and diagnosed traumatic brain injuries among US school-aged children
Haarbauer-Krupa J , Wray AP , Lebrun-Harris LA , Cree RA , Womack LS . J Pediatr Clin Pract 2024 14 Objective: To (1) estimate the lifetime prevalence of suspected and diagnosed traumatic brain injury (TBI) based on parent report overall and select sociodemographic characteristics; and (2) describe differences in prevalence of health conditions and health-related risk factors by whether a child had a lifetime history of diagnosed TBI. Study design: We analyzed data from the 2020 National Survey of Children's Health, a cross-sectional address-based survey of US households. A categorical variable was created on the basis of parent responses to 3 questions inquiring about their suspicion of their child having a brain injury, if they sought medical care, and if the health care provider provided a diagnosis. Parents also were asked to report on their child's additional health conditions, functional indicators, school and social factors, and health care access and service use. Results: The prevalence of lifetime diagnosed TBI was 4.2% (95% CI 3.8-4.5). Children with a parent-reported lifetime history of diagnosed TBI were more likely to have a variety of health conditions, special health care needs, disabilities, activity limitations, missed days of school, and unmet care coordination needs, compared with those without a history. However, they were more likely to have a usual source of sick care and to receive more health-related services. Conclusions: For school-aged children, a history of TBI is associated with parent-reported health needs and conditions, as well as missed days from school. It is particularly important for parents to seek care when they suspect their child has experienced a TBI to receive a diagnosis and monitor the impacts of the TBI. © 2024 |
Preventive service usage and new chronic disease diagnoses: Using PCORnet data to identify emerging trends, United States, 2018-2022
Jackson SL , Lekiachvili A , Block JP , Richards TB , Nagavedu K , Draper CC , Koyama AK , Womack LS , Carton TW , Mayer KH , Rasmussen SA , Trick WE , Chrischilles EA , Weiner MG , Podila PSB , Boehmer TK , Wiltz JL . Prev Chronic Dis 2024 21 E49 BACKGROUND: Data modernization efforts to strengthen surveillance capacity could help assess trends in use of preventive services and diagnoses of new chronic disease during the COVID-19 pandemic, which broadly disrupted health care access. METHODS: This cross-sectional study examined electronic health record data from US adults aged 21 to 79 years in a large national research network (PCORnet), to describe use of 8 preventive health services (Nā=ā30,783,825 patients) and new diagnoses of 9 chronic diseases (Nā=ā31,588,222 patients) during 2018 through 2022. Joinpoint regression assessed significant trends, and health debt was calculated comparing 2020 through 2022 volume to prepandemic (2018 and 2019) levels. RESULTS: From 2018 to 2022, use of some preventive services increased (hemoglobin A(1c) and lung computed tomography, both P < .05), others remained consistent (lipid testing, wellness visits, mammograms, Papanicolaou tests or human papillomavirus tests, stool-based screening), and colonoscopies or sigmoidoscopies declined (P < .01). Annual new chronic disease diagnoses were mostly stable (6% hypertension; 4% to 5% cholesterol; 4% diabetes; 1% colonic adenoma; 0.1% colorectal cancer; among women, 0.5% breast cancer), although some declined (lung cancer, cervical intraepithelial neoplasia or carcinoma in situ, cervical cancer, all P < .05). The pandemic resulted in health debt, because use of most preventive services and new diagnoses of chronic disease were less than expected during 2020; these partially rebounded in subsequent years. Colorectal screening and colonic adenoma detection by age group aligned with screening recommendation age changes during this period. CONCLUSION: Among over 30 million patients receiving care during 2018 through 2022, use of preventive services and new diagnoses of chronic disease declined in 2020 and then rebounded, with some remaining health debt. These data highlight opportunities to augment traditional surveillance with EHR-based data. |
Nonfatal emergency department visits associated with fall-related fractured skulls of infants aged 0-4 months
Haarbauer-Krupa J , Haileyesus T , Peterson AB , Womack LS , Hymel K , Hajiaghamemar M , Klevens J , Lindberg D , Margulies SS . J Emerg Med 2024 BACKGROUND: Children aged 0-4 years have the highest rate of emergency department (ED) visits for traumatic brain injury (TBI); falls are the leading cause. Infants younger than 2 years are more likely to sustain a fractured skull after a fall. OBJECTIVE: This study examined caregiver actions and products associated with ED visits for fall-related fractured skulls in infants aged 0-4 months. METHODS: Data were analyzed from the 2001-2017 National Electronic Injury Surveillance System-All Injury Program. Case narratives of infants aged 0-4 months who visited an ED for a fall-related skull fracture were examined to code caregiver actions preceding the fall. Product codes determined fall location and product type involved (e.g., flooring, bed, or stairs). All national estimates were weighted. RESULTS: There were more than 27,000 ED visits (weighted estimate) of infants aged 0-4 months for a nonfatal fall-related fractured skull between 2001 and 2017. Most were younger than 2 months (46.7%) and male (54.4%). Falls occurred primarily in the home (69.9%) and required hospitalization (76.4%). Primary caregiver actions coded involved placing (58.6%), dropping (22.7%), and carrying an infant (16.6%). Floor surfaces were the most common product (mentioned in 24.0% of the cases). CONCLUSIONS: Fall-related fractured skulls are a health and developmental concern for infants, highlighting the importance of a comprehensive assessment at the time of the injury to better understand adult actions. Findings indicated the need to develop prevention messages that include safe carrying and placement of infants. |
Severity of respiratory syncytial virus vs COVID-19 and influenza among hospitalized US adults
Surie D , Yuengling KA , DeCuir J , Zhu Y , Lauring AS , Gaglani M , Ghamande S , Peltan ID , Brown SM , Ginde AA , Martinez A , Mohr NM , Gibbs KW , Hager DN , Ali H , Prekker ME , Gong MN , Mohamed A , Johnson NJ , Srinivasan V , Steingrub JS , Leis AM , Khan A , Hough CL , Bender WS , Duggal A , Bendall EE , Wilson JG , Qadir N , Chang SY , Mallow C , Kwon JH , Exline MC , Shapiro NI , Columbus C , Vaughn IA , Ramesh M , Mosier JM , Safdar B , Casey JD , Talbot HK , Rice TW , Halasa N , Chappell JD , Grijalva CG , Baughman A , Womack KN , Swan SA , Johnson CA , Lwin CT , Lewis NM , Ellington S , McMorrow ML , Martin ET , Self WH . JAMA Netw Open 2024 7 (4) e244954 IMPORTANCE: On June 21, 2023, the Centers for Disease Control and Prevention recommended the first respiratory syncytial virus (RSV) vaccines for adults aged 60 years and older using shared clinical decision-making. Understanding the severity of RSV disease in adults can help guide this clinical decision-making. OBJECTIVE: To describe disease severity among adults hospitalized with RSV and compare it with the severity of COVID-19 and influenza disease by vaccination status. DESIGN, SETTING, AND PARTICIPANTS: In this cohort study, adults aged 18 years and older admitted to the hospital with acute respiratory illness and laboratory-confirmed RSV, SARS-CoV-2, or influenza infection were prospectively enrolled from 25 hospitals in 20 US states from February 1, 2022, to May 31, 2023. Clinical data during each patient's hospitalization were collected using standardized forms. Data were analyzed from August to October 2023. EXPOSURES: RSV, SARS-CoV-2, or influenza infection. MAIN OUTCOMES AND MEASURES: Using multivariable logistic regression, severity of RSV disease was compared with COVID-19 and influenza severity, by COVID-19 and influenza vaccination status, for a range of clinical outcomes, including the composite of invasive mechanical ventilation (IMV) and in-hospital death. RESULTS: Of 7998 adults (median [IQR] age, 67 [54-78] years; 4047 [50.6%] female) included, 484 (6.1%) were hospitalized with RSV, 6422 (80.3%) were hospitalized with COVID-19, and 1092 (13.7%) were hospitalized with influenza. Among patients with RSV, 58 (12.0%) experienced IMV or death, compared with 201 of 1422 unvaccinated patients with COVID-19 (14.1%) and 458 of 5000 vaccinated patients with COVID-19 (9.2%), as well as 72 of 699 unvaccinated patients with influenza (10.3%) and 20 of 393 vaccinated patients with influenza (5.1%). In adjusted analyses, the odds of IMV or in-hospital death were not significantly different among patients hospitalized with RSV and unvaccinated patients hospitalized with COVID-19 (adjusted odds ratio [aOR], 0.82; 95% CI, 0.59-1.13; P = .22) or influenza (aOR, 1.20; 95% CI, 0.82-1.76; P = .35); however, the odds of IMV or death were significantly higher among patients hospitalized with RSV compared with vaccinated patients hospitalized with COVID-19 (aOR, 1.38; 95% CI, 1.02-1.86; P = .03) or influenza disease (aOR, 2.81; 95% CI, 1.62-4.86; P < .001). CONCLUSIONS AND RELEVANCE: Among adults hospitalized in this US cohort during the 16 months before the first RSV vaccine recommendations, RSV disease was less common but similar in severity compared with COVID-19 or influenza disease among unvaccinated patients and more severe than COVID-19 or influenza disease among vaccinated patients for the most serious outcomes of IMV or death. |
SARS-CoV-2 shedding and evolution in patients who were immunocompromised during the omicron period: a multicentre, prospective analysis
Raglow Z , Surie D , Chappell JD , Zhu Y , Martin ET , Kwon JH , Frosch AE , Mohamed A , Gilbert J , Bendall EE , Bahr A , Halasa N , Talbot HK , Grijalva CG , Baughman A , Womack KN , Johnson C , Swan SA , Koumans E , McMorrow ML , Harcourt JL , Atherton LJ , Burroughs A , Thornburg NJ , Self WH , Lauring AS . Lancet Microbe 2024 BACKGROUND: Prolonged SARS-CoV-2 infections in people who are immunocompromised might predict or source the emergence of highly mutated variants. The types of immunosuppression placing patients at highest risk for prolonged infection have not been systematically investigated. We aimed to assess risk factors for prolonged SARS-CoV-2 infection and associated intrahost evolution. METHODS: In this multicentre, prospective analysis, participants were enrolled at five US medical centres. Eligible patients were aged 18 years or older, were SARS-CoV-2-positive in the previous 14 days, and had a moderately or severely immunocompromising condition or treatment. Nasal specimens were tested by real-time RT-PCR every 2-4 weeks until negative in consecutive specimens. Positive specimens underwent viral culture and whole genome sequencing. A Cox proportional hazards model was used to assess factors associated with duration of infection. FINDINGS: From April 11, 2022, to Oct 1, 2022, 156 patients began the enrolment process, of whom 150 were enrolled and included in the analyses. Participants had B-cell malignancy or anti-B-cell therapy (n=18), solid organ transplantation or haematopoietic stem-cell transplantation (HSCT; n=59), AIDS (n=5), non-B-cell malignancy (n=23), and autoimmune or autoinflammatory conditions (n=45). 38 (25%) participants were real-time RT-PCR-positive and 12 (8%) were culture-positive 21 days or longer after initial SARS-CoV-2 detection or illness onset. Compared with the group with autoimmune or autoinflammatory conditions, patients with B-cell dysfunction (adjusted hazard ratio 0·32 [95% CI 0·15-0·64]), solid organ transplantation or HSCT (0·60 [0·38-0·94]), and AIDS (0·28 [0·08-1·00]) had longer duration of infection, defined as time to last positive real-time RT-PCR test. There was no significant difference in the non-B-cell malignancy group (0·58 [0·31-1·09]). Consensus de novo spike mutations were identified in five individuals who were real-time RT-PCR-positive longer than 56 days; 14 (61%) of 23 were in the receptor-binding domain. Mutations shared by multiple individuals were rare (<5%) in global circulation. INTERPRETATION: In this cohort, prolonged replication-competent omicron SARS-CoV-2 infections were uncommon. Within-host evolutionary rates were similar across patients, but individuals with infections lasting longer than 56 days accumulated spike mutations, which were distinct from those seen globally. Populations at high risk should be targeted for repeated testing and treatment and monitored for the emergence of antiviral resistance. FUNDING: US Centers for Disease Control and Prevention. |
Hospitalization with cardiovascular conditions in the postpartum year among commercially insured women in the U.S
Ford ND , DeSisto CL , Womack LS , Galang RR , Hollier LM , Sperling LS , Wright JS , Ko JY . J Am Coll Cardiol 2024 83 (2) 382-384 Cardiovascular conditions are significant contributors to morbidity and mortality among pregnant and postpartum women.1 | | We used data from the MarketScan Commercial Claims and Encounters database to identify women 12 to 55 years of age who delivered from 2017 to 2019. Delivery hospitalizations and cardiovascular diagnoses and procedures (ie, conditions) were identified using International Classification of Diseases-10th Revision-Clinical Modification codes. Cardiovascular conditions included acute heart failure or pulmonary edema; acute myocardial infarction; arrhythmia; conduction disorders; cardiac arrest, ventricular fibrillation, or ventricular flutter; cardiomyopathy; congenital heart and great artery defects; conversion of cardiac rhythm; endocarditis, myocarditis, or pericarditis; hypertensive heart disease; ischemic heart disease; nonrheumatic valve disorders; pulmonary heart disease; rheumatic heart disease; and other heart diseases and complications. We calculated the prevalence of hospitalizations with any cardiovascular condition in the year postpartum. Among these patients, we calculated the prevalence of cardiovascular conditions at delivery hospitalization and the frequency of postpartum hospitalizations. For postpartum hospitalizations with cardiovascular conditions, we calculated timing relative to delivery hospitalization and the prevalence (95% CI) of specific cardiovascular conditions by timing since delivery hospitalization (early postpartum [1–42 days] vs late postpartum [43–365 days]), accounting for clustering at the patient level. The data were collected and statistically deidentified. The data are also compliant with the conditions set forth in sections 164.514(a) and 164.51(b)(1)(ii) of the Health Insurance Portability and Accountability Act of 1996 Privacy Rule; therefore, approval from an Institutional Review Board was not sought. |
Vaccine effectiveness against influenza a-associated hospitalization, organ failure, and death: United States, 2022-2023
Lewis NM , Zhu Y , Peltan ID , Gaglani M , McNeal T , Ghamande S , Steingrub JS , Shapiro NI , Duggal A , Bender WS , Taghizadeh L , Brown SM , Hager DN , Gong MN , Mohamed A , Exline MC , Khan A , Wilson JG , Qadir N , Chang SY , Ginde AA , Mohr NM , Mallow C , Lauring AS , Johnson NJ , Gibbs KW , Kwon JH , Columbus C , Gottlieb RL , Raver C , Vaughn IA , Ramesh M , Johnson C , Lamerato L , Safdar B , Casey JD , Rice TW , Halasa N , Chappell JD , Grijalva CG , Talbot HK , Baughman A , Womack KN , Swan SA , Harker E , Price A , DeCuir J , Surie D , Ellington S , Self WH . Clin Infect Dis 2023 BACKGROUND: Influenza circulation during the 2022-2023 season in the United States largely returned to pre-coronavirus disease 2019 (COVID-19)-pandemic patterns and levels. Influenza A(H3N2) viruses were detected most frequently this season, predominately clade 3C.2a1b.2a, a close antigenic match to the vaccine strain. METHODS: To understand effectiveness of the 2022-2023 influenza vaccine against influenza-associated hospitalization, organ failure, and death, a multicenter sentinel surveillance network in the United States prospectively enrolled adults hospitalized with acute respiratory illness between 1 October 2022, and 28 February 2023. Using the test-negative design, vaccine effectiveness (VE) estimates against influenza-associated hospitalization, organ failures, and death were measured by comparing the odds of current-season influenza vaccination in influenza-positive case-patients and influenza-negative, SARS-CoV-2-negative control-patients. RESULTS: A total of 3707 patients, including 714 influenza cases (33% vaccinated) and 2993 influenza- and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative controls (49% vaccinated) were analyzed. VE against influenza-associated hospitalization was 37% (95% confidence interval [CI]: 27%-46%) and varied by age (18-64 years: 47% [30%-60%]; ≥65 years: 28% [10%-43%]), and virus (A[H3N2]: 29% [6%-46%], A[H1N1]: 47% [23%-64%]). VE against more severe influenza-associated outcomes included: 41% (29%-50%) against influenza with hypoxemia treated with supplemental oxygen; 65% (56%-72%) against influenza with respiratory, cardiovascular, or renal failure treated with organ support; and 66% (40%-81%) against influenza with respiratory failure treated with invasive mechanical ventilation. CONCLUSIONS: During an early 2022-2023 influenza season with a well-matched influenza vaccine, vaccination was associated with reduced risk of influenza-associated hospitalization and organ failure. |
Refinement of a preliminary case definition for use in Traumatic Brain Injury Surveillance
Daugherty J , Waltzman D , Breiding M , Peterson A , Chen J , Xu L , Womack LS , DePadilla L , Watson K , Corrigan JD . J Head Trauma Rehabil 2023 OBJECTIVE: Current methods used to measure incidence of traumatic brain injury (TBI) underestimate its true public health burden. The use of self-report surveys may be an approach to improve these estimates. An important step in public health surveillance is to define a public health problem using a case definition. The purpose of this article is to outline the process that the Centers for Disease Control and Prevention undertook to refine a TBI case definition to be used in surveillance using a self-report survey. SETTING: Survey. PARTICIPANTS: A total of 10 030 adults participated via a random digit-dial telephone survey from September 2018 to September 2019. MAIN MEASURES: Respondents were asked whether they had sustained a hit to the head in the preceding 12 months and whether they experienced a series of 12 signs and symptoms as a result of this injury. DESIGN: Head injuries with 1 or more signs/symptoms reported were initially categorized into a 3-tiered TBI case definition (probable TBI, possible TBI, and delayed possible TBI), corresponding to the level of certainty that a TBI occurred. Placement in a tier was compared with a range of severity measures (whether medical evaluation was sought, time to symptom resolution, self-rated social and work functioning); case definition tiers were then modified in a stepwise fashion to maximize differences in severity between tiers. RESULTS: There were statistically significant differences in the severity measure between cases in the probable and possible TBI tiers but not between other tiers. Timing of symptom onset did not meaningfully differentiate between cases on severity measures; therefore, the delayed possible tier was eliminated, resulting in 2 tiers: probable and possible TBI. CONCLUSION: The 2-tiered TBI case definition that was derived from this analysis can be used in future surveillance efforts to differentiate cases by certainty and from noncases for the purpose of reporting TBI prevalence and incidence estimates. The refined case definition can help researchers increase the confidence they have in reporting survey respondents' self-reported TBIs as well as provide them with the flexibility to report an expansive (probable + possible TBI) or more conservative (probable TBI only) estimate of TBI prevalence. |
Ranked severe maternal morbidity index for population-level surveillance at delivery hospitalization based on hospital discharge data
Kuklina EV , Ewing AC , Satten GA , Callaghan WM , Goodman DA , Ferre CD , Ko JY , Womack LS , Galang RR , Kroelinger CD . PLoS One 2023 18 (11) e0294140 BACKGROUND: Severe maternal morbidity (SMM) is broadly defined as an unexpected and potentially life-threatening event associated with labor and delivery. The Centers for Disease Control and Prevention (CDC) produced 21 different indicators based on International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) hospital diagnostic and procedure codes to identify cases of SMM. OBJECTIVES: To examine existing SMM indicators and determine which indicators identified the most in-hospital mortality at delivery hospitalization. METHODS: Data from the 1993-2015 and 2017-2019 Healthcare Cost and Utilization Project's National Inpatient Sample were used to report SMM indicator-specific prevalences, in-hospital mortality rates, and population attributable fractions (PAF) of mortality. We hierarchically ranked indicators by their overall PAF of in-hospital mortality. Predictive modeling determined if SMM prevalence remained comparable after transition to ICD-10-CM coding. RESULTS: The study population consisted of 18,198,934 hospitalizations representing 87,864,173 US delivery hospitalizations. The 15 top ranked indicators identified 80% of in-hospital mortality; the proportion identified by the remaining indicators was negligible (2%). The top 15 indicators were: restoration of cardiac rhythm; cardiac arrest; mechanical ventilation; tracheostomy; amniotic fluid embolism; aneurysm; acute respiratory distress syndrome; acute myocardial infarction; shock; thromboembolism, pulmonary embolism; cerebrovascular disorders; sepsis; both DIC and blood transfusion; acute renal failure; and hysterectomy. The overall prevalence of the top 15 ranked SMM indicators (~22,000 SMM cases per year) was comparable after transition to ICD-10-CM coding. CONCLUSIONS: We determined the 15 indicators that identified the most in-hospital mortality at delivery hospitalization in the US. Continued testing of SMM indicators can improve measurement and surveillance of the most severe maternal complications at the population level. |
Disease severity of respiratory syncytial virus compared with COVID-19 and influenza among hospitalized adults aged ≥60 years - IVY Network, 20 U.S. States, February 2022-May 2023
Surie D , Yuengling KA , DeCuir J , Zhu Y , Gaglani M , Ginde AA , Talbot HK , Casey JD , Mohr NM , Ghamande S , Gibbs KW , Files DC , Hager DN , Ali H , Prekker ME , Gong MN , Mohamed A , Johnson NJ , Steingrub JS , Peltan ID , Brown SM , Leis AM , Khan A , Hough CL , Bender WS , Duggal A , Wilson JG , Qadir N , Chang SY , Mallow C , Kwon JH , Exline MC , Lauring AS , Shapiro NI , Columbus C , Vaughn IA , Ramesh M , Safdar B , Halasa N , Chappell JD , Grijalva CG , Baughman A , Rice TW , Womack KN , Han JH , Swan SA , Mukherjee I , Lewis NM , Ellington S , McMorrow ML , Martin ET , Self WH . MMWR Morb Mortal Wkly Rep 2023 72 (40) 1083-1088 On June 21, 2023, CDC's Advisory Committee on Immunization Practices recommended respiratory syncytial virus (RSV) vaccination for adults aged ≥60 years, offered to individual adults using shared clinical decision-making. Informed use of these vaccines requires an understanding of RSV disease severity. To characterize RSV-associated severity, 5,784 adults aged ≥60 years hospitalized with acute respiratory illness and laboratory-confirmed RSV, SARS-CoV-2, or influenza infection were prospectively enrolled from 25 hospitals in 20 U.S. states during February 1, 2022-May 31, 2023. Multivariable logistic regression was used to compare RSV disease severity with COVID-19 and influenza severity on the basis of the following outcomes: 1) standard flow (<30 L/minute) oxygen therapy, 2) high-flow nasal cannula (HFNC) or noninvasive ventilation (NIV), 3) intensive care unit (ICU) admission, and 4) invasive mechanical ventilation (IMV) or death. Overall, 304 (5.3%) enrolled adults were hospitalized with RSV, 4,734 (81.8%) with COVID-19 and 746 (12.9%) with influenza. Patients hospitalized with RSV were more likely to receive standard flow oxygen, HFNC or NIV, and ICU admission than were those hospitalized with COVID-19 or influenza. Patients hospitalized with RSV were more likely to receive IMV or die compared with patients hospitalized with influenza (adjusted odds ratio = 2.08; 95% CI = 1.33-3.26). Among hospitalized older adults, RSV was less common, but was associated with more severe disease than COVID-19 or influenza. High disease severity in older adults hospitalized with RSV is important to consider in shared clinical decision-making regarding RSV vaccination. |
Vital Signs: Maternity care experiences - United States, April 2023
Mohamoud YA , Cassidy E , Fuchs E , Womack LS , Romero L , Kipling L , Oza-Frank R , Baca K , Galang RR , Stewart A , Carrigan S , Mullen J , Busacker A , Behm B , Hollier LM , Kroelinger C , Mueller T , Barfield WD , Cox S . MMWR Morb Mortal Wkly Rep 2023 72 (35) 961-967 INTRODUCTION: Maternal deaths increased in the United States during 2018-2021, with documented racial disparities. Respectful maternity care is a component of quality care that includes preventing harm and mistreatment, engaging in effective communication, and providing care equitably. Improving respectful maternity care can be part of multilevel strategies to reduce pregnancy-related deaths. METHODS: CDC analyzed data from the PN View Moms survey administered during April 24-30, 2023, to examine the following components of respectful care: 1) experiences of mistreatment (e.g., violations of physical privacy, ignoring requests for help, or verbal abuse), 2) discrimination (e.g., because of race, ethnicity or skin color; age; or weight), and 3) reasons for holding back from communicating questions or concerns during maternity (pregnancy or delivery) care. RESULTS: Among U.S. mothers with children aged <18 years, 20% reported mistreatment while receiving maternity care for their youngest child. Approximately 30% of Black, Hispanic, and multiracial respondents and approximately 30% of respondents with public insurance or no insurance reported mistreatment. Discrimination during the delivery of maternity care was reported by 29% of respondents. Approximately 40% of Black, Hispanic, and multiracial respondents reported discrimination, and approximately 45% percent of all respondents reported holding back from asking questions or discussing concerns with their provider. CONCLUSIONS AND IMPLICATIONS FOR PUBLIC HEALTH PRACTICE: Approximately one in five women reported mistreatment during maternity care. Implementing quality improvement initiatives and provider training to encourage a culture of respectful maternity care, encouraging patients to ask questions and share concerns, and working with communities are strategies to improve respectful maternity care. |
Effectiveness of SARS-CoV-2 mRNA Vaccines for Preventing Covid-19 Hospitalizations in the United States (preprint)
Tenforde MW , Patel MM , Ginde AA , Douin DJ , Talbot HK , Casey JD , Mohr NM , Zepeski A , Gaglani M , McNeal T , Ghamande S , Shapiro NI , Gibbs KW , Files DC , Hager DN , Shehu A , Prekker ME , Erickson HL , Exline MC , Gong MN , Mohamed A , Henning DJ , Steingrub JS , Peltan ID , Brown SM , Martin ET , Monto AS , Khan A , Hough CT , Busse L , Lohuis CCT , Duggal A , Wilson JG , Gordon AJ , Qadir N , Chang SY , Mallow C , Gershengorn HB , Babcock HM , Kwon JH , Halasa N , Chappell JD , Lauring AS , Grijalva CG , Rice TW , Jones ID , Stubblefield WB , Baughman A , Womack KN , Lindsell CJ , Hart KW , Zhu Y , Olson SM , Stephenson M , Schrag SJ , Kobayashi M , Verani JR , Self WH . medRxiv 2021 BACKGROUND: As SARS-CoV-2 vaccination coverage increases in the United States (US), there is a need to understand the real-world effectiveness against severe Covid-19 and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11 - May 5, 2021, we evaluated vaccine effectiveness to prevent Covid-19 hospitalizations by comparing odds of prior vaccination with an mRNA vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with Covid-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1210 participants, median age was 58 years, 22.8% were Black, 13.8% were Hispanic, and 20.6% had immunosuppression. SARS-CoV-2 lineage B.1.1.7 was most common variant (59.7% of sequenced viruses). Full vaccination (receipt of two vaccine doses ≥14 days before illness onset) had been received by 45/590 (7.6%) cases and 215/620 (34.7%) controls. Overall vaccine effectiveness was 86.9% (95% CI: 80.4 to 91.2%). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.3%; 95% CI: 78.9 to 99.7%). Among 45 patients with vaccine-breakthrough Covid hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (59.2%; 95% CI: 11.9 to 81.1%) than without immunosuppression (91.3%; 95% CI: 85.5 to 94.7%). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing Covid-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population. |
Comparison of mRNA vaccine effectiveness against COVID-19-associated hospitalization by vaccination source: Immunization information systems, electronic medical records, and self-report-IVY Network, February 1-August 31, 2022
Surie D , Bonnell LN , DeCuir J , Gaglani M , McNeal T , Ghamande S , Steingrub JS , Shapiro NI , Busse LW , Prekker ME , Peltan ID , Brown SM , Hager DN , Ali H , Gong MN , Mohamed A , Khan A , Wilson JG , Qadir N , Chang SY , Ginde AA , Huynh D , Mohr NM , Mallow C , Martin ET , Lauring AS , Johnson NJ , Casey JD , Gibbs KW , Kwon JH , Baughman A , Chappell JD , Hart KW , Grijalva CG , Rhoads JP , Swan SA , Keipp Talbot H , Womack KN , Zhu Y , Tenforde MW , Adams K , Self WH , McMorrow ML . Vaccine 2023 41 (29) 4249-4256 BACKGROUND: Accurate determination of COVID-19 vaccination status is necessary to produce reliable COVID-19 vaccine effectiveness (VE) estimates. Data comparing differences in COVID-19 VE by vaccination sources (i.e., immunization information systems [IIS], electronic medical records [EMR], and self-report) are limited. We compared the number of mRNA COVID-19 vaccine doses identified by each of these sources to assess agreement as well as differences in VE estimates using vaccination data from each individual source and vaccination data adjudicated from all sources combined. METHODS: Adults aged ≥18 years who were hospitalized with COVID-like illness at 21 hospitals in 18 U.S. states participating in the IVY Network during February 1-August 31, 2022, were enrolled. Numbers of COVID-19 vaccine doses identified by IIS, EMR, and self-report were compared in kappa agreement analyses. Effectiveness of mRNA COVID-19 vaccines against COVID-19-associated hospitalization was estimated using multivariable logistic regression models to compare the odds of COVID-19 vaccination between SARS-CoV-2-positive case-patients and SARS-CoV-2-negative control-patients. VE was estimated using each source of vaccination data separately and all sources combined. RESULTS: A total of 4499 patients were included. Patients with ≥1 mRNA COVID-19 vaccine dose were identified most frequently by self-report (n = 3570, 79 %), followed by IIS (n = 3272, 73 %) and EMR (n = 3057, 68 %). Agreement was highest between IIS and self-report for 4 doses with a kappa of 0.77 (95 % CI = 0.73-0.81). VE point estimates of 3 doses against COVID-19 hospitalization were substantially lower when using vaccination data from EMR only (VE = 31 %, 95 % CI = 16 %-43 %) than when using all sources combined (VE = 53 %, 95 % CI = 41 %-62%). CONCLUSION: Vaccination data from EMR only may substantially underestimate COVID-19 VE. |
Changing severity and epidemiology of adults hospitalized with coronavirus disease 2019 (COVID-19) in the United States after introduction of COVID-19 vaccines, March 2021-August 2022
Kojima N , Adams K , Self WH , Gaglani M , McNeal T , Ghamande S , Steingrub JS , Shapiro NI , Duggal A , Busse LW , Prekker ME , Peltan ID , Brown SM , Hager DN , Ali H , Gong MN , Mohamed A , Exline MC , Khan A , Wilson JG , Qadir N , Chang SY , Ginde AA , Withers CA , Mohr NM , Mallow C , Martin ET , Lauring AS , Johnson NJ , Casey JD , Stubblefield WB , Gibbs KW , Kwon JH , Baughman A , Chappell JD , Hart KW , Jones ID , Rhoads JP , Swan SA , Womack KN , Zhu Y , Surie D , McMorrow ML , Patel MM , Tenforde MW . Clin Infect Dis 2023 77 (4) 547-557 INTRODUCTION: Understanding the changing epidemiology of adults hospitalized with coronavirus disease 2019 (COVID-19) informs research priorities and public health policies. METHODS: Among adults (≥18 years) hospitalized with laboratory-confirmed, acute COVID-19 between 11 March 2021, and 31 August 2022 at 21 hospitals in 18 states, those hospitalized during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron-predominant period (BA.1, BA.2, BA.4/BA.5) were compared to those from earlier Alpha- and Delta-predominant periods. Demographic characteristics, biomarkers within 24ā hours of admission, and outcomes, including oxygen support and death, were assessed. RESULTS: Among 9825 patients, median (interquartile range [IQR]) age was 60 years (47-72), 47% were women, and 21% non-Hispanic Black. From the Alpha-predominant period (Mar-Jul 2021; N = 1312) to the Omicron BA.4/BA.5 sublineage-predominant period (Jun-Aug 2022; N = 1307): the percentage of patients who had ≥4 categories of underlying medical conditions increased from 11% to 21%; those vaccinated with at least a primary COVID-19 vaccine series increased from 7% to 67%; those ≥75 years old increased from 11% to 33%; those who did not receive any supplemental oxygen increased from 18% to 42%. Median (IQR) highest C-reactive protein and D-dimer concentration decreased from 42.0ā mg/L (9.9-122.0) to 11.5ā mg/L (2.7-42.8) and 3.1 mcg/mL (0.8-640.0) to 1.0 mcg/mL (0.5-2.2), respectively. In-hospital death peaked at 12% in the Delta-predominant period and declined to 4% during the BA.4/BA.5-predominant period. CONCLUSIONS: Compared to adults hospitalized during early COVID-19 variant periods, those hospitalized during Omicron-variant COVID-19 were older, had multiple co-morbidities, were more likely to be vaccinated, and less likely to experience severe respiratory disease, systemic inflammation, coagulopathy, and death. |
COVID-19 surveillance after expiration of the public health emergency declaration - United States, May 11, 2023
Silk BJ , Scobie HM , Duck WM , Palmer T , Ahmad FB , Binder AM , Cisewski JA , Kroop S , Soetebier K , Park M , Kite-Powell A , Cool A , Connelly E , Dietz S , Kirby AE , Hartnett K , Johnston J , Khan D , Stokley S , Paden CR , Sheppard M , Sutton P , Razzaghi H , Anderson RN , Thornburg N , Meyer S , Womack C , Weakland AP , McMorrow M , Broeker LR , Winn A , Hall AJ , Jackson B , Mahon BE , Ritchey MD . MMWR Morb Mortal Wkly Rep 2023 72 (19) 523-528 On January 31, 2020, the U.S. Department of Health and Human Services (HHS) declared, under Section 319 of the Public Health Service Act, a U.S. public health emergency because of the emergence of a novel virus, SARS-CoV-2.* After 13 renewals, the public health emergency will expire on May 11, 2023. Authorizations to collect certain public health data will expire on that date as well. Monitoring the impact of COVID-19 and the effectiveness of prevention and control strategies remains a public health priority, and a number of surveillance indicators have been identified to facilitate ongoing monitoring. After expiration of the public health emergency, COVID-19-associated hospital admission levels will be the primary indicator of COVID-19 trends to help guide community and personal decisions related to risk and prevention behaviors; the percentage of COVID-19-associated deaths among all reported deaths, based on provisional death certificate data, will be the primary indicator used to monitor COVID-19 mortality. Emergency department (ED) visits with a COVID-19 diagnosis and the percentage of positive SARS-CoV-2 test results, derived from an established sentinel network, will help detect early changes in trends. National genomic surveillance will continue to be used to estimate SARS-CoV-2 variant proportions; wastewater surveillance and traveler-based genomic surveillance will also continue to be used to monitor SARS-CoV-2 variants. Disease severity and hospitalization-related outcomes are monitored via sentinel surveillance and large health care databases. Monitoring of COVID-19 vaccination coverage, vaccine effectiveness (VE), and vaccine safety will also continue. Integrated strategies for surveillance of COVID-19 and other respiratory viruses can further guide prevention efforts. COVID-19-associated hospitalizations and deaths are largely preventable through receipt of updated vaccines and timely administration of therapeutics (1-4). |
Sustained Effectiveness of Pfizer-BioNTech and Moderna Vaccines Against COVID-19 Associated Hospitalizations Among Adults - United States, March-July 2021.
Tenforde MW , Self WH , Naioti EA , Ginde AA , Douin DJ , Olson SM , Talbot HK , Casey JD , Mohr NM , Zepeski A , Gaglani M , McNeal T , Ghamande S , Shapiro NI , Gibbs KW , Files DC , Hager DN , Shehu A , Prekker ME , Erickson HL , Gong MN , Mohamed A , Henning DJ , Steingrub JS , Peltan ID , Brown SM , Martin ET , Monto AS , Khan A , Hough CL , Busse LW , Ten Lohuis CC , Duggal A , Wilson JG , Gordon AJ , Qadir N , Chang SY , Mallow C , Rivas C , Babcock HM , Kwon JH , Exline MC , Halasa N , Chappell JD , Lauring AS , Grijalva CG , Rice TW , Jones ID , Stubblefield WB , Baughman A , Womack KN , Lindsell CJ , Hart KW , Zhu Y , Stephenson M , Schrag SJ , Kobayashi M , Verani JR , Patel MM , IVY Network Investigators . MMWR Morb Mortal Wkly Rep 2021 70 (34) 1156-1162 Real-world evaluations have demonstrated high effectiveness of vaccines against COVID-19-associated hospitalizations (1-4) measured shortly after vaccination; longer follow-up is needed to assess durability of protection. In an evaluation at 21 hospitals in 18 states, the duration of mRNA vaccine (Pfizer-BioNTech or Moderna) effectiveness (VE) against COVID-19-associated hospitalizations was assessed among adults aged ≥18 years. Among 3,089 hospitalized adults (including 1,194 COVID-19 case-patients and 1,895 non-COVID-19 control-patients), the median age was 59 years, 48.7% were female, and 21.1% had an immunocompromising condition. Overall, 141 (11.8%) case-patients and 988 (52.1%) controls were fully vaccinated (defined as receipt of the second dose of Pfizer-BioNTech or Moderna mRNA COVID-19 vaccines ≥14 days before illness onset), with a median interval of 65 days (range = 14-166 days) after receipt of second dose. VE against COVID-19-associated hospitalization during the full surveillance period was 86% (95% confidence interval [CI] = 82%-88%) overall and 90% (95% CI = 87%-92%) among adults without immunocompromising conditions. VE against COVID-19- associated hospitalization was 86% (95% CI = 82%-90%) 2-12 weeks and 84% (95% CI = 77%-90%) 13-24 weeks from receipt of the second vaccine dose, with no significant change between these periods (p = 0.854). Whole genome sequencing of 454 case-patient specimens found that 242 (53.3%) belonged to the B.1.1.7 (Alpha) lineage and 74 (16.3%) to the B.1.617.2 (Delta) lineage. Effectiveness of mRNA vaccines against COVID-19-associated hospitalization was sustained over a 24-week period, including among groups at higher risk for severe COVID-19; ongoing monitoring is needed as new SARS-CoV-2 variants emerge. To reduce their risk for hospitalization, all eligible persons should be offered COVID-19 vaccination. |
Effectiveness of a Third Dose of Pfizer-BioNTech and Moderna Vaccines in Preventing COVID-19 Hospitalization Among Immunocompetent and Immunocompromised Adults - United States, August-December 2021.
Tenforde MW , Patel MM , Gaglani M , Ginde AA , Douin DJ , Talbot HK , Casey JD , Mohr NM , Zepeski A , McNeal T , Ghamande S , Gibbs KW , Files DC , Hager DN , Shehu A , Prekker ME , Erickson HL , Gong MN , Mohamed A , Johnson NJ , Srinivasan V , Steingrub JS , Peltan ID , Brown SM , Martin ET , Monto AS , Khan A , Hough CL , Busse LW , Duggal A , Wilson JG , Qadir N , Chang SY , Mallow C , Rivas C , Babcock HM , Kwon JH , Exline MC , Botros M , Lauring AS , Shapiro NI , Halasa N , Chappell JD , Grijalva CG , Rice TW , Jones ID , Stubblefield WB , Baughman A , Womack KN , Rhoads JP , Lindsell CJ , Hart KW , Zhu Y , Naioti EA , Adams K , Lewis NM , Surie D , McMorrow ML , Self WH , IVY Network . MMWR Morb Mortal Wkly Rep 2022 71 (4) 118-124 COVID-19 mRNA vaccines (BNT162b2 [Pfizer-BioNTech] and mRNA-1273 [Moderna]) provide protection against infection with SARS-CoV-2, the virus that causes COVID-19, and are highly effective against COVID-19-associated hospitalization among eligible persons who receive 2 doses (1,2). However, vaccine effectiveness (VE) among persons with immunocompromising conditions* is lower than that among immunocompetent persons (2), and VE declines after several months among all persons (3). On August 12, 2021, the Food and Drug Administration (FDA) issued an emergency use authorization (EUA) for a third mRNA vaccine dose as part of a primary series ≥28 days after dose 2 for persons aged ≥12 years with immunocompromising conditions, and, on November 19, 2021, as a booster dose for all adults aged ≥18 years at least 6 months after dose 2, changed to ≥5 months after dose 2 on January 3, 2022 (4,5,6). Among 2,952 adults (including 1,385 COVID-19 case-patients and 1,567 COVID-19-negative controls) hospitalized at 21 U.S. hospitals during August 19-December 15, 2021, effectiveness of mRNA vaccines against COVID-19-associated hospitalization was compared between adults eligible for but who had not received a third vaccine dose (1,251) and vaccine-eligible adults who received a third dose ≥7 days before illness onset (312). Among 1,875 adults without immunocompromising conditions (including 1,065 [57%] unvaccinated, 679 [36%] 2-dose recipients, and 131 [7%] 3-dose [booster] recipients), VE against COVID-19 hospitalization was higher among those who received a booster dose (97%; 95% CI = 95%-99%) compared with that among 2-dose recipients (82%; 95% CI = 77%-86%) (p <0.001). Among 1,077 adults with immunocompromising conditions (including 324 [30%] unvaccinated, 572 [53%] 2-dose recipients, and 181 [17%] 3-dose recipients), VE was higher among those who received a third dose to complete a primary series (88%; 95% CI = 81%-93%) compared with 2-dose recipients (69%; 95% CI = 57%-78%) (p <0.001). Administration of a third COVID-19 mRNA vaccine dose as part of a primary series among immunocompromised adults, or as a booster dose among immunocompetent adults, provides improved protection against COVID-19-associated hospitalization. |
Effectiveness of monovalent mRNA COVID-19 vaccination in preventing COVID-19-associated invasive mechanical ventilation and death among immunocompetent adults during the Omicron variant period - IVY Network, 19 U.S. States, February 1, 2022-January 31, 2023
DeCuir J , Surie D , Zhu Y , Gaglani M , Ginde AA , Douin DJ , Talbot HK , Casey JD , Mohr NM , McNeal T , Ghamande S , Gibbs KW , Files DC , Hager DN , Phan M , Prekker ME , Gong MN , Mohamed A , Johnson NJ , Steingrub JS , Peltan ID , Brown SM , Martin ET , Monto AS , Khan A , Bender WS , Duggal A , Wilson JG , Qadir N , Chang SY , Mallow C , Kwon JH , Exline MC , Lauring AS , Shapiro NI , Columbus C , Gottlieb R , Vaughn IA , Ramesh M , Lamerato LE , Safdar B , Halasa N , Chappell JD , Grijalva CG , Baughman A , Womack KN , Rhoads JP , Hart KW , Swan SA , Lewis N , McMorrow ML , Self WH . MMWR Morb Mortal Wkly Rep 2023 72 (17) 463-468 As of April 2023, the COVID-19 pandemic has resulted in 1.1 million deaths in the United States, with approximately 75% of deaths occurring among adults aged ≥65 years (1). Data on the durability of protection provided by monovalent mRNA COVID-19 vaccination against critical outcomes of COVID-19 are limited beyond the Omicron BA.1 lineage period (December 26, 2021-March 26, 2022). In this case-control analysis, the effectiveness of 2-4 monovalent mRNA COVID-19 vaccine doses was evaluated against COVID-19-associated invasive mechanical ventilation (IMV) and in-hospital death among immunocompetent adults aged ≥18 years during February 1, 2022-January 31, 2023. Vaccine effectiveness (VE) against IMV and in-hospital death was 62% among adults aged ≥18 years and 69% among those aged ≥65 years. When stratified by time since last dose, VE was 76% at 7-179 days, 54% at 180-364 days, and 56% at ≥365 days. Monovalent mRNA COVID-19 vaccination provided substantial, durable protection against IMV and in-hospital death among adults during the Omicron variant period. All adults should remain up to date with recommended COVID-19 vaccination to prevent critical COVID-19-associated outcomes. |
Using guided credible history interviews to establish special education eligibility for students with traumatic brain injury
McCart M , Unruh D , Gomez D , Anderson D , Gioia G , Davies SC , Haarbauer-Krupa J , Womack LS , Thigpen S , Brown L , Glang A . NeuroRehabilitation 2023 52 (4) 597-604 BACKGROUND: In Oregon in 2019, only 261 students were eligible for special education under the traumatic brain injury (TBI) category. Many students with TBIs are not treated by a medical provider, so the requirement for a medical statement could prevent eligible youth from receiving special education services. OBJECTIVE: This study investigated barriers to using a medical statement to establish special education eligibility for TBI, support for using a guided credible history interview (GCHI), and training needs around GCHI. RESULTS: Among participants, 84% reported difficulty obtaining a medical statement for TBI eligibility determination, and 87% favored the GCHI as an alternative, though they reported a need for training in TBI and GCHI. CONCLUSION: The results support the use of GCHI to establish special education eligibility for TBI and informed Oregon's addition of GCHI to TBI special education eligibility determination. |
Total and subgenomic RNA viral load in patients infected with SARS-CoV-2 Alpha, Delta, and Omicron variants
Dimcheff DE , Blair CN , Zhu Y , Chappell JD , Gaglani M , McNeal T , Ghamande S , Steingrub JS , Shapiro NI , Duggal A , Busse LW , Frosch AEP , Peltan ID , Hager DN , Gong MN , Exline MC , Khan A , Wilson JG , Qadir N , Ginde AA , Douin DJ , Mohr NM , Mallow C , Martin ET , Johnson NJ , Casey JD , Stubblefield WB , Gibbs KW , Kwon JH , Talbot HK , Halasa N , Grijalva CG , Baughman A , Womack KN , Hart KW , Swan SA , Surie D , Thornburg NJ , McMorrow ML , Self WH , Lauring AS . J Infect Dis 2023 228 (3) 235-244 BACKGROUND: SARS-CoV-2 genomic and subgenomic RNA levels are frequently used as a correlate of infectiousness. The impact of host factors and SARS-CoV-2 lineage on RNA viral load is unclear. METHODS: Total nucleocapsid (N) and subgenomic N (sgN) RNA levels were measured by RT-qPCR in specimens from 3,204 individuals hospitalized with COVID-19 at 21 hospitals. RT-qPCR cycle threshold (Ct) values were used to estimate RNA viral load. The impact of time of sampling, SARS-CoV-2 variant, age, comorbidities, vaccination, and immune status on N and sgN Ct values were evaluated using multiple linear regression. RESULTS: Ct values at presentation for N (mean ±standard deviation) were 24.14±4.53 for non-variants of concern, 25.15±4.33 for Alpha, 25.31±4.50 for Delta, and 26.26±4.42 for Omicron. N and sgN RNA levels varied with time since symptom onset and infecting variant but not with age, comorbidity, immune status, or vaccination. When normalized to total N RNA, sgN levels were similar across all variants. CONCLUSIONS: RNA viral loads were similar among hospitalized adults, irrespective of infecting variant and known risk factors for severe COVID-19. Total N and subgenomic RNA N viral loads were highly correlated, suggesting that subgenomic RNA measurements adds little information for the purposes of estimating infectivity. |
Frequency and spelling of names in the Sierra Leone Ebola Database (SLED)
Alpren C , Womack LS , Martineau F , Kamara E , Kamara A , Jambai A , Singh T , Kaiser R , Redd JT . Pan Afr Med J 2022 43 141 Although there is no published analysis of surnames and given names used in Sierra Leone, certain names are common and identical names are frequently encountered. This makes disease tracking and contact tracing difficult. During the Ebola outbreak in 2014-2016, deficiencies in public health information systems in Sierra Leone exacerbated data collection difficulties. The study objective was to examine frequency of names recorded in the Viral Hemorrhagic Fever database (VHF) component of the Sierra Leone Ebola database (SLED). First names and surnames were standardized by a Sierra Leonean linguist. Frequencies of standardized first names, surnames, full names, and initials were analyzed. The most frequent surname was used by 18.2% of VHF records and the most frequent 20 surnames accounted for 74.1%. The most frequent male first name accounted for 5.5% of VHF records and the most frequent female first name for 4.6%. The 20 most frequent full names accounted for 12.4% of records, and the most frequent initials were used in 7.3% of VHF records. A limited number of names are used in Sierra Leone, which poses a challenge to large public health responses. Algorithms that address inconsistent spelling could be used to improve computer-based databases. Databases must also use variables other than name for identification. The lessons learned in this analysis can assist other investigations, particularly those requiring contact tracing to limit disease spread. © Charles Alpren et al. |
Early Estimates of Bivalent mRNA Vaccine Effectiveness in Preventing COVID-19-Associated Hospitalization Among Immunocompetent Adults Aged ≥65 Years - IVY Network, 18 States, September 8-November 30, 2022.
Surie D , DeCuir J , Zhu Y , Gaglani M , Ginde AA , Douin DJ , Talbot HK , Casey JD , Mohr NM , Zepeski A , McNeal T , Ghamande S , Gibbs KW , Files DC , Hager DN , Ali H , Taghizadeh L , Gong MN , Mohamed A , Johnson NJ , Steingrub JS , Peltan ID , Brown SM , Martin ET , Khan A , Bender WS , Duggal A , Wilson JG , Qadir N , Chang SY , Mallow C , Kwon JH , Exline MC , Lauring AS , Shapiro NI , Columbus C , Halasa N , Chappell JD , Grijalva CG , Rice TW , Stubblefield WB , Baughman A , Womack KN , Rhoads JP , Hart KW , Swan SA , Lewis NM , McMorrow ML , Self WH . MMWR Morb Mortal Wkly Rep 2022 71 (5152) 1625-1630 Monovalent COVID-19 mRNA vaccines, designed against the ancestral strain of SARS-CoV-2, successfully reduced COVID-19-related morbidity and mortality in the United States and globally (1,2). However, vaccine effectiveness (VE) against COVID-19-associated hospitalization has declined over time, likely related to a combination of factors, including waning immunity and, with the emergence of the Omicron variant and its sublineages, immune evasion (3). To address these factors, on September 1, 2022, the Advisory Committee on Immunization Practices recommended a bivalent COVID-19 mRNA booster (bivalent booster) dose, developed against the spike protein from ancestral SARS-CoV-2 and Omicron BA.4/BA.5 sublineages, for persons who had completed at least a primary COVID-19 vaccination series (with or without monovalent booster doses) ≥2 months earlier (4). Data on the effectiveness of a bivalent booster dose against COVID-19 hospitalization in the United States are lacking, including among older adults, who are at highest risk for severe COVID-19-associated illness. During September 8-November 30, 2022, the Investigating Respiratory Viruses in the Acutely Ill (IVY) Network(§) assessed effectiveness of a bivalent booster dose received after ≥2 doses of monovalent mRNA vaccine against COVID-19-associated hospitalization among immunocompetent adults aged ≥65 years. When compared with unvaccinated persons, VE of a bivalent booster dose received ≥7 days before illness onset (median = 29 days) against COVID-19-associated hospitalization was 84%. Compared with persons who received ≥2 monovalent-only mRNA vaccine doses, relative VE of a bivalent booster dose was 73%. These early findings show that a bivalent booster dose provided strong protection against COVID-19-associated hospitalization in older adults and additional protection among persons with previous monovalent-only mRNA vaccination. All eligible persons, especially adults aged ≥65 years, should receive a bivalent booster dose to maximize protection against COVID-19 hospitalization this winter season. Additional strategies to prevent respiratory illness, such as masking in indoor public spaces, should also be considered, especially in areas where COVID-19 community levels are high (4,5). |
Vaccine effectiveness against influenza A(H3N2)-associated hospitalized illness, United States, 2022
Tenforde MW , Patel MM , Lewis NM , Adams K , Gaglani M , Steingrub JS , Shapiro NI , Duggal A , Prekker ME , Peltan ID , Hager DN , Gong MN , Exline MC , Ginde AA , Mohr NM , Mallow C , Martin ET , Talbot HK , Gibbs KW , Kwon JH , Chappell JD , Halasa N , Lauring AS , Lindsell CJ , Swan SA , Hart KW , Womack KN , Baughman A , Grijalva CG , Self WH . Clin Infect Dis 2022 76 (6) 1030-1037 BACKGROUND: The COVID-19 pandemic was associated with historically low influenza circulation during the 2020-2021 season, followed by increase in influenza circulation during the 2021-2022 US season. The 2a.2 subgroup of the influenza A(H3N2) 3C.2a1b subclade that predominated was antigenically different from the vaccine strain. METHODS: To understand the effectiveness of the 2021-2022 vaccine against hospitalized influenza illness, a multi-state sentinel surveillance network enrolled adults aged ≥18 years hospitalized with acute respiratory illness (ARI) and tested for influenza by a molecular assay. Using the test-negative design, vaccine effectiveness (VE) was measured by comparing the odds of current season influenza vaccination in influenza-positive case-patients and influenza-negative, SARS-CoV-2-negative controls, adjusting for confounders. A separate analysis was performed to illustrate bias introduced by including SARS-CoV-2 positive controls. RESULTS: A total of 2334 patients, including 295 influenza cases (47% vaccinated), 1175 influenza- and SARS-CoV-2 negative controls (53% vaccinated), and 864 influenza-negative and SARS-CoV-2 positive controls (49% vaccinated), were analyzed. Influenza VE was 26% (95%CI: -14 to 52%) among adults aged 18-64 years, -3% (95%CI: -54 to 31%) among adults aged ≥65 years, and 50% (95%CI: 15 to 71%) among adults 18-64 years without immunocompromising conditions. Estimated VE decreased with inclusion of SARS-CoV-2-positive controls. CONCLUSIONS: During a season where influenza A(H3N2) was antigenically different from the vaccine virus, vaccination was associated with a reduced risk of influenza hospitalization in younger immunocompetent adults. However, vaccination did not provide protection in adults ≥65 years of age. Improvements in vaccines, antivirals, and prevention strategies are warranted. |
Effectiveness of Monovalent mRNA Vaccines Against COVID-19-Associated Hospitalization Among Immunocompetent Adults During BA.1/BA.2 and BA.4/BA.5 Predominant Periods of SARS-CoV-2 Omicron Variant in the United States - IVY Network, 18 States, December 26, 2021-August 31, 2022.
Surie D , Bonnell L , Adams K , Gaglani M , Ginde AA , Douin DJ , Talbot HK , Casey JD , Mohr NM , Zepeski A , McNeal T , Ghamande S , Gibbs KW , Files DC , Hager DN , Shehu A , Frosch AP , Erickson HL , Gong MN , Mohamed A , Johnson NJ , Srinivasan V , Steingrub JS , Peltan ID , Brown SM , Martin ET , Khan A , Bender WS , Duggal A , Wilson JG , Qadir N , Chang SY , Mallow C , Rivas C , Kwon JH , Exline MC , Lauring AS , Shapiro NI , Halasa N , Chappell JD , Grijalva CG , Rice TW , Stubblefield WB , Baughman A , Womack KN , Hart KW , Swan SA , Zhu Y , DeCuir J , Tenforde MW , Patel MM , McMorrow ML , Self WH . MMWR Morb Mortal Wkly Rep 2022 71 (42) 1327-1334 The SARS-CoV-2 Omicron variant (B.1.1.529 or BA.1) became predominant in the United States by late December 2021 (1). BA.1 has since been replaced by emerging lineages BA.2 (including BA.2.12.1) in March 2022, followed by BA.4 and BA.5, which have accounted for a majority of SARS-CoV-2 infections since late June 2022 (1). Data on the effectiveness of monovalent mRNA COVID-19 vaccines against BA.4/BA.5-associated hospitalizations are limited, and their interpretation is complicated by waning of vaccine-induced immunity (2-5). Further, infections with earlier Omicron lineages, including BA.1 and BA.2, reduce vaccine effectiveness (VE) estimates because certain persons in the referent unvaccinated group have protection from infection-induced immunity. The IVY Network(†) assessed effectiveness of 2, 3, and 4 doses of monovalent mRNA vaccines compared with no vaccination against COVID-19-associated hospitalization among immunocompetent adults aged ≥18 years during December 26, 2021-August 31, 2022. During the BA.1/BA.2 period, VE 14-150 days after a second dose was 63% and decreased to 34% after 150 days. Similarly, VE 7-120 days after a third dose was 79% and decreased to 41% after 120 days. VE 7-120 days after a fourth dose was 61%. During the BA.4/BA.5 period, similar trends were observed, although CIs for VE estimates between categories of time since the last dose overlapped. VE 14-150 days and >150 days after a second dose was 83% and 37%, respectively. VE 7-120 days and >120 days after a third dose was 60%and 29%, respectively. VE 7-120 days after the fourth dose was 61%. Protection against COVID-19-associated hospitalization waned even after a third dose. The newly authorized bivalent COVID-19 vaccines include mRNA from the ancestral SARS-CoV-2 strain and from shared mRNA components between BA.4 and BA.5 lineages and are expected to be more immunogenic against BA.4/BA.5 than monovalent mRNA COVID-19 vaccines (6-8). All eligible adults aged ≥18 years(§) should receive a booster dose, which currently consists of a bivalent mRNA vaccine, to maximize protection against BA.4/BA.5 and prevent COVID-19-associated hospitalization. |
Children, adolescents, and young adults hospitalized with COVID-19 and diabetes in summer 2021.
Agathis NT , Womack LS , Webber BJ , Choudhary R , Wanga V , Ko JY , Dupont H , Imperatore G , Koumans EH , Saydah S , Kimball AA , Siegel DA . Pediatr Diabetes 2022 23 (7) 961-967 INTRODUCTION: More information is needed to understand the clinical epidemiology of youth hospitalized with diabetes and COVID-19. We describe the demographic and clinical characteristics of patients <21years old hospitalized with COVID-19 and either Type 1 or Type 2 Diabetes Mellitus (T1DM or T2DM) during peak incidence of SARS-CoV-2 infection with the B.1.617.2 (Delta) variant. METHODS: This is a descriptive sub-analysis of a retrospective chart review of patients aged <21years hospitalized with COVID-19 in six US children's hospitals during July-August 2021. Patients with COVID-19 and either newly diagnosed or known T1DM or T2DM were described using originally collected data and diabetes-related data specifically collected on these patients. RESULTS: Of the 58 patients hospitalized with COVID-19 and diabetes, 34 had T1DM and 24 had T2DM. Of those with T1DM and T2DM, 26% (9/34) and 33% (8/24), respectively, were newly diagnosed. Among those >12years old and eligible for COVID-19 vaccination, 93% were unvaccinated (42/45). Among patients with T1DM, 88% had diabetic ketoacidosis (DKA) and 6% had COVID-19 pneumonia; of those with T2DM, 46% had DKA and 58% had COVID-19 pneumonia. Of those with T1DM or T2DM, 59% and 46%, respectively, required ICU admission. CONCLUSION: Our findings highlight the importance of considering diabetes in the evaluation of youth presenting with COVID-19; the challenges of managing young patients who present with both COVID-19 and diabetes, particularly T2DM; and the importance of preventive actions like COVID-19 vaccination to prevent severe illness among those eligible with both COVID-19 and diabetes. This article is protected by copyright. All rights reserved. |
Factors Associated With Severe Illness in Patients Aged <21 Years Hospitalized for COVID-19.
Choudhary R , Webber BJ , Womack LS , Dupont HK , Chiu SK , Wanga V , Gerdes ME , Hsu S , Shi DS , Dulski TM , Idubor OI , Wendel AM , Agathis NT , Anderson K , Boyles T , Click ES , Silva JD , Evans ME , Gold JAW , Haston JC , Logan P , Maloney SA , Martinez M , Natarajan P , Spicer KB , Swancutt M , Stevens VA , Rogers-Brown J , Chandra G , Light M , Barr FE , Snowden J , Kociolek LK , McHugh M , Wessel DL , Simpson JN , Gorman KC , Breslin KA , DeBiasi RL , Thompson A , Kline MW , Boom JA , Singh IR , Dowlin M , Wietecha M , Schweitzer B , Morris SB , Koumans EH , Ko JY , Siegel DA , Kimball AA . Hosp Pediatr 2022 12 (9) 760-783 OBJECTIVES: To describe COVID-19-related pediatric hospitalizations during a period of B.1.617.2 (Delta) variant predominance and to determine age-specific factors associated with severe illness. PATIENTS AND METHODS: We abstracted data from medical charts to conduct a cross-sectional study of patients aged <21 years hospitalized at 6 US children's hospitals during July-August 2021 for COVID-19 or with an incidental positive SARS-CoV-2 test. Among patients with COVID-19, we assessed factors associated with severe illness by calculating age-stratified prevalence ratios (PR). We defined severe illness as receiving high-flow nasal cannula, positive airway pressure, or invasive mechanical ventilation. RESULTS: Of 947 hospitalized patients, 759 (80.1%) had COVID-19, of whom 287 (37.8%) had severe illness. Factors associated with severe illness included coinfection with RSV (PR 3.64) and bacteria (PR 1.88) in infants; RSV coinfection in patients aged 1-4 years (PR 1.96); and obesity in patients aged 5-11 (PR 2.20) and 12-17 years (PR 2.48). Having ≥2 underlying medical conditions was associated with severe illness in patients aged <1 (PR 1.82), 5-11 (PR 3.72), and 12-17 years (PR 3.19). CONCLUSIONS: Among patients hospitalized for COVID-19, factors associated with severe illness included RSV coinfection in those aged <5 years, obesity in those aged 5-17 years, and other underlying conditions for all age groups <18 years. These findings can inform pediatric practice, risk communication, and prevention strategies, including vaccination against COVID-19. |
Effectiveness of the Ad26.COV2.S (Johnson & Johnson) COVID-19 Vaccine for Preventing COVID-19 Hospitalizations and Progression to High Disease Severity in the United States.
Lewis NM , Self WH , Gaglani M , Ginde AA , Douin DJ , Keipp Talbot H , Casey JD , Mohr NM , Zepeski A , Ghamande SA , McNeal TA , Shapiro NI , Gibbs KW , Files DC , Hager DN , Shehu A , Prekker ME , Erickson HL , Gong MN , Mohamed A , Johnson NJ , Srinivasan V , Steingrub JS , Peltan ID , Brown AM , Martin ET , Monto AS , Khan A , Busse LW , Ten Lohuis CC , Duggal B , Wilson JG , Gordon AJ , Qadir N , Chang SY , Mallow C , Rivas C , Babcock HM , Kwon JH , Exline MC , Lauring AS , Halasa N , Chappell JD , Grijalva CG , Rice TW , Rhoads JP , Jones ID , Stubblefield WB , Baughman A , Womack KN , Lindsell CJ , Hart KW , Zhu Y , Adams K , Patel MM , Tenforde MW . Clin Infect Dis 2022 75 S159-S166 BACKGROUND: Adults in the United States (US) began receiving the viral vector COVID-19 vaccine, Ad26.COV2.S (Johnson & Johnson [Janssen]), in February 2021. We evaluated Ad26.COV2.S vaccine effectiveness (VE) against COVID-19 hospitalization and high disease severity during the first 10 months of its use. METHODS: In a multicenter case-control analysis of US adults (≥18 years) hospitalized March 11-December 15, 2021, we estimated VE against susceptibility to COVID-19 hospitalization (VEs), comparing odds of prior vaccination with a single dose Ad26.COV2.S vaccine between hospitalized cases with COVID-19 and controls without COVID-19. Among hospitalized patients with COVID-19, we estimated VE against disease progression (VEp) to death or invasive mechanical ventilation (IMV), comparing odds of prior vaccination between patients with and without progression. RESULTS: After excluding patients receiving mRNA vaccines, among 3,979 COVID-19 case-patients (5% vaccinated with Ad26.COV2.S) and 2.229 controls (13% vaccinated with Ad26.COV2.S), VEs of Ad26.COV2.S against COVID-19 hospitalization was 70% (95% CI: 63%-75%) overall, including 55% (29%-72%) among immunocompromised patients, and 72% (64%-77%) among immunocompetent patients, for whom VEs was similar at 14-90 days (73% [59%-82%]), 91-180 days (71% [60%-80%]), and 181-274 days (70% [54%-81%]) post-vaccination. Among hospitalized COVID-19 case-patients, VEp was 46% (18%-65%) among immunocompetent patients. CONCLUSIONS: The Ad26.COV2.S COVID-19 vaccine reduced the risk of COVID-19 hospitalization by 72% among immunocompetent adults without waning through 6 months post-vaccination. After hospitalization for COVID-19, vaccinated immunocompetent patients were less likely to require IMV or die compared to unvaccinated immunocompetent patients. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure