Last data update: Jan 27, 2025. (Total: 48650 publications since 2009)
Records 1-16 (of 16 Records) |
Query Trace: Wimer BM[original query] |
---|
Testing the shock protection performance of Type I construction helmets using impactors of different masses
Wu JZ , Pan CS , Ronaghi M , Wimer BM . Biomed Mater Eng 2024 BACKGROUND: Wearing protective helmets is an important prevention strategy to reduce work-related traumatic brain injuries. The existing standardized testing systems are used for quality control and do not provide a quantitative measure of the helmet performance. OBJECTIVE: To analyze the failure characterizations of Type I industrial helmets and develop a generalized approach to quantify the shock absorption performance of Type I industrial helmets based on the existing standardized setups. METHODS: A representative basic Type I construction helmet model was selected for the study. Top impact tests were performed on the helmets at different drop heights using two different impactor masses (3.6 and 5.0 kg). RESULTS: When the helmets were impacted with potential impact energies smaller than the critical potential impact energy values, there was a consistent relationship between the peak impact force and the potential impact energy. When the helmets were impacted under potential impact energies greater than the critical potential impact energy values, the peak impact forces increased steeply with increasing potential impact energy. CONCLUSION: A concept of safety margin for construction helmets based on potential impact energy was introduced to quantify the helmets' shock absorption performance. The proposed method will help helmet manufacturers improve their product quality. |
A finite element analysis of the effects of anchorage reaction forces and moments on structural stability of mast climbing work platforms
Wu JZ , Pan CS , Wimer BM , Warren CM , Villeneuve F , Dong RG . J Multiscale Modell null [Epub ahead of print] Mast climbing work platforms (MCWPs) have been increasingly used for construction projects, whereas their safety remains an important issue. As the mast in the Mast climbing work platform (MCWP) system is "slender" structurally, its anchorages must play an important role in maintaining its stability. Therefore, the anchorages and their attachments to a construction structure are likely among the most critical components for the MCWPs. This study developed finite element models of a representative MCWP and applied them to analyze the characteristics of the reaction forces at the anchorages when the work platform operates at different heights and under different loading conditions and to simulate the mast structure responses to the failure of one of the three anchorages. The results of this study indicate that the anchorage reaction forces are sensitive to the loading and operational conditions of the MCWP. The responses of the anchorage reaction forces may reflect the stability status or risk potential of the mast structure of the MCWP to collapse. The characteristics of the anchorage forces identified in this study can be used to help develop a structural safety monitoring system, to minimize the risk of catastrophic failures of MCWPs. The knowledge obtained in the study would help improve MCWP safety management at construction sites and help MCWP manufacturers to improve anchorage design and installation procedures to reduce the risk of the mast structure's instability or collapse. |
Evaluation of the fall protection of Type I industrial helmets
Wu JZ , Pan CS , Cobb C , Moorehead A , Kau TY , Wimer BM . Ann Biomed Eng 2022 50 (11) 1565-1578 The performance of Type I industrial helmets for fall protection is not required to be tested in standardized tests. The current study analyzed the fall protection performance of Type I industrial helmets and evaluated if the use of a chin strap and the suspension system tightness have any effect on protection performance. Head impact tests were performed using an instrumented manikin. There were 12 combinations of test conditions: with or without chin strap usage, three levels of suspension system tightness, and two impact surfaces. Four representative helmet models (two basic and two advanced models) were selected for the study. Impact tests without a helmet under all other applicable test conditions were used as a control group. There were four replicates for each test condition-a total of 192 impact tests with helmets and eight impact tests for the control group. The peak acceleration and the calculated head impact criteria (HIC) were used to evaluate shock absorption performance of the helmets. The results showed that all four helmet models demonstrated excellent performance for fall protection compared to the barehead control group. The fall protection performance of the advanced helmet models was substantially better than the basic helmet models. However, the effects of the use of chin straps and suspension system tightness on the helmets' fall protection performance were statistically not significant. |
Application of polyethylene air-bubble cushions to improve the shock absorption performance of Type I construction helmets for repeated impacts
Wu JZ , Pan CS , Ronaghi M , Wimer BM , Reischl U . Biomed Mater Eng 2020 32 (1) 1-14 BACKGROUND: The use of helmets was considered to be one of the important prevention strategies employed on construction sites. The shock absorption performance of a construction (or industrial) helmet is its most important performance parameter. Industrial helmets will experience cumulative structural damage when being impacted repeatedly with impact magnitudes greater than its endurance limit. OBJECTIVE: The current study is to test if the shock absorption performance of Type I construction helmets subjected to repeated impacts can be improved by applying polyethylene air-bubble cushions to the helmet suspension system. METHODS: Drop impact tests were performed using a commercial drop tower test machine following the ANSI Z89.1 Type I drop impact protocol. Typical off-the-shelf Type I construction helmets were evaluated in the study. A 5 mm thick air-bubble cushioning liner was placed between the headform and the helmet to be tested. Helmets were impacted ten times at different drop heights from 0.61 to 1.73 m. The effects of the air-bubble cushioning liner on the helmets' shock absorption performance were evaluated by comparing the peak transmitted forces collected from the original off-the-shelf helmet samples to the helmets equipped with air-bubble cushioning liners. RESULTS: Our results showed that a typical Type I construction helmet can be subjected to repeated impacts with a magnitude less than 22 J (corresponding to a drop height 0.61 m) without compromising its shock absorption performance. In comparison, the same construction helmet, when equipped with an air-bubble cushioning liner, can be subjected to repeated impacts of a magnitude of 54 J (corresponding to a drop height 1.52 m) without compromising its shock absorption performance. CONCLUSIONS: The results indicate that the helmet's shock absorbing endurance limit has been increased by 145% with addition of an air-bubble cushioning liner. |
An approach to characterize the impact absorption performance of construction helmets in top impact
Pan CS , Wimer BM , Welcome DE , Wu JZ . J Test Eval 2020 49 (3) The helmets used by construction site workers are mainly designed for head protection when objects are dropped from heights. Construction helmets are also casually called hard hats in industries. Common construction helmets are mostly categorized as type 1 according to different standards. All type 1 helmets have to pass type 1 standard impact tests, which are top impact tests--the helmet is fixed and is impacted by a free falling impactor on the top crown of the helmet shell. The purpose of this study was to develop an approach that can determine the performance characterization of a helmet. A total of 31 drop impact tests using a representative type 1 helmet model were performed at drop heights from 0.30 to 2.23 m, which were estimated to result in impact speeds from 2.4 to 6.6 m/s. Based on our results, we identified a critical drop height that was used to evaluate the performance of helmets. The peak impact forces and peak accelerations varied nonproportionally with the drop height. When the drop height is less than the critical height, the peak force and peak acceleration increase gradually and slowly with increasing drop height. When the drop height is greater than the critical height, the peak force and peak acceleration increase steeply with even a slight increase in drop height. Based on the critical drop height, we proposed an approach to determine the safety margin of a helmet. The proposed approach would make it possible to determine the performance characteristics of a helmet and to estimate the safety margin afforded by the helmet, if the helmet first passes the existing standardized tests. The proposed test approach would provide supplementary information for consumers to make knowledgeable decisions when selecting construction helmets. |
Application of air-bubble cushioning to improve the shock absorption performance of type I industrial helmets
Wu JZ , Pan CS , Ronaghi M , Wimer BM , Reischl U . Eng Fail Anal 2020 117 104921 The industrial helmet is the most used and effective personal protective equipment to reduce work-related traumatic brain injuries. The Type I industrial helmet is a basic helmet model that is commonly used in construction sites and manufacturers. The purpose of the current study was to investigate if shock absorption performance of these helmets could be improved by using an air-bubble cushioning liner to augment the helmet's suspension system. Drop impact tests were performed using a commercial drop tower test machine according to the ANSI Z89.1 Type I drop impact protocol. Typical off-the-shelf Type I industrial helmets were utilized in the study. The effects of the air-bubble cushioning on the helmets' shock absorption performance were evaluated by comparing the original off-the-shelf helmet samples to the helmets equipped with an air-bubble cushioning liner. The air-bubble cushioning liner (thickness 5 mm) was placed between the headform and the helmet when being tested. The impactor had a mass of 3.6 kg and was free-dropped from different heights. The maximal peak transmitted forces for each of the tests have been evaluated and compared. Our results show that the shock absorption effectiveness of the air-bubble cushioning is dependent on the magnitude of the impact force. At lower drop heights (h < 1.63 m), the air-bubble cushioning liner has little effect on the transmitted impact forces, however, at higher drop heights (h>/= 1.73 m) the air-bubble cushioning liner effectively reduced the peak transmitted forces. At a drop height of 1.93 m (the highest drop height tested), the air-bubble cushioning liner reduced the peak transmitted force by over 80%. Our results indicate that adding an air-bubble cushioning liner into a basic Type I industrial helmet will substantially increase shock absorption performance for large impact forces. |
Evaluation of the shock absorption performance of construction helmets under repeated top impacts
Wu JZ , Pan CS , Wimer BM . Eng Fail Anal 2019 96 330-339 It is accepted in industries that an industrial helmet should be disposed of when it is subjected to a significant impact. There is no scientific evidence that supports this well-accepted belief. The current study was intended to evaluate the shock absorption performance of industrial helmets under repeated impacts. Common industrial or construction helmets are categorized as Type I according to ANSI Z89.1 and they are designed to mainly protect top impacts. A representative basic Type I construction helmet model was selected in the study. Helmets were repeatedly impacted ten times using a commercial drop tower tester with an impactor (mass 3.6?kg) at different drop heights from 0.30 to 2.03?m. A total of 80 impact trials were performed in the study. The relationships of the transmitted force with the drop height and with impact number were analyzed. A new parameter - the endurance limit - was proposed to evaluate the shock absorption performance of a helmet. The helmets were observed to experience cumulative structural damage with increasing impact number, resulting in a degrading shock absorption performance, when being impacted repeatedly with magnitudes greater than the endurance limit. Repeated impacts with magnitudes smaller than the endurance limit did not cause measurable cumulative structural damage to the helmets in our study. |
Evaluation of postural sway and impact forces during ingress and egress of scissor lifts at elevations
Pan CS , Chiou SS , Kau T , Wimer BM , Ning X , Keane P . Appl Ergon 2017 65 152-162 Workers are at risk when entering (ingress) or exiting (egress) elevated scissor lifts. In this study, we recorded ground impact forces and postural sway from 22 construction workers while they performed ingress and egress between a scissor lift and an adjacent work surface with varying conditions: lift opening designs, horizontal and vertical gaps, and sloped work surfaces. We observed higher peak ground shear forces when using a bar-and-chain opening, with larger horizontal gap, with the lift surface more than 0.2 m below the work surface, and presence of a sloped (26) work surface. Similar trends were observed for postural sway, except that the influence of vertical distance was not significant. To reduce slip/trip/fall risk and postural sway of workers while ingress or egress of an elevated scissor lift, we suggest scissor lifts be equipped with a gate-type opening instead of a bar-and-chain design. We also suggest the lift surface be placed no more than 0.2 m lower than the work surface and the horizontal gap between lift and work surfaces be as small as possible. Selecting a non-sloped surface to ingress or egress a scissor lift is also preferred to reduce risk. |
An improved finite element modeling of the cerebrospinal fluid layer in the head impact analysis
Wu JZ , Pan CS , Wimer BM , Rosen CL . Biomed Mater Eng 2017 28 (2) 187-199 The finite element (FE) method has been widely used to investigate the mechanism of traumatic brain injuries (TBIs), because it is technically difficult to quantify the responses of the brain tissues to the impact in experiments. One of technical challenges to build a FE model of a human head is the modeling of the cerebrospinal fluid (CSF) of the brain. In the current study, we propose to use membrane elements to construct the CSF layer. Using the proposed approach, we demonstrate that a head model can be built by using existing meshes available in commercial databases, without using any advanced meshing software tool, and with the sole use of native functions of the FE package Abaqus. The calculated time histories of the intracranial pressures at frontal, posterior fossa, parietal, and occipital positions agree well with the experimental data and the simulations in the literature, indicating that the physical effects of the CSF layer have been accounted for in the proposed modeling approach. The proposed modeling approach would be useful for bioengineers to solve practical problems. |
Finite element simulations of the head-brain responses to the top impacts of a construction helmet: Effects of the neck and body mass
Wu JZ , Pan CS , Wimer BM , Rosen CL . Proc Inst Mech Eng H 2017 231 (1) 58-68 Traumatic brain injuries are among the most common severely disabling injuries in the United States. Construction helmets are considered essential personal protective equipment for reducing traumatic brain injury risks at work sites. In this study, we proposed a practical finite element modeling approach that would be suitable for engineers to optimize construction helmet design. The finite element model includes all essential anatomical structures of a human head (i.e. skin, scalp, skull, cerebrospinal fluid, brain, medulla, spinal cord, cervical vertebrae, and discs) and all major engineering components of a construction helmet (i.e. shell and suspension system). The head finite element model has been calibrated using the experimental data in the literature. It is technically difficult to precisely account for the effects of the neck and body mass on the dynamic responses, because the finite element model does not include the entire human body. An approximation approach has been developed to account for the effects of the neck and body mass on the dynamic responses of the head-brain. Using the proposed model, we have calculated the responses of the head-brain during a top impact when wearing a construction helmet. The proposed modeling approach would provide a tool to improve the helmet design on a biomechanical basis. |
Automated pressure map segmentation for quantifying phalangeal kinetics during cylindrical gripping
Sinsel EW , Gloekler DS , Wimer BM , Warren CM , Wu JZ , Buczek FL . Med Eng Phys 2015 38 (2) 72-9 Inverse dynamics models used to investigate musculoskeletal disorders associated with handle gripping require accurate phalangeal kinetics. Cylindrical handles wrapped with pressure film grids have been used in studies of gripping kinetics. We present a method fusing six degree-of-freedom hand kinematics and a kinematic calibration of a cylinder-wrapped pressure film. Phalanges are modeled as conic frusta and projected onto the pressure grid, automatically segmenting the pressure map into regions of interest (ROIs). To demonstrate the method, segmented pressure maps are presented from two subjects with substantially different hand length and body mass, gripping cylinders 50 and 70 mm in diameter. For each ROI, surface-normal force vectors were summed to create a reaction force vector and center of pressure location. Phalangeal force magnitudes for a data sample were similar to that reported in previous studies. To evaluate our method, a surrogate was designed for each handle such that when modeled as a phalanx it would generate a ROI around the cells under its supports; the classification F-score was above 0.95 for both handles. Both the human subject results and the surrogate evaluation suggest that the approach can be used to automatically segment the pressure map for quantifying phalangeal kinetics of the fingers during cylindrical gripping. |
Assessment of fall-arrest systems for scissor lift operators: computer modeling and manikin drop testing
Pan CS , Powers JR , Hartsell JJ , Harris JR , Wimer BM , Dong RG , Wu JZ . Hum Factors 2012 54 (3) 358-72 OBJECTIVE: The current study is intended to evaluate the stability of a scissor lift and the performance of various fall-arrest harnesses/lanyards during drop/fall-arrest conditions and to quantify the dynamic loading to the head/ neck caused by fall-arrest forces. BACKGROUND: No data exist that establish the efficacy of fall-arrest systems for use on scissor lifts or the injury potential from the fall incidents using a fall-arrest system. METHOD: The authors developed a multibody dynamic model of the scissor lift and a human lift operator model using ADAMS and LifeMOD Biomechanics Human Modeler. They evaluated lift stability for four fall-arrest system products and quantified biomechanical impacts on operators during drop/fall arrest, using manikin drop tests. Test conditions were constrained to flat surfaces to isolate the effect of manikin-lanyard interaction. RESULTS: The fully extended scissor lift maintained structural and dynamic stability for all manikin drop test conditions. The maximum arrest forces from the harnesses/lanyards were all within the limits of ANSI Z359.1. The dynamic loading in the lower neck during the fall impact reached a level that is typically observed in automobile crash tests, indicating a potential injury risk for vulnerable participants. CONCLUSION: Fall-arrest systems may function as an effective mechanism for fall injury protection for operators of scissor lifts. However, operators may be subjected to significant biomechanical loadings on the lower neck during fall impact. APPLICATION: Results suggest that scissor lifts retain stability under test conditions approximating human falls from predefined distances but injury could occur to vulnerable body structures. |
Effects of handle size and shape on measured grip strength
McDowell TW , Wimer BM , Welcome DE , Warren C , Dong RG . Int J Ind Ergon 2012 42 (2) 199-205 The Jamar handle dynamometer is the most commonly used instrument for measuring grip strength. However, the grip strength applied on a cylindrical handle may not exhibit the same handle size relationship as that observed with the Jamar handle. Direct comparison studies are required to clearly identify the major differences between the two dynamometer styles. This study utilized a recent grip dynamometer design along with the Jamar dynamometer to further examine these relationships. The objective of this study was to compare how changes in grip size affects grip strength measured with each dynamometer style. Results confirm that handle size significantly affects the applied grip strength measured with both types of grip dynamometer. The handle size effect is more pronounced with the Jamar handle, especially at the small handle diameter/span. The highest grip force components observed with the cylindrical handles were found at the fingertips. The Jamar grip dynamometer may not adequately reflect the fingertip forces at the low and middle spans because the fingertips are not applied in the force measurement plane of the Jamar handle. Therefore, the Jamar dynamometer may not adequately capture changes in the fingertip forces under different grip spans. Relevance to Industry: It is important to properly characterize grip strength used in occupational settings in order to optimize tool and machine handle designs. The Jamar dynamometer may not be appropriate for assessing cylindrical or near-cylindrical handles that are found on the majority of tools and machines. The grip strength measured with the cylindrical dynamometer used in this study can be used to help optimize handle designs. |
Inverse dynamic analysis of the biomechanics of the thumb while pipetting: a case study
Wu JZ , Sinsel EW , Gloekler DS , Wimer BM , Zhao KD , An KN , Buczek FL . Med Eng Phys 2011 34 (6) 693-701 Thumb-push manual pipettes are commonly used tools in many medical, biological, and chemical laboratories. Epidemiological studies indicate that the use of thumb-push mechanical pipettes is associated with musculoskeletal disorders in the hand. The goal of the current study was to evaluate the kinematics and joint loading of the thumb during pipetting. The time-histories of joint angles and the interface contact force between the thumb and plunger during the pipetting action were determined experimentally, and the joint loadings and joint power in the thumb were calculated via an inverse dynamic approach. The moment, power, and energy absorption in each joint of the thumb during the extraction and dispensing actions were analyzed. The results indicate that the majority of the power is generated in the interphalangeal (IP) and carpometacarpal (CMC) joints for the pipetting action. The analysis method and results in the current study will be helpful in exploring the mechanism for musculoskeletal injuries of the hand associated with pipetting, providing a preliminary foundation for ergonomic design of the pipette. |
An analysis of contact stiffness between a finger and an object when wearing an air-cushioned glove: the effects of the air pressure
Wu JZ , Wimer BM , Welcome DE , Dong RG . Med Eng Phys 2011 34 (3) 386-93 Air-cushioned gloves have the advantages of lighter weight, lower cost, and unique mechanical performance, compared to gloves made of conventional engineering materials. The goal of this study is to analyze the contact interaction between fingers and object when wearing an air-cushioned glove. The contact interactions between the the fingertip and air bubbles, which is considered as a cell of a typical air-cushioned glove, has been analyzed theoretically. Two-dimensional finite element models were developed for the analysis. The fingertip model was assumed to be composed of skin layers, subcutaneous tissue, bone, and nail. The air bubbles were modeled as air sealed in the container of nonelastic membrane. We simulated two common scenarios: a fingertip in contact with one single air bubble and with two air cushion bubbles simultaneously. Our simulation results indicated that the internal air pressure can modulate the fingertip-object contact characteristics. The contact stiffness reaches a minimum when the initial air pressure is equal to 1.3 and 1.05 times of the atmosphere pressure for the single air bubble and the double air bubble contact, respectively. Furthermore, the simulation results indicate that the double air bubble contact will result in smaller volumetric tissue strain than the single air bubble contact for the same force. |
Kinematic performance of a six degree-of-freedom hand model (6DHand) for use in occupational biomechanics
Buczek FL , Sinsel EW , Gloekler DS , Wimer BM , Warren CM , Wu JZ . J Biomech 2011 44 (9) 1805-9 Upper extremity musculoskeletal disorders represent an important health issue across all industry sectors; as such, the need exists to develop models of the hand that provide comprehensive biomechanics during occupational tasks. Previous optical motion capture studies used a single marker on the dorsal aspect of finger joints, allowing calculation of one and two degree-of-freedom (DOF) joint angles; additional algorithms were needed to define joint centers and the palmar surface of fingers. We developed a 6DOF model (6DHand) to obtain unconstrained kinematics of finger segments, modeled as frusta of right circular cones that approximate the palmar surface. To evaluate kinematic performance, twenty subjects gripped a cylindrical handle as a surrogate for a powered hand tool. We hypothesized that accessory motions (metacarpophalangeal pronation/supination; proximal and distal interphalangeal radial/ulnar deviation and pronation/supination; all joint translations) would be small (less than 5 degrees rotations, less than 2mm translations) if segment anatomical reference frames were aligned correctly, and skin movement artifacts were negligible. For the gripping task, 93 of 112 accessory motions were small by our definition, suggesting this 6DOF approach appropriately models joints of the fingers. Metacarpophalangeal supination was larger than expected (approximately 10 degrees ), and may be adjusted through local reference frame optimization procedures previously developed for knee kinematics in gait analysis. Proximal translations at the metacarpophalangeal joints (approximately 10mm) were explained by skin movement across the metacarpals, but would not corrupt inverse dynamics calculated for the phalanges. We assessed performance in this study; a more rigorous validation would likely require medical imaging. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 27, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure