Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-13 (of 13 Records) |
Query Trace: Williams-Newkirk AJ[original query] |
---|
Sequencing of Enteric Bacteria: Library Preparation Procedure Matters for Accurate Identification and Characterization.
Poates A , Truong J , Lindsey R , Griswold T , Williams-Newkirk AJ , Carleton H , Trees E . Foodborne Pathog Dis 2022 19 (8) 569-578 Enzymatic library preparation kits are increasingly used for bacterial whole genome sequencing. While they offer a rapid workflow, the transposases used in the kits are recognized to be somewhat biased. The aim of this study was to optimize and validate a protocol for the Illumina DNA Prep kit (formerly Nextera DNA Flex) for sequencing enteric pathogens and compare its performance against the Nextera XT kit. One hundred forty-three strains of Campylobacter, Escherichia, Listeria, Salmonella, Shigella, and Vibrio were prepared with both methods and sequenced on the Illumina MiSeq using 300 and/or 500 cycle chemistries. Sequences were compared using core genome multilocus sequence typing (cgMLST), 7-gene multilocus sequence typing (MLST), and detection of markers encoding serotype, virulence, and antimicrobial resistance. Sequences for one Escherichia strain were downsampled to determine the minimum coverage required for the analyses. While organism-specific differences were observed, the Prep libraries generated longer average read lengths and less fragmented assemblies compared to the XT libraries. In downstream analysis, the most notable difference between the kits was observed for Escherichia, particularly for the 300 cycle sequences. The O group was not predicted in 32% and 4% of XT sequences when using blast and kmer algorithms, respectively, while the O group was predicted from all Prep sequences regardless of the algorithm. In addition, the ehxA gene was not detected in 6% of XT sequences and 34% were missing one or more of the type III secretion systems and/or plasmid-associated genes, which were detected in the Prep sequences. The coverage downsampling revealed that acceptable assembly quality and allele detection was achieved at 30 × coverage with the Prep libraries, whereas 40-50 × coverage was required for the XT libraries. The better performance of the Prep libraries was attributed to more even coverage, particularly in genome regions low in GC content. |
ROCker Models for Reliable Detection and Typing of Short-Read Sequences Carrying β-Lactamase Genes.
Zhang SY , Suttner B , Rodriguez RLm , Orellana LH , Conrad RE , Liu F , Rowell JL , Webb HE , Williams-Newkirk AJ , Huang A , Konstantinidis KT . mSystems 2022 7 (3) e0128121 Identification of genes encoding β-lactamases (BLs) from short-read sequences remains challenging due to the high frequency of shared amino acid functional domains and motifs in proteins encoded by BL genes and related non-BL gene sequences. Divergent BL homologs can be frequently missed during similarity searches, which has important practical consequences for monitoring antibiotic resistance. To address this limitation, we built ROCker models that targeted broad classes (e.g., class A, B, C, and D) and individual families (e.g., TEM) of BLs and challenged them with mock 150-bp- and 250-bp-read data sets of known composition. ROCker identifies most-discriminant bit score thresholds in sliding windows along the sequence of the target protein sequence and hence can account for nondiscriminative domains shared by unrelated proteins. BL ROCker models showed a 0% false-positive rate (FPR), a 0% to 4% false-negative rate (FNR), and an up-to-50-fold-higher F1 score [2 × precision × recall/(precision + recall)] compared to alternative methods, such as similarity searches using BLASTx with various e-value thresholds and BL hidden Markov models, or tools like DeepARG, ShortBRED, and AMRFinder. The ROCker models and the underlying protein sequence reference data sets and phylogenetic trees for read placement are freely available through http://enve-omics.ce.gatech.edu/data/rocker-bla. Application of these BL ROCker models to metagenomics, metatranscriptomics, and high-throughput PCR gene amplicon data should facilitate the reliable detection and quantification of BL variants encoded by environmental or clinical isolates and microbiomes and more accurate assessment of the associated public health risk, compared to the current practice. IMPORTANCE Resistance genes encoding β-lactamases (BLs) confer resistance to the widely prescribed antibiotic class β-lactams. Therefore, it is important to assess the prevalence of BL genes in clinical or environmental samples for monitoring the spreading of these genes into pathogens and estimating public health risk. However, detecting BLs in short-read sequence data is technically challenging. Our ROCker model-based bioinformatics approach showcases the reliable detection and typing of BLs in complex data sets and thus contributes toward solving an important problem in antibiotic resistance surveillance. The ROCker models developed substantially expand the toolbox for monitoring antibiotic resistance in clinical or environmental settings. |
Comparison of four enzymatic library preparation kits for sequencing Shiga toxin-producing Escherichia coli for surveillance and outbreak detection.
Truong J , Poates A , Joung YJ , Sabol A , Griswold T , Williams-Newkirk AJ , Lindsey R , Trees E . J Microbiol Methods 2021 190 106329 Four enzymatic DNA library preparation kits were compared for sequencing Shiga toxin-producing E. coli. All kits produced high quality sequence data which performed equally well in the downstream analyses for surveillance and outbreak detection. Important differences were noted in the workflow user-friendliness and per sample cost. |
Detection of Rickettsia Species, and Coxiella-Like and Francisella-Like Endosymbionts in Amblyomma americanum and Amblyomma maculatum from a Shared Field Site in Georgia, United States of America.
Hensley JR , Zambrano ML , Williams-Newkirk AJ , Dasch GA . Vector Borne Zoonotic Dis 2021 21 (7) 509-516 Two abundant species of aggressive ticks commonly feed on humans in Georgia: the Gulf Coast tick (Amblyomma maculatum) and the Lone Star tick (A. americanum). A. maculatum is the primary host of Rickettsia parkeri, "Candidatus Rickettsia andeanae," and a Francisella-like endosymbiont (AmacFLE), whereas A. americanum is the primary host for R. amblyommatis, Ehrlichia chaffeensis, E. ewingii, and a Coxiella-like endosymbiont (AamCLE). Horizontal transmission of R. parkeri from A. maculatum to A. americanum by co-feeding has been described, and R. amblyommatis has been found infrequently in A. maculatum ticks. We assessed the prevalence of these agents and whether exchange of tick-associated bacteria is common between A. maculatum and A. americanum collected from the same field site. Unengorged ticks were collected May-August 2014 in west-central Georgia from a 4.14 acre site by flagging and from humans and canines traversing that site. All DNA samples were screened with quantitative PCR assays for the bacteria found in both ticks, and the species of any Rickettsia detected was identified by species-specific TaqMan assays or sequencing of the rickettsial ompA gene. Only R. amblyommatis (15) and AamCLE (39) were detected in 40 A. americanum, while the 74 A. maculatum only contained R. parkeri (30), "Candidatus Rickettsia andeanae" (3), and AmacFLE (74). Neither tick species had either Ehrlichia species. Consequently, we obtained no evidence for the frequent exchange of these tick-borne agents in a natural setting despite high levels of carriage of each agent and the common observance of infestation of both ticks on both dogs and humans at this site. Based on these data, exchange of these Rickettsia, Coxiella, and Francisella agents between A. maculatum and A. americanum appears to be an infrequent event. |
Novel PCR exclusion assay to detect spotted fever group rickettsiae in the lone star tick (Amblyomma americanum).
Lydy SL , Williams-Newkirk AJ , Dugan EJ , Hensley JR , Dasch GA . Ticks Tick Borne Dis 2020 11 (4) 101453 The lone star tick (Amblyomma americanum) is the most common and abundant human-biting tick in the southeastern United States where spotted fever rickettsioses frequently occur. However, the role of this tick in transmitting and maintaining pathogenic and non-pathogenic spotted fever group rickettsiae (SFGR) remains poorly defined. This is partially due to the high prevalence and abundance of Rickettsia amblyommatis in most populations of A. americanum. Many molecular assays commonly employed to detect rickettsiae use PCR primers that target highly conserved regions in the SFGR so low abundance rickettsia may not be detected when R. amblyommatis is present. It is costly and inefficient to test for low abundance rickettsial agents with multiple individual specific assays even when they are multiplexed, as most samples will be negative. Real time PCR assays may also be hampered by inadequate limits of detection (LODs) for low abundance agents. We exploited the absence of an otherwise relatively SFGR-conserved genome region in R. amblyommatis to design a hemi-nested PCR-assay which has a sensitivity of 10 copies in detecting the presence of most SFGR, but not R. amblyommatis in DNA of infected lone star ticks. This deletion is conserved in 21 isolates of R. amblyommatis obtained from multiple states. We demonstrated the assay's utility by detecting a pathogenic SFGR, Rickettsia parkeri, in 15/50 (30 %) of field collected A. americanum ticks that were previously screened with conventional assays and found to be positive for R. amblyommatis. These co-infected ticks included 1 questing female, 6 questing nymphs, and 8 attached males. The high prevalence of R. parkeri among host-attached ticks may be due to several variables and does not necessarily reflect the risk of disease transmission from attached ticks to vertebrate hosts. This novel assay can provide accurate estimates of the prevalence of less common SFGR in A. americanum and thus improve our understanding of the role of this tick in the maintenance and transmission of the SFGR commonly responsible for human rickettsioses. |
Detection of Rickettsia asembonensis in Fleas (Siphonaptera: Pulicidae, Ceratophyllidae) Collected in Five Counties in Georgia, United States.
Eremeeva ME , Capps D , McBride CL , Williams-Newkirk AJ , Dasch GA , Salzer JS , Beati L , Durden LA . J Med Entomol 2020 57 (4) 1246-1253 We conducted a molecular survey of Rickettsia in fleas collected from opossums, road-killed and live-trapped in peridomestic and rural settings, state parks, and from pet cats and dogs in Georgia, United States during 1992-2014. The cat flea, Ctenocephalides felis (Bouche) was the predominant species collected from cats and among the archival specimens from opossums found in peridomestic settings. Polygenis gwyni (Fox) was more prevalent on opossums and a single cotton rat trapped in sylvatic settings. Trapped animals were infested infrequently with the squirrel flea, Orchopeas howardi (Baker) and C. felis. TaqMan assays targeting the BioB gene of Rickettsia felis and the OmpB gene of Rickettsia typhi were used to test 291 flea DNAs for Rickettsia. A subset of 53 C. felis collected from a cat in 2011 was tested in 18 pools which were all bioB TaqMan positive (34% minimum infection prevalence). Of 238 fleas tested individually, 140 (58.8%, 95% confidence interval [CI]: 52.5-64.9%) DNAs were bioB positive. Detection of bioB was more prevalent in individual C. felis (91%) compared to P. gwyni (13.4%). Twenty-one (7.2%) were ompB TaqMan positive, including 18 C. felis (9.5%) and 3 P. gwyni (3.2%). Most of these fleas were also positive with bioB TaqMan; however, sequencing of gltA amplicons detected only DNA of Rickettsia asembonensis. Furthermore, only the R. asembonensis genotype was identified based on NlaIV restriction analysis of a larger ompB fragment. These findings contribute to understanding the diversity of Rickettsia associated with fleas in Georgia and emphasize the need for development of more specific molecular tools for detection and field research on rickettsial pathogens. |
Metagenomic Approaches for Public Health Surveillance of Foodborne Infections: Opportunities and Challenges.
Carleton HA , Besser J , Williams-Newkirk AJ , Huang A , Trees E , Gerner-Smidt P . Foodborne Pathog Dis 2019 16 (7) 474-479 Foodborne disease surveillance in the United States is at a critical point. Clinical and diagnostic laboratories are using culture-independent diagnostic tests (CIDTs) to identify the pathogen causing foodborne illness from patient specimens. CIDTs are molecular tests that allow doctors to rapidly identify the bacteria causing illness within hours. CIDTs, unlike previous gold standard methods such as bacterial culture, do not produce an isolate that can be subtyped as part of the national molecular subtyping network for foodborne disease surveillance, PulseNet. Without subtype information, cases can no longer be linked using molecular data to identify potentially related cases that are part of an outbreak. In this review, we discuss the public health needs for a molecular subtyping approach directly from patient specimen and highlight different approaches, including amplicon and shotgun metagenomic sequencing. |
Seroprevalence and risk factors for infection with Bartonella bacilliformis in Loja province, Ecuador
Lydy SL , Lascano MS , Garcia-Perez JE , Williams-Newkirk AJ , Grijalva MJ . Emerg Microbes Infect 2018 7 (1) 115 The seroprevalence and epidemiology of Bartonella bacilliformis infection in the Andean highlands of Ecuador is largely unknown. We conducted a sero-epidemiologic survey of 319 healthy children aged 1-15 years living in six rural, mountain communities in Loja Province, Ecuador. Blood was collected by finger stick onto filter paper and dried, and the eluted sera analyzed for antibodies to B. bacilliformis by rPap31 ELISA. Demographic, entomologic, and household variables were assessed to investigate associated risk factors for antibody seropositivity to B. bacilliformis. Seroprevalence of 28% was found among children in the study communities. Increased risk of seropositivity was associated with the presence of lumber piles near houses. Decreased risk of seropositivity was observed with the presence of animal waste and incremental 100 meter increases in elevation. Although investigation of clinical cases of Carrion's disease was not within the scope of this study, our serology data suggest that infection of children with B. bacilliformis is prevalent in this region of Ecuador and is largely unrecognized and undiagnosed. This study highlights the need to further investigate the prevalence, pathogenesis, epidemiology, and disease impact of this pathogen in Ecuador. |
A Comparative Analysis of the Lyve-SET Phylogenomics Pipeline for Genomic Epidemiology of Foodborne Pathogens.
Katz LS , Griswold T , Williams-Newkirk AJ , Wagner D , Petkau A , Sieffert C , Van Domselaar G , Deng X , Carleton HA . Front Microbiol 2017 8 375 Modern epidemiology of foodborne bacterial pathogens in industrialized countries relies increasingly on whole genome sequencing (WGS) techniques. As opposed to profiling techniques such as pulsed-field gel electrophoresis, WGS requires a variety of computational methods. Since 2013, United States agencies responsible for food safety including the CDC, FDA, and USDA, have been performing whole-genome sequencing (WGS) on all Listeria monocytogenes found in clinical, food, and environmental samples. Each year, more genomes of other foodborne pathogens such as Escherichia coli, Campylobacter jejuni, and Salmonella enterica are being sequenced. Comparing thousands of genomes across an entire species requires a fast method with coarse resolution; however, capturing the fine details of highly related isolates requires a computationally heavy and sophisticated algorithm. Most L. monocytogenes investigations employing WGS depend on being able to identify an outbreak clade whose inter-genomic distances are less than an empirically determined threshold. When the difference between a few single nucleotide polymorphisms (SNPs) can help distinguish between genomes that are likely outbreak-associated and those that are less likely to be associated, we require a fine-resolution method. To achieve this level of resolution, we have developed Lyve-SET, a high-quality SNP pipeline. We evaluated Lyve-SET by retrospectively investigating 12 outbreak data sets along with four other SNP pipelines that have been used in outbreak investigation or similar scenarios. To compare these pipelines, several distance and phylogeny-based comparison methods were applied, which collectively showed that multiple pipelines were able to identify most outbreak clusters and strains. Currently in the US PulseNet system, whole genome multi-locus sequence typing (wgMLST) is the preferred primary method for foodborne WGS cluster detection and outbreak investigation due to its ability to name standardized genomic profiles, its central database, and its ability to be run in a graphical user interface. However, creating a functional wgMLST scheme requires extended up-front development and subject-matter expertise. When a scheme does not exist or when the highest resolution is needed, SNP analysis is used. Using three Listeria outbreak data sets, we demonstrated the concordance between Lyve-SET SNP typing and wgMLST. Availability: Lyve-SET can be found at https://github.com/lskatz/Lyve-SET. |
Impact of anthropogenic disturbance on native and invasive trypanosomes of rodents in forested Uganda
Salzer JS , Pinto CM , Grippi DC , Williams-Newkirk AJ , Peterhans JK , Rwego IB , Carroll DS , Gillespie TR . Ecohealth 2016 13 (4) 698-707 Habitat disturbance and anthropogenic change are globally associated with extinctions and invasive species introductions. Less understood is the impact of environmental change on the parasites harbored by endangered, extinct, and introduced species. To improve our understanding of the impacts of anthropogenic disturbance on such host-parasite interactions, we investigated an invasive trypanosome (Trypanosoma lewisi). We screened 348 individual small mammals, representing 26 species, from both forested and non-forested habitats in rural Uganda. Using microscopy and PCR, we identified 18% of individuals (order Rodentia) as positive for trypanosomes. Further phylogenetic analyses revealed two trypanosomes circulating-T. lewisi and T. varani. T. lewisi was found in seven species both native and invasive, while T. varani was identified in only three native forest species. The lack of T. varani in non-forested habitats suggests that it is a natural parasite of forest-dwelling rodents. Our findings suggest that anthropogenic disturbance may lead to spillover of an invasive parasite (T. lewisi) from non-native to native species, and lead to local co-extinction of a native parasite (T. varani) and native forest-dwelling hosts. |
The mitochondrial genome of the lone star tick (Amblyomma americanum).
Williams-Newkirk AJ , Burroughs M , Changayil SS , Dasch GA . Ticks Tick Borne Dis 2015 6 (6) 793-801 Amblyomma americanum is an abundant tick in the southeastern, midwestern, and northeastern United States. It is a vector of multiple diseases, but limited genomic resources are available for it. We sequenced the complete mitochondrial genome of a single female A. americanum collected in Georgia using the Illumina platform. The consensus sequence was 14,709bp long, and the mean coverage across the assembly was >12,000x. All expected tick genomic features were present, including two "Tick-Box" motifs, and in the expected order for the Metastriata. Heteroplasmy rates were low compared to the most closely related tick for which data are available, Amblyomma cajennense. The phylogeny derived from the concatenated protein coding and rRNA genes from the 33 available tick mitochondrial genomes was consistent with those previously proposed for the Acari. This is the first complete mitochondrial sequence for A. americanum, which provides a useful reference for future studies of A. americanum population genetics and tick phylogeny. |
Characterization of the bacterial communities of life stages of free living lone star ticks (Amblyomma americanum)
Williams-Newkirk AJ , Rowe LA , Mixson-Hayden TR , Dasch GA . PLoS One 2014 9 (7) e102130 The lone star tick (Amblyomma americanum) is an abundant and aggressive biter of humans, domestic animals, and wildlife in the southeastern-central USA and an important vector of several known and suspected zoonotic bacterial pathogens. However, the biological drivers of bacterial community variation in this tick are still poorly defined. Knowing the community context in which tick-borne bacterial pathogens exist and evolve is required to fully understand the ecology and immunobiology of the ticks and to design effective public health and veterinary interventions. We performed a metagenomic survey of the bacterial communities of questing A. americanum and tested 131 individuals (66 nymphs, 24 males, and 41 females) from five sites in three states. Pyrosequencing was performed with barcoded eubacterial primers targeting variable 16S rRNA gene regions 5-3. The bacterial communities were dominated by Rickettsia (likely R. amblyommii) and an obligate Coxiella symbiont, together accounting for 6.7-100% of sequences per tick. DNAs from Midichloria, Borrelia, Wolbachia, Ehrlichia, Pseudomonas, or unidentified Bacillales, Enterobacteriaceae, or Rhizobiales groups were also detected frequently. Wolbachia and Midichloria significantly co-occurred in Georgia (p<0.00001), but not in other states. The significance of the Midichloria-Wolbachia co-occurrence is unknown. Among ticks collected in Georgia, nymphs differed from adults in both the composition (p = 0.002) and structure (p = 0.002) of their bacterial communities. Adults differed only in their community structure (p = 0.002) with males containing more Rickettsia and females containing more Coxiella. Comparisons among adult ticks collected in New York and North Carolina supported the findings from the Georgia collection despite differences in geography, collection date, and sample handling, implying that the differences detected are consistent attributes. The data also suggest that some members of the bacterial community change during the tick life cycle and that some sex-specific attributes may be detectable in nymphs. |
Presence, genetic variability, and potential significance of "Candidatus Midichloria mitochondrii" in the lone star tick Amblyomma americanum.
Williams-Newkirk AJ , Rowe LA , Mixson-Hayden TR , Dasch GA . Exp Appl Acarol 2012 58 (3) 291-300 We used next generation sequencing to detect the bacterium "Candidatus Midichloria mitochondrii" for the first time in lone star ticks (Amblyomma americanum) from the eastern United States. 177 individuals and 11 tick pools from seven sites in four states were tested by pyrosequencing with barcoded 16S rRNA gene eubacterial primers targeting variable regions 5-3. Average infection prevalence was 0.15 across all surveyed populations (range 0-0.29) and only the site with the smallest sample size (n = 5) was negative. Three genotypes differing by 2.6-4.1 % in a 271 bp region of 16S rRNA gene were identified. Two variants co-occurred in sites in North Carolina and New York, but were not observed in the same tick at those sites. The third genotype was found only in Georgia. Phylogenetic analysis of this fragment indicated that the three variants are more closely related to "Candidatus Midichloria mitochondrii" genotypes from other tick species than to each other. This variation suggests that multiple independent introductions occurred in A. americanum which may provide insight into bacterial spread within its ecosystem and parasitism on this tick. Whether the presence of this bacterium affects acquisition or maintenance of other pathogens and symbionts in A. americanum or the survival, biology and evolution of the tick itself is unknown. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure