Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-2 (of 2 Records) |
Query Trace: Wharton Adam[original query] |
---|
Detection and Genetic Characterization of Community-Based SARS-CoV-2 Infections - New York City, March 2020.
Greene SK , Keating P , Wahnich A , Weiss D , Pathela P , Harrison C , Rakeman J , Langley G , Tong S , Tao Y , Uehara A , Queen K , Paden CR , Szymczak W , Orner EP , Nori P , Lai PA , Jacobson JL , Singh HK , Calfee DP , Westblade LF , Vasovic LV , Rand JH , Liu D , Singh V , Burns J , Prasad N , Sell J , CDC COVID-19 Surge Laboratory Group , Abernathy Emily , Anderson Raydel , Bankamp Bettina , Bell Melissa , Galloway Renee , Graziano James , Kim Gimin , Kondas Ashley , Lee Christopher , Radford Kay , Rogers Shannon , Smith Peyton , Tiller Rebekah , Weiner Zachary , Wharton Adam , Whitaker Brett . MMWR Morb Mortal Wkly Rep 2020 69 (28) 918-922 To limit introduction of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), the United States restricted travel from China on February 2, 2020, and from Europe on March 13. To determine whether local transmission of SARS-CoV-2 could be detected, the New York City (NYC) Department of Health and Mental Hygiene (DOHMH) conducted deidentified sentinel surveillance at six NYC hospital emergency departments (EDs) during March 1-20. On March 8, while testing availability for SARS-CoV-2 was still limited, DOHMH announced sustained community transmission of SARS-CoV-2 (1). At this time, twenty-six NYC residents had confirmed COVID-19, and ED visits for influenza-like illness* increased, despite decreased influenza virus circulation.(†) The following week, on March 15, when only seven of the 56 (13%) patients with known exposure histories had exposure outside of NYC, the level of community SARS-CoV-2 transmission status was elevated from sustained community transmission to widespread community transmission (2). Through sentinel surveillance during March 1-20, DOHMH collected 544 specimens from patients with influenza-like symptoms (ILS)(§) who had negative test results for influenza and, in some instances, other respiratory pathogens.(¶) All 544 specimens were tested for SARS-CoV-2 at CDC; 36 (6.6%) tested positive. Using genetic sequencing, CDC determined that the sequences of most SARS-CoV-2-positive specimens resembled those circulating in Europe, suggesting probable introductions of SARS-CoV-2 from Europe, from other U.S. locations, and local introductions from within New York. These findings demonstrate that partnering with health care facilities and developing the systems needed for rapid implementation of sentinel surveillance, coupled with capacity for genetic sequencing before an outbreak, can help inform timely containment and mitigation strategies. |
Genetic Characterization of Mumps Viruses Associated with the Resurgence of Mumps in the United States: 2015-2017.
McNall RJ , Wharton AK , Anderson R , Clemmons N , Lopareva EN , Gonzalez C , Espinosa A , Probert WS , Hacker JK , Liu G , Garfin J , Strain A , Boxrud D , Bryant PW , George KS , Davis T , Griesser RH , Shult P , Bankamp B , Hickman CJ , Wroblewski K , Rota PA . Virus Res 2020 281 197935 Despite high coverage with measles, mumps, and rubella vaccine in the United States, outbreaks of mumps occur in close contact settings such as schools, colleges, and camps. Starting in late 2015, outbreaks were reported from several universities, and by the end of 2017, greater than 13,800 cases had been reported nation-wide. In 2013, the CDC and the Association of Public Health Laboratories contracted four Vaccine Preventable Diseases Reference Centers (VPD-RCs) to perform real-time reverse transcription PCR (RT-qPCR) to detect mumps RNA in clinical samples and to determine the genotype. Twelve genotypes of mumps virus are currently recognized by the World Health Organization, and the standard protocol for genotyping requires sequencing the entire gene coding for the small hydrophobic (SH) protein. Phylogenetic analysis of the 1862 mumps samples genotyped from 2015 through 2017 showed that the overall diversity of genotypes detected was low. Only 0.8% of the sequences were identified as genotypes C, H, J, or K, and 0.5% were identified as vaccine strains in genotypes A or N, while most sequences (98.7%) were genotype G. The majority of the genotype G sequences could be included into one of two large groups with identical SH sequences. Within genotype G, a small number of phylogenetically significant outlier sequences were associated with epidemiologically distinct chains of transmission. These results demonstrate that molecular and epidemiologic data can be used to track transmission pathways of mumps virus; however, the limited diversity of the SH sequences may be insufficient for resolving transmission in all outbreaks. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure