Last data update: Oct 07, 2024. (Total: 47845 publications since 2009)
Records 1-30 (of 41 Records) |
Query Trace: Westercamp M[original query] |
---|
Genotypic analysis of RTS,S/AS01<inf>E</inf> malaria vaccine efficacy against parasite infection as a function of dosage regimen and baseline malaria infection status in children aged 5-17 months in Ghana and Kenya: a longitudinal phase 2b randomised controlled trial
Juraska M , Early AM , Li L , Schaffner SF , Lievens M , Khorgade A , Simpkins B , Hejazi NS , Benkeser D , Wang Q , Mercer LD , Adjei S , Agbenyega T , Anderson S , Ansong D , Bii DK , Buabeng PBY , English S , Fitzgerald N , Grimsby J , Kariuki SK , Otieno K , Roman F , Samuels AM , Westercamp N , Ockenhouse CF , Ofori-Anyinam O , Lee CK , MacInnis BL , Wirth DF , Gilbert PB , Neafsey DE . The Lancet Infectious Diseases 2024 24(9) 1025-1036 Background: The first licensed malaria vaccine, RTS,S/AS01<inf>E</inf>, confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. Method(s): Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5-17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01<inf>E</inf> regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. Finding(s): We observed significant and similar vaccine efficacy (25-43%; 95% CI union 9-53) against first new infection for all four RTS,S/AS01<inf>E</inf> regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01<inf>E</inf> regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1.1-1.6 infections (95% CI union 0.6-2.1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50-80) than in those who were uninfected (37%; 23-48) at the first vaccination (p=0.0053). Interpretation(s): All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. Funding(s): GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research. Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license |
The Uganda housing modification study - association between housing characteristics and malaria burden in a moderate to high transmission setting in Uganda
Nankabirwa JI , Gonahasa S , Katureebe A , Mutungi P , Nassali M , Kamya MR , Westercamp N . Malar J 2024 23 (1) 223 BACKGROUND: Scale up of proven malaria control interventions has not been sufficient to control malaria in Uganda, emphasizing the need to explore innovative new approaches. Improved housing is one such promising strategy. This paper describes housing characteristics and their association with malaria burden in a moderate to high transmission setting in Uganda. METHODS: Between October and November 2021, a household survey was conducted in 1500 randomly selected households in Jinja and Luuka districts. Information on demographics, housing characteristics, use of malaria prevention measures, and proxy indicators of wealth were collected for each household. A finger-prick blood sample was obtained for thick blood smears for malaria from all children aged 6 months to 14 years in the surveyed households. Febrile children had a malaria rapid diagnostics test (RDT) done; positive cases were managed according to national treatment guidelines. Haemoglobin was assessed in children aged < 5 years. Households were stratified as having modern houses (defined as having finished materials for roofs, walls, and floors and closed eaves) or traditional houses (those not meeting the definition of modern house). Associations between malaria burden and house type were estimated using mixed effects models and adjusted for age, wealth, and bed net use. RESULTS: Most (65.5%) of the households surveyed lived in traditional houses. Most of the houses had closed eaves (85.5%), however, the use of other protective features like window/vent screens and installed ceilings was limited (0.4% had screened windows, 2.8% had screened air vents, and 5.2% had ceiling). Overall, 3,443 children were included in the clinical survey, of which 31.4% had a positive smear. RDT test positivity rate was 56.6% among children with fever. Participants living in modern houses had a significantly lower parasite prevalence by microscopy (adjusted prevalence ratio [aPR = 0.80]; 95% confidence interval [CI] 0.71 - 0.90), RDT test positivity rate (aPR = 0.90, 95%CI 0.81 - 0.99), and anaemia (aPR = 0.80, 95%CI 0.65 - 0.97) compared to those in traditional houses. CONCLUSION: The study found that even after adjusting for wealth, higher quality housing had a moderate protective effect against malaria, on top of the protection already afforded by recently distributed nets. |
Genotypic analysis of RTS,S/AS01(E) malaria vaccine efficacy against parasite infection as a function of dosage regimen and baseline malaria infection status in children aged 5-17 months in Ghana and Kenya: a longitudinal phase 2b randomised controlled trial
Juraska M , Early AM , Li L , Schaffner SF , Lievens M , Khorgade A , Simpkins B , Hejazi NS , Benkeser D , Wang Q , Mercer LD , Adjei S , Agbenyega T , Anderson S , Ansong D , Bii DK , Buabeng PBY , English S , Fitzgerald N , Grimsby J , Kariuki SK , Otieno K , Roman F , Samuels AM , Westercamp N , Ockenhouse CF , Ofori-Anyinam O , Lee CK , MacInnis BL , Wirth DF , Gilbert PB , Neafsey DE . Lancet Infect Dis 2024 BACKGROUND: The first licensed malaria vaccine, RTS,S/AS01(E), confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. METHODS: Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5-17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01(E) regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. FINDINGS: We observed significant and similar vaccine efficacy (25-43%; 95% CI union 9-53) against first new infection for all four RTS,S/AS01(E) regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01(E) regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1·1-1·6 infections (95% CI union 0·6-2·1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50-80) than in those who were uninfected (37%; 23-48) at the first vaccination (p=0·0053). INTERPRETATION: All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. FUNDING: GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research. |
Feasibility, safety, and impact of the RTS,S/AS01(E) malaria vaccine when implemented through national immunisation programmes: evaluation of cluster-randomised introduction of the vaccine in Ghana, Kenya, and Malawi
Asante KP , Mathanga DP , Milligan P , Akech S , Oduro A , Mwapasa V , Moore KA , Kwambai TK , Hamel MJ , Gyan T , Westercamp N , Kapito-Tembo A , Njuguna P , Ansong D , Kariuki S , Mvalo T , Snell P , Schellenberg D , Welega P , Otieno L , Chimala A , Afari EA , Bejon P , Maleta K , Agbenyega T , Snow RW , Zulu M , Chinkhumba J , Samuels AM . Lancet 2024 403 (10437) 1660-1670 BACKGROUND: The RTS,S/AS01(E) malaria vaccine (RTS,S) was introduced by national immunisation programmes in Ghana, Kenya, and Malawi in 2019 in large-scale pilot schemes. We aimed to address questions about feasibility and impact, and to assess safety signals that had been observed in the phase 3 trial that included an excess of meningitis and cerebral malaria cases in RTS,S recipients, and the possibility of an excess of deaths among girls who received RTS,S than in controls, to inform decisions about wider use. METHODS: In this prospective evaluation, 158 geographical clusters (66 districts in Ghana; 46 sub-counties in Kenya; and 46 groups of immunisation clinic catchment areas in Malawi) were randomly assigned to early or delayed introduction of RTS,S, with three doses to be administered between the ages of 5 months and 9 months and a fourth dose at the age of approximately 2 years. Primary outcomes of the evaluation, planned over 4 years, were mortality from all causes except injury (impact), hospital admission with severe malaria (impact), hospital admission with meningitis or cerebral malaria (safety), deaths in girls compared with boys (safety), and vaccination coverage (feasibility). Mortality was monitored in children aged 1-59 months throughout the pilot areas. Surveillance for meningitis and severe malaria was established in eight sentinel hospitals in Ghana, six in Kenya, and four in Malawi. Vaccine uptake was measured in surveys of children aged 12-23 months about 18 months after vaccine introduction. We estimated that sufficient data would have accrued after 24 months to evaluate each of the safety signals and the impact on severe malaria in a pooled analysis of the data from the three countries. We estimated incidence rate ratios (IRRs) by comparing the ratio of the number of events in children age-eligible to have received at least one dose of the vaccine (for safety outcomes), or age-eligible to have received three doses (for impact outcomes), to that in non-eligible age groups in implementation areas with the equivalent ratio in comparison areas. To establish whether there was evidence of a difference between girls and boys in the vaccine's impact on mortality, the female-to-male mortality ratio in age groups eligible to receive the vaccine (relative to the ratio in non-eligible children) was compared between implementation and comparison areas. Preliminary findings contributed to WHO's recommendation in 2021 for widespread use of RTS,S in areas of moderate-to-high malaria transmission. FINDINGS: By April 30, 2021, 652 673 children had received at least one dose of RTS,S and 494 745 children had received three doses. Coverage of the first dose was 76% in Ghana, 79% in Kenya, and 73% in Malawi, and coverage of the third dose was 66% in Ghana, 62% in Kenya, and 62% in Malawi. 26 285 children aged 1-59 months were admitted to sentinel hospitals and 13 198 deaths were reported through mortality surveillance. Among children eligible to have received at least one dose of RTS,S, there was no evidence of an excess of meningitis or cerebral malaria cases in implementation areas compared with comparison areas (hospital admission with meningitis: IRR 0·63 [95% CI 0·22-1·79]; hospital admission with cerebral malaria: IRR 1·03 [95% CI 0·61-1·74]). The impact of RTS,S introduction on mortality was similar for girls and boys (relative mortality ratio 1·03 [95% CI 0·88-1·21]). Among children eligible for three vaccine doses, RTS,S introduction was associated with a 32% reduction (95% CI 5-51%) in hospital admission with severe malaria, and a 9% reduction (95% CI 0-18%) in all-cause mortality (excluding injury). INTERPRETATION: In the first 2 years of implementation of RTS,S, the three primary doses were effectively deployed through national immunisation programmes. There was no evidence of the safety signals that had been observed in the phase 3 trial, and introduction of the vaccine was associated with substantial reductions in hospital admission with severe malaria. Evaluation continues to assess the impact of four doses of RTS,S. FUNDING: Gavi, the Vaccine Alliance; the Global Fund to Fight AIDS, Tuberculosis and Malaria; and Unitaid. |
Could less be more? Accounting for fractional-dose regimens and different number of vaccine doses when measuring the impact of the RTS, S/AS01E malaria vaccine
Westercamp N , Osei-Tutu L , Schuerman L , Kariuki SK , Bollaerts A , Lee CK , Samuels AM , Ockenhouse C , Bii DK , Adjei S , Oneko M , Lievens M , Attobrah Sarfo MA , Atieno C , Bakari A , Sang T , Kotoh-Mortty MF , Otieno K , Roman F , Buabeng PBY , Ntiamoah Y , Ansong D , Agbenyega T , Ofori-Anyinam O . J Infect Dis 2024 BACKGROUND: The RTS, S/AS01E malaria vaccine (RTS, S) is recommended for children in moderate-to-high Plasmodium falciparum malaria transmission areas. This phase 2b trial (NCT03276962) evaluates RTS, S fractional- and full-dose regimens in Ghana and Kenya. METHODS: 1500 children aged 5-17 months were randomised (1:1:1:1:1) to receive RTS, S or rabies control vaccine. RTS, S groups received two full RTS, S doses at month (M)0/M1 followed by either full (groups R012-20, R012-14-26) or fractional (1/5) doses (groups Fx012-14-26, Fx017-20-32). RESULTS: At M32 post-first dose, vaccine efficacy (VE) against clinical malaria (all episodes) ranged from 38% (R012-20; 95%CI: 24-49) to 53% (R012-14-26; 95%CI: 42-62). Vaccine impact estimates (cumulative number of malaria cases averted/1000 children vaccinated) were 1344 (R012-20), 2450 (R012-14-26), 2273 (Fx012-14-26), 2112 (Fx017-20-32). To account for differences in vaccine volume (fractional- versus full-dose), in a post-hoc analysis, we also estimated cases averted/1000 RTS, S full-dose equivalents: 336 (R012-20), 490 (R012-14-26), 874 (Fx012-14-26), 880 (Fx017-20-32). CONCLUSIONS: VE against clinical malaria was similar in all RTS, S groups. Vaccine impact accounting for full-dose equivalence suggests that using fractional-dose regimens could be a viable dose-sparing strategy. If borne out through trial end (M50), these observations underscore the means to reduce cost per regimen with a goal of maximising impact and optimising supply. |
Mass relapse prevention to reduce transmission of plasmodium vivax-a systematic review
Shah MP , Westercamp N , Lindblade KA , Hwang J . Am J Trop Med Hyg 2023 Several temperate countries have used mass chemoprevention interventions with medicines of the 8-aminoquinoline class that prevent relapses from Plasmodium vivax before peak transmission to reduce transmission of malaria. The WHO commissioned a systematic review of the literature and evidence synthesis to inform development of recommendations regarding this intervention referred to as "mass relapse prevention" (MRP). Electronic databases were searched, 866 articles screened, and 25 assessed for eligibility after a full-text review. Two nonrandomized studies were included, one from the Democratic People's Republic of Korea (391,357 participants) and the second from the Azerbaijan Soviet Socialist Republic (∼30,000 participants). The two studies administered a single round of primaquine over 14 days (0.25 mg/kg per day). From 1 to 3 months after the treatment round, the incidence of P. vivax infections was significantly lower in areas that received MRP than those that did not (pooled rate ratio [RR] 0.08, 95% CI 0.07-0.08). At 4 to 12 months after the treatment round, the prevalence of P. vivax infection was significantly lower in MRP villages than non-MRP villages (odds ratio 0.12, 95% CI 0.03-0.52). No severe adverse events were found. The certainty of evidence for all outcomes was very low and no conclusions as to the effectiveness or safety of MRP could be drawn. However, it is not likely that this intervention will be needed in the future as most temperate countries where P. vivax is transmitted are nearing or have already eliminated malaria. |
Substantial Diversity in Cocirculating Omicron Lineages in Hospital Setting, Porto Alegre, Brazil
Andreis TF , Cantarelli VV , da Silva MB , Helfer MS , Brust FR , Zavascki AP , GAIHN-HAI Team , Westercamp M , Tashayev V , Donadel M , Magleby R , Petersen E , Mahon G . Emerg Infect Dis 2023 29 (12) 2583-2586 We describe substantial variant diversity among 23 detected SARS-CoV-2 Omicron lineage viruses cocirculating among healthcare workers and inpatients (272 sequenced samples) from Porto Alegre, Brazil, during November 2022-January 2023. BQ.1 and related lineages (61.4%) were most common, followed by BE.9 (19.1%), first described in November 2022 in the Amazon region. |
Bloodstream infections in neonates with central venous catheters in three tertiary neonatal intensive care units in Pune, India
Kartikeswar GAP , Parikh TB , Randive B , Kinikar A , Rajput UC , Valvi C , Vaidya U , Malwade S , Agarkhedkar S , Kadam A , Smith RM , Westercamp M , Schumacher C , Mave V , Robinson ML , Gupta A , Milstone AM , Manabe YC , Johnson J . J Neonatal Perinatal Med 2023 16 (3) 507-516 BACKGROUND: Neonates admitted to the neonatal intensive care unit (NICU) are at risk for healthcare-associated infections, including central line-associated bloodstream infections. We aimed to characterize the epidemiology of bloodstream infections among neonates with central venous catheters admitted to three Indian NICUs. METHODS: We conducted a prospective cohort study in three tertiary NICUs, from May 1, 2017 until July 31, 2019. All neonates admitted to the NICU were enrolled and followed until discharge, transfer, or death. Cases were defined as positive blood cultures in neonates with a central venous catheter in place for greater than 2 days or within 2 days of catheter removal. RESULTS: During the study period, 140 bloodstream infections were identified in 131 neonates with a central venous catheter. The bloodstream infection rate was 11.9 per 1000 central line-days. Gram-negative organisms predominated, with 38.6% of cases caused by Klebsiella spp. and 14.9% by Acinetobacter spp. Antimicrobial resistance was prevalent among Gram-negative isolates, with 86.9% resistant to third- or fourth-generation cephalosporins, 63.1% to aminoglycosides, 61.9% to fluoroquinolones, and 42.0% to carbapenems. Mortality and length of stay were greater in neonates with bloodstream infection than in neonates without bloodstream infection (unadjusted analysis, p < 0.001). CONCLUSIONS: We report a high bloodstream infection rate among neonates with central venous catheters admitted to three tertiary care NICUs in India. Action to improve infection prevention and control practices in the NICU is needed to reduce the morbidity and mortality associated with BSI in this high-risk population. |
House modifications as a malaria control tool: how does local context shape participants' experience and interpretation in Uganda
Kayendeke M , Nabirye C , Nayiga S , Westercamp N , Gonahasa S , Katureebe A , Kamya MR , Staedke SG , Hutchinson E . Malar J 2023 22 (1) 244 BACKGROUND: Evidence that house design can provide protection from malaria is growing. Housing modifications such as screening windows, doors, and ceilings, and attaching insecticide-impregnated materials to the eaves (the gap between the top of the wall and bottom of the roof), can protect against malaria. To be effective at scale, however, these modifications must be adopted by household residents. There is evidence that housing modifications can be acceptable, but in-depth knowledge on the experiences and interpretation of modifications is lacking. This qualitative study was carried out to provide a holistic account of the relationship between experiences and interpretations of four types of piloted housing modifications and the local context in Jinja, Uganda. METHODS: Qualitative research was conducted between January to June 2021, before and during the installation of four types of housing modifications. The methods included nine weeks of participant observations in two study villages, nine focus group discussions with primary caregivers and heads of households (11-12 participants each), and nine key informant interviews with stakeholders and study team members. RESULTS: Most residents supported the modifications. Experiences and interpretation of the housing modifications were shaped by the different types of housing in the area and the processes through which residents finished their houses, local forms of land and property ownership, and cultural and spiritual beliefs about houses. CONCLUSIONS: To maximize the uptake and benefit of housing modifications against malaria, programme development needs to take local context into account. Forms of local land and house ownership, preferences, the social significance of housing types, and religious and spiritual ideas shape the responses to housing modifications in Jinja. These factors may be important in other setting. Trial registration Trial registration number is NCT04622241. The first draft was posted on November 9th 2020. |
Epidemiology and preventability of hospital-onset bacteremia and fungemia in 2 hospitals in India
Gandra S , Singh SK , Chakravarthy M , Moni M , Dhekane P , Mohamed Z , Shameen F , Vasudevan AK , Senthil P , Saravanan T , George A , Sinclair D , Stwalley D , van Rheenen J , Westercamp M , Smith RM , Leekha S , Warren DK . Infect Control Hosp Epidemiol 2023 1-10 OBJECTIVE: Studies evaluating the incidence, source, and preventability of hospital-onset bacteremia and fungemia (HOB), defined as any positive blood culture obtained after 3 calendar days of hospital admission, are lacking in low- and middle-income countries (LMICs). DESIGN, SETTING, AND PARTICIPANTS: All consecutive blood cultures performed for 6 months during 2020-2021 in 2 hospitals in India were reviewed to assess HOB and National Healthcare Safety Network (NHSN) reportable central-line-associated bloodstream infection (CLABSI) events. Medical records of a convenience sample of 300 consecutive HOB events were retrospectively reviewed to determine source and preventability. Univariate and multivariable logistic regression analyses were performed to identify factors associated with HOB preventability. RESULTS: Among 6,733 blood cultures obtained from 3,558 hospitalized patients, there were 409 and 59 unique HOB and NHSN-reportable CLABSI events, respectively. CLABSIs accounted for 59 (14%) of 409 HOB events. There was a moderate but non-significant correlation (r = 0.51; P = .070) between HOB and CLABSI rates. Among 300 reviewed HOB cases, CLABSIs were identified as source in only 38 (13%). Although 157 (52%) of all 300 HOB cases were potentially preventable, CLABSIs accounted for only 22 (14%) of these 157 preventable HOB events. In multivariable analysis, neutropenia, and sepsis as an indication for blood culture were associated with decreased odds of HOB preventability, whereas hospital stay ≥7 days and presence of a urinary catheter were associated with increased likelihood of preventability. CONCLUSIONS: HOB may have utility as a healthcare-associated infection metric in LMIC settings because it captures preventable bloodstream infections beyond NHSN-reportable CLABSIs. |
Enhanced Contact Investigations for Nine Early Travel-Related Cases of SARS-CoV-2 in the United States (preprint)
Burke RM , Balter S , Barnes E , Barry V , Bartlett K , Beer KD , Benowitz I , Biggs HM , Bruce H , Bryant-Genevier J , Cates J , Chatham-Stephens K , Chea N , Chiou H , Christiansen D , Chu VT , Clark S , Cody SH , Cohen M , Conners EE , Dasari V , Dawson P , DeSalvo T , Donahue M , Dratch A , Duca L , Duchin J , Dyal JW , Feldstein LR , Fenstersheib M , Fischer M , Fisher R , Foo C , Freeman-Ponder B , Fry AM , Gant J , Gautom R , Ghinai I , Gounder P , Grigg CT , Gunzenhauser J , Hall AJ , Han GS , Haupt T , Holshue M , Hunter J , Ibrahim MB , Jacobs MW , Jarashow MC , Joshi K , Kamali T , Kawakami V , Kim M , Kirking HL , Kita-Yarbro A , Klos R , Kobayashi M , Kocharian A , Lang M , Layden J , Leidman E , Lindquist S , Lindstrom S , Link-Gelles R , Marlow M , Mattison CP , McClung N , McPherson TD , Mello L , Midgley CM , Novosad S , Patel MT , Pettrone K , Pillai SK , Pray IW , Reese HE , Rhodes H , Robinson S , Rolfes M , Routh J , Rubin R , Rudman SL , Russell D , Scott S , Shetty V , Smith-Jeffcoat SE , Soda EA , Spitters C , Stierman B , Sunenshine R , Terashita D , Traub E , Vahey GM , Verani JR , Wallace M , Westercamp M , Wortham J , Xie A , Yousaf A , Zahn M . medRxiv 2020 2020.04.27.20081901 Background Coronavirus disease 2019 (COVID-19), the respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. As part of initial response activities in the United States, enhanced contact investigations were conducted to enable early identification and isolation of additional cases and to learn more about risk factors for transmission.Methods Close contacts of nine early travel-related cases in the United States were identified. Close contacts meeting criteria for active monitoring were followed, and selected individuals were targeted for collection of additional exposure details and respiratory samples. Respiratory samples were tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction (RT-PCR) at the Centers for Disease Control and Prevention.Results There were 404 close contacts who underwent active monitoring in the response jurisdictions; 338 had at least basic exposure data, of whom 159 had ≥1 set of respiratory samples collected and tested. Across all known close contacts under monitoring, two additional cases were identified; both secondary cases were in spouses of travel-associated case patients. The secondary attack rate among household members, all of whom had ≥1 respiratory sample tested, was 13% (95% CI: 4 – 38%).Conclusions The enhanced contact tracing investigations undertaken around nine early travel-related cases of COVID-19 in the United States identified two cases of secondary transmission, both spouses. Rapid detection and isolation of the travel-associated case patients, enabled by public awareness of COVID-19 among travelers from China, may have mitigated transmission risk among close contacts of these cases.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNo external funding was sought or received.Author DeclarationsAll relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.YesAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData may be available upon reasonable request. |
Effectiveness of whole virus COVID-19 vaccine at protecting health care personnel against SARS-CoV-2 infections in Lima, Peru (preprint)
Arriola CS , Soto G , Westercamp M , Bollinger S , Espinoza A , Grogl M , Llanos-Cuentas A , Matos E , Romero C , Silva M , Smith R , Olson N , Prouty M , Azziz-Baumgartner E , Lessa FC . medRxiv 2022 18 In February 2021, Peru launched a vaccination campaign among healthcare personnel using BBIBP-CorV inactivated whole virus (BBIBP-CorV) COVID-19 vaccine. Two doses of BBIBP-CorV vaccine are recommended, 21 days apart. Data on BBIBP-CorV vaccine effectiveness will inform the use and acceptance of vaccination with BBIBP-CorV vaccine. We evaluated BBIBP-CorV vaccine effectiveness among an existing multi-year influenza cohort at two hospitals in Lima. We analyzed data on 290 participants followed between February and May 2021. Participants completed a baseline questionnaire and provided weekly self-collected anterior nasal swabs tested for SARS-CoV-2 by rRT-PCR for sixteen weeks. We performed multivariable logistic regression models adjusting for pre-selected characteristics (age, sex, exposure to COVID-19 patients, work in intensive care unit or emergency department, BMI, and exposure time in days). BBIBP-CorV vaccine effectiveness was calculated after the two-week post-vaccination period as (1-Odds Ratio for testing SARS-CoV-2 positive)x100%. SARS-CoV-2 was detected by rRT-PCR among 25 (9%) participants during follow-up (February-May 2021). Follow-up period ranged 1-11 weeks (median: 2 weeks). Among cohort participants who were fully vaccinated the adjusted vaccine effectiveness against SARS-CoV-2 infection was estimated as 95% (95% CI: 70%, 99%) and 100% (95% CI: 88%, 100%) for those partially vaccinated. During the study period, vaccination of healthcare personnel with BBIBP-CorV vaccine was effective at reducing SARS-CoV-2 infections in the weeks immediately following vaccination. This information can be used to support vaccination efforts in the region, especially among those who could be concerned about their effectiveness. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. |
Maternal colonization versus nosocomial transmission as the source of drug-resistant bloodstream infection in an Indian neonatal intensive care unit: A prospective cohort study
Robinson ML , Johnson J , Naik S , Patil S , Kulkarni R , Kinikar A , Dohe V , Mudshingkar S , Kagal A , Smith RM , Westercamp M , Randive B , Kadam A , Babiker A , Kulkarni V , Karyakarte R , Mave V , Gupta A , Milstone AM , Manabe YC . Clin Infect Dis 2023 77 S38-s45 BACKGROUND: Drug-resistant gram-negative (GN) pathogens are a common cause of neonatal sepsis in low- and middle-income countries. Identifying GN transmission patterns is vital to inform preventive efforts. METHODS: We conducted a prospective cohort study, 12 October 2018 to 31 October 2019 to describe the association of maternal and environmental GN colonization with bloodstream infection (BSI) among neonates admitted to a neonatal intensive care unit (NICU) in Western India. We assessed rectal and vaginal colonization in pregnant women presenting for delivery and colonization in neonates and the environment using culture-based methods. We also collected data on BSI for all NICU patients, including neonates born to unenrolled mothers. Organism identification, antibiotic susceptibility testing, and next-generation sequencing (NGS) were performed to compare BSI and related colonization isolates. RESULTS: Among 952 enrolled women who delivered, 257 neonates required NICU admission, and 24 (9.3%) developed BSI. Among mothers of neonates with GN BSI (n = 21), 10 (47.7%) had rectal, 5 (23.8%) had vaginal, and 10 (47.7%) had no colonization with resistant GN organisms. No maternal isolates matched the species and resistance pattern of associated neonatal BSI isolates. Thirty GN BSI were observed among neonates born to unenrolled mothers. Among 37 of 51 BSI with available NGS data, 21 (57%) showed a single nucleotide polymorphism distance of ≤5 to another BSI isolate. CONCLUSIONS: Prospective assessment of maternal GN colonization did not demonstrate linkage to neonatal BSI. Organism-relatedness among neonates with BSI suggests nosocomial spread, highlighting the importance of NICU infection prevention and control practices to reduce GN BSI. |
Changes in personal protective equipment usage among healthcare personnel from the beginning of pandemic to intra-COVID-19 pandemic in Thailand
Mahasing C , Kittikraisak W , Mott JA , Yoocharoen P , Piyaraj P , Tanathitikorn C , Punjasamanvong S , Wongrapee T , Suttha P , Rattanathumsakul T , Davis WW , Westercamp M , Chottanapund S . Ann Work Expo Health 2023 67 (5) 637-649 OBJECTIVES: Personal protective equipment (PPE) use is associated with reduced risk of SARS-CoV-2 infection among healthcare personnel (HCP). There are limited data on the impact of the novel coronavirus disease 2019 (COVID-19) pandemic on the PPE use of HCP. We describe the changes in PPE use from just before the widespread of community outbreaks ('pre-pandemic') to intra-pandemic time points, and examine factors associated with not changing in PPE use behavior among HCP in four Thai hospitals. METHODS: We performed a retrospective cohort evaluation using two-time points: (i) February-March 2020 (pre-pandemic period); and (ii) January-March 2021 (intra-pandemic period). Self-reported frequency of appropriate PPE use was measured by a Likert scale. We used multivariable logistic regression to identify factors associated with no increase in self-reported PPE use. RESULTS: Of 343 HCP, the proportion of participants reporting 'always' using PPE rose from 66% during the pre-pandemic period to 80% during the pandemic. Factors associated with HCP who did not increase in PPE use included having high baseline reported PPE, being a non-registered HCP (e.g. nurse assistants, dental assistants, porters), being male, and having a low perceived risk of becoming infected with any respiratory virus while working in the hospital. CONCLUSION: PPE education, training, and risk communication content should target all cadres of HCP, regardless of registered/non-registered status, with a focus on behavior change for improved prevention and control of SARS-CoV-2 and other respiratory viruses in healthcare settings. |
Effectiveness of whole-virus COVID-19 vaccine among healthcare personnel, Lima, Peru
Arriola CS , Soto G , Westercamp M , Bollinger S , Espinoza A , Grogl M , Llanos-Cuentas A , Matos E , Romero C , Silva M , Smith R , Olson N , Prouty M , Azziz-Baumgartner E , Lessa FC . Emerg Infect Dis 2022 28 (13) S238-s243 In February 2021, Peru launched a COVID-19 vaccination campaign among healthcare personnel using an inactivated whole-virus vaccine. The manufacturer recommended 2 vaccine doses 21 days apart. We evaluated vaccine effectiveness among an existing multiyear influenza vaccine cohort at 2 hospitals in Lima. We analyzed data on 290 participants followed during February-May 2021. Participants completed a baseline questionnaire and provided weekly self-collected nasal swab samples; samples were tested by real-time reverse transcription PCR. Median participant follow-up was 2 (range 1-11) weeks. We performed multivariable logistic regression and adjusted for preselected characteristics. During the study, 25 (9%) participants tested SARS-CoV-2-positive. We estimated adjusted vaccine effectiveness at 95% (95% CI 70%-99%) among fully vaccinated participants and 100% (95% CI 88%-100%) among partially vaccinated participants. These data can inform the use and acceptance of inactivated whole-virus vaccine and support vaccination efforts in the region. |
Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for the treatment of uncomplicated plasmodium falciparum malaria among children in Western Kenya, 2016 to 2017
Westercamp N , Owidhi M , Otieno K , Chebore W , Buff AM , Desai M , Kariuki S , Samuels AM . Antimicrob Agents Chemother 2022 66 (9) e0020722 Antimalarial resistance threatens global malaria control efforts. The World Health Organization (WHO) recommends routine antimalarial efficacy monitoring through a standardized therapeutic efficacy study (TES) protocol. From June 2016 to March 2017, children with uncomplicated P. falciparum mono-infection in Siaya County, Kenya were enrolled into a standardized TES and randomized (1:1 ratio) to a 3-day course of artemether-lumefantrine (AL) or dihydroartemisinin-piperaquine (DP). Efficacy outcomes were measured at 28 and 42 days. A total of 340 children were enrolled. All but one child cleared parasites by day 3. PCR-corrected adequate clinical and parasitological response (ACPR) was 88.5% (95% CI: 80.9 to 93.3%) at day 28 for AL and 93.0% (95% CI: 86.9 to 96.4%) at day 42 for DP. There were 9.6 times (95% CI: 3.4 to 27.2) more reinfections in the AL arm compared to the DP arm at day 28, and 3.1 times (95% CI: 1.9 to 4.9) more reinfections at day 42. Both AL and DP were efficacious (per WHO 90% cutoff in the confidence interval) and well tolerated for the treatment of uncomplicated malaria in western Kenya, but AL efficacy appears to be waning. Further efficacy monitoring for AL, including pharmacokinetic studies, is recommended. |
Efficacy of RTS,S/AS01(E) malaria vaccine administered according to different full, fractional, and delayed third or early fourth dose regimens in children aged 5-17 months in Ghana and Kenya: an open-label, phase 2b, randomised controlled trial
Samuels AM , Ansong D , Kariuki SK , Adjei S , Bollaerts A , Ockenhouse C , Westercamp N , Lee CK , Schuerman L , Bii DK , Osei-Tutu L , Oneko M , Lievens M , Attobrah Sarfo MA , Atieno C , Morelle D , Bakari A , Sang T , Jongert E , Kotoh-Mortty MF , Otieno K , Roman F , Buabeng PBY , Ntiamoah Y , Ofori-Anyinam O , Agbenyega T . Lancet Infect Dis 2022 22 (9) 1329-1342 BACKGROUND: Controlled infection studies in malaria-naive adults suggest increased vaccine efficacy for fractional-dose versus full-dose regimens of RTS,S/AS01. We report first results of an ongoing trial assessing different fractional-dose regimens in children, in natural exposure settings. METHODS: This open-label, phase 2b, randomised controlled trial is conducted at the Malaria Research Center, Agogo, Ashanti Region (Ghana), and the Kenya Medical Research Institute and the US Centers for Disease Control and Prevention site in Siaya County (Kenya). We enrolled children aged 5-17 months without serious acute or chronic illness who had previously received three doses of diphtheria, tetanus, pertussis, and hepatitis B vaccine and at least three doses of oral polio vaccine. Children were randomly assigned (1:1:1:1:1) using a web-based randomisation system with a minimisation procedure accounting for centre to receive rabies control vaccine (M012 schedule) or two full doses of RTS,S/AS01(E) at month 0 and month 1, followed by either full doses at months 2 and 20 (group R012-20 [standard regimen]), full doses at months 2, 14, 26, and 38 (R012-14), fractional doses at months 2, 14, 26, and 38 (Fx012-14), or fractional doses at months 7, 20, and 32 (Fx017-20). The fractional doses were administered as one fifth (0·1 mL) of the full RTS,S dose (0·5 mL) after reconstitution. All vaccines were administered by intramuscular injection in the left deltoid. The primary outcome was occurrence of clinical malaria cases from month 2·5 until month 14 for the Fx012-14 group versus the pooled R012-14 and R012-20 groups in the per-protocol set. We assessed incremental vaccine efficacy of the Fx012-14 group versus the pooled R012-14 and R012-20 group over 12 months after dose three. Safety was assessed in all children who received at least one vaccine dose. This trial is registered with ClinicalTrials.gov, NCT03276962. FINDINGS: Between Sept 28, 2017, and Sept 25, 2018, 2157 children were enrolled, of whom 1609 were randomly assigned to a treatment group (322 to each RTS,S/AS01(E) group and 321 to the rabies vaccine control group). 1500 children received at least one study vaccine dose and the per-protocol set comprised 1332 children. Over 12 months after dose three, the incremental vaccine efficacy in the Fx012-14 group versus the pooled R012-14 and R12-20 groups was -21% (95% CI -57 to 7; p=0·15). Up to month 21, serious adverse events occurred in 48 (16%) of 298 children in the R012-20 group, 45 (15%) of 294 in the R012-14 group, 47 (15%) of 304 in the Fx012-14 group, 62 (20%) of 311 in the Fx017-20 group, and 71 (24%) of 293 in the control group, with no safety signals observed. INTERPRETATION: The Fx012-14 regimen was not superior to the standard regimen over 12 months after dose three. All RTS,S/AS01(E) regimens provided substantial, similar protection against clinical malaria, suggesting potential flexibility in the recommended dosing regimen and schedule. This, and the effect of annual boosters, will be further evaluated through 50 months of follow-up. FUNDING: GlaxoSmithKline Biologicals; PATH's Malaria Vaccine Initiative. |
Plasmodium falciparum pfhrp2 and pfhrp3 gene deletions from persons with symptomatic malaria infection in Ethiopia, Kenya, Madagascar, and Rwanda
Rogier E , McCaffery JN , Nace D , Svigel SS , Assefa A , Hwang J , Kariuki S , Samuels AM , Westercamp N , Ratsimbasoa A , Randrianarivelojosia M , Uwimana A , Udhayakumar V , Halsey ES . Emerg Infect Dis 2022 28 (3) 608-616 Histidine-rich protein 2 (HRP2)-based rapid diagnostic tests detect Plasmodium falciparum malaria and are used throughout sub-Saharan Africa. However, deletions in the pfhrp2 and related pfhrp3 (pfhrp2/3) genes threaten use of these tests. Therapeutic efficacy studies (TESs) enroll persons with symptomatic P. falciparum infection. We screened TES samples collected during 2016-2018 in Ethiopia, Kenya, Rwanda, and Madagascar for HRP2/3, pan-Plasmodium lactate dehydrogenase, and pan-Plasmodium aldolase antigen levels and selected samples with low levels of HRP2/3 for pfhrp2/3 genotyping. We observed deletion of pfhrp3 in samples from all countries except Kenya. Single-gene deletions in pfhrp2 were observed in 1.4% (95% CI 0.2%-4.8%) of Ethiopia samples and in 0.6% (95% CI 0.2%-1.6%) of Madagascar samples, and dual pfhrp2/3 deletions were noted in 2.0% (95% CI 0.4%-5.9%) of Ethiopia samples. Although this study was not powered for precise prevalence estimates, evaluating TES samples revealed a low prevalence of pfhrp2/3 deletions in most sites. |
Anti-SARS-CoV-2 IgG antibody levels among Thai healthcare providers receiving homologous and heterologous COVID-19 vaccination regimens.
Kittikraisak W , Hunsawong T , Punjasamanvong S , Wongrapee T , Suttha P , Piyaraj P , Leepiyasakulchai C , Tanathitikorn C , Yoocharoen P , Jones AR , Mongkolsirichaikul D , Westercamp M , Azziz-Baumgartner E , Mott JA , Chottanapund S . Influenza Other Respir Viruses 2022 16 (4) 662-672 BACKGROUND: We examined SARS-CoV-2 anti-spike 1 IgG antibody levels following COVID-19 vaccination (AstraZeneca [AZ], Sinovac [SV], Pfizer-BioNTech [PZ]) among Thai healthcare providers. METHODS: Blood specimens were tested using enzyme-linked immunosorbent assay. We analyzed seven vaccination regimens: (1) one dose of AZ or SV, (2) two doses of homologous (2AZ, 2SV) or heterologous (1AZ+1PZ) vaccines, and (3) three doses of heterologous vaccines (2SV+1AZ, 2SV+1PZ). Differences in antibody levels were assessed using Kruskal-Wallis statistic, Mann-Whitney test, or Wilcoxon matched-pairs signed-rank test. Antibody kinetics were predicted using fractional polynomial regression. RESULTS: The 563 participants had median age of 39years; 92% were female; 74% reported no underlying medical condition. Antibody levels peaked at 22-23days in both 1AZ and 2SV vaccinees and dropped below assay's cutoff for positive (35.2 binding antibody units/ml [BAU/ml]) in 55days among 1AZ vaccinees compared with 117days among 2SV vaccinees. 1AZ+1PZ vaccination regimen was highly immunogenic (median 2279 BAU/ml) 1-4weeks post vaccination. 2SV+1PZ vaccinees had significantly higher antibody levels than 2SV+1AZ vaccinees 4weeks post vaccination (3423 vs. 2105 BAU/ml; p-value<0.01), and during weeks 5-8 (3656 vs. 1072 BAU/ml; p-value<0.01). Antibodies peaked at 12-15days in both 2SV+1PZ and 2SV+1AZ vaccinees, but those of 2SV+1AZ declined more rapidly and dropped below assay's cutoff in 228days while those of 2SV+1PZ remained detectable. CONCLUSIONS: 1AZ+1PZ, 2SV+1AZ, and 2SV+1PZ vaccinees had substantial IgG levels, suggesting that these individuals likely mounted sufficient anti-S1 IgG antibodies for possible protection against SARS-CoV-2 infection. |
Implementation of the comprehensive unit-based safety program to improve infection prevention and control practices in four neonatal intensive care units in Pune, India
Johnson J , Latif A , Randive B , Kadam A , Rajput U , Kinikar A , Malshe N , Lalwani S , Parikh TB , Vaidya U , Malwade S , Agarkhedkar S , Curless MS , Coffin SE , Smith RM , Westercamp M , Colantuoni E , Robinson ML , Mave V , Gupta A , Manabe YC , Milstone AM . Front Pediatr 2021 9 794637 Objective: To implement the Comprehensive Unit-based Safety Program (CUSP) in four neonatal intensive care units (NICUs) in Pune, India, to improve infection prevention and control (IPC) practices. Design: In this quasi-experimental study, we implemented CUSP in four NICUs in Pune, India, to improve IPC practices in three focus areas: hand hygiene, aseptic technique for invasive procedures, and medication and intravenous fluid preparation and administration. Sites received training in CUSP methodology, formed multidisciplinary teams, and selected interventions for each focus area. Process measures included fidelity to CUSP, hand hygiene compliance, and central line insertion checklist completion. Outcome measures included the rate of healthcare-associated bloodstream infection (HA-BSI), all-cause mortality, patient safety culture, and workload. Results: A total of 144 healthcare workers and administrators completed CUSP training. All sites conducted at least 75% of monthly meetings. Hand hygiene compliance odds increased 6% per month [odds ratio (OR) 1.06 (95% CI 1.03-1.10)]. Providers completed insertion checklists for 68% of neonates with a central line; 83% of checklists were fully completed. All-cause mortality and HA-BSI rate did not change significantly after CUSP implementation. Patient safety culture domains with greatest improvement were management support for patient safety (+7.6%), teamwork within units (+5.3%), and organizational learning-continuous improvement (+4.7%). Overall workload increased from a mean score of 46.28 ± 16.97 at baseline to 65.07 ± 19.05 at follow-up (p < 0.0001). Conclusion: CUSP implementation increased hand hygiene compliance, successful implementation of a central line insertion checklist, and improvements in safety culture in four Indian NICUs. This multimodal strategy is a promising framework for low- and middle-income country healthcare facilities to reduce HAI risk in neonates. |
Opening the 'black box' of collaborative improvement: a qualitative evaluation of a pilot intervention to improve quality of malaria surveillance data in public health centres in Uganda
Hutchinson E , Nayiga S , Nabirye C , Taaka L , Westercamp N , Rowe AK , Staedke SG . Malar J 2021 20 (1) 289 BACKGROUND: Demand for high-quality surveillance data for malaria, and other diseases, is greater than ever before. In Uganda, the primary source of malaria surveillance data is the Health Management Information System (HMIS). However, HMIS data may be incomplete, inaccurate or delayed. Collaborative improvement (CI) is a quality improvement intervention developed in high-income countries, which has been advocated for low-resource settings. In Kayunga, Uganda, a pilot study of CI was conducted in five public health centres, documenting a positive effect on the quality of HMIS and malaria surveillance data. A qualitative evaluation was conducted concurrently to investigate the mechanisms of effect and unintended consequences of the intervention, aiming to inform future implementation of CI. METHODS: The study intervention targeted health workers, including brief in-service training, plus CI with 'plan-do-study-act' (PDSA) cycles emphasizing self-reflection and group action, periodic learning sessions, and coaching from a CI mentor. Health workers collected data on standard HMIS out-patient registers. The qualitative evaluation (July 2015 to September 2016) included ethnographic observations at each health centre (over 12-14 weeks), in-depth interviews with health workers and stakeholders (n = 20), and focus group discussions with health workers (n = 6). RESULTS: The results suggest that the intervention did facilitate improvement in data quality, but through unexpected mechanisms. The CI intervention was implemented as planned, but the PDSA cycles were driven largely by the CI mentor, not the health workers. In this context, characterized by a rigid hierarchy within the health system of limited culture of self-reflection and inadequate training and supervision, CI became an effective form of high-quality training with frequent supervisory visits. Health workers appeared motivated to improve data collection habits by their loyalty to the CI mentor and the potential for economic benefits, rather than a desire for self-improvement. CONCLUSIONS: CI is a promising method of quality improvement and could have a positive impact on malaria surveillance data. However, successful scale-up of CI in similar settings may require deployment of highly skilled mentors. Further research, focusing on the effectiveness of 'real world' mentors using robust study designs, will be required to determine whether CI can be translated effectively and sustainably to low-resource settings. |
Effectiveness of in-service training plus the collaborative improvement strategy on the quality of routine malaria surveillance data: results of a pilot study in Kayunga District, Uganda
Westercamp N , Staedke SG , Maiteki-Sebuguzi C , Ndyabakira A , Okiring JM , Kigozi SP , Dorsey G , Broughton E , Hutchinson E , Massoud MR , Rowe AK . Malar J 2021 20 (1) 290 BACKGROUND: Surveillance data are essential for malaria control, but quality is often poor. The aim of the study was to evaluate the effectiveness of the novel combination of training plus an innovative quality improvement method-collaborative improvement (CI)-on the quality of malaria surveillance data in Uganda. METHODS: The intervention (training plus CI, or TCI), including brief in-service training and CI, was delivered in 5 health facilities (HFs) in Kayunga District from November 2015 to August 2016. HF teams monitored data quality, conducted plan-do-study-act cycles to test changes, attended periodic learning sessions, and received CI coaching. An independent evaluation was conducted to assess data completeness, accuracy, and timeliness. Using an interrupted time series design without a separate control group, data were abstracted from 156,707 outpatient department (OPD) records, laboratory registers, and aggregated monthly reports (MR) for 4 time periods: baseline-12 months, TCI scale-up-5 months; CI implementation-9 months; post-intervention-4 months. Monthly OPD register completeness was measured as the proportion of patient records with a malaria diagnosis with: (1) all data fields completed, and (2) all clinically-relevant fields completed. Accuracy was the relative difference between: (1) number of monthly malaria patients reported in OPD register versus MR, and (2) proportion of positive malaria tests reported in the laboratory register versus MR. Data were analysed with segmented linear regression modelling. RESULTS: Data completeness increased substantially following TCI. Compared to baseline, all-field completeness increased by 60.1%-points (95% confidence interval [CI]: 46.9-73.2%) at mid-point, and clinically-relevant completeness increased by 61.6%-points (95% CI: 56.6-66.7%). A relative - 57.4%-point (95% confidence interval: - 105.5, - 9.3%) change, indicating an improvement in accuracy of malaria test positivity reporting, but no effect on data accuracy for monthly malaria patients, were observed. Cost per additional malaria patient, for whom complete clinically-relevant data were recorded in the OPD register, was $3.53 (95% confidence interval: $3.03, $4.15). CONCLUSIONS: TCI improved malaria surveillance completeness considerably, with limited impact on accuracy. Although these results are promising, the intervention's effectiveness should be evaluated in more HFs, with longer follow-up, ideally in a randomized trial, before recommending CI for wide-scale use. |
Standardizing clinical culture specimen collection in Ethiopia: a training-of-trainers
Kue J , Bersani A , Stevenson K , Yimer G , Wang SH , Gebreyes W , Hazim C , Westercamp M , Omondi M , Amare B , Alebachew G , Abubeker R , Fentaw S , Tigabu E , Kirley D , Vanderende D , Bancroft E , Gallagher KM , Kanter T , Balada-Llasat JM . BMC Med Educ 2021 21 (1) 195 BACKGROUND: Proper specimen collection is central to improving patient care by ensuring optimal yield of diagnostic tests, guiding appropriate management, and targeting treatment. The purpose of this article is to describe the development and implementation of a training-of-trainers educational program designed to improve clinical culture specimen collection among healthcare personnel (HCP) in Ethiopia. METHODS: A Clinical Specimen Collection training package was created consisting of a Trainer's Manual, Reference Manual, Assessment Tools, Step-by-Step Instruction Guides (i.e., job aides), and Core Module PowerPoint Slides. RESULTS: A two-day course was used in training 16 master trainers and 47 facility-based trainers responsible for cascading trainings on clinical specimen collection to HCP at the pre-service, in-service, or national-levels. The Clinical Specimen Collection Package is offered online via The Ohio State University's CANVAS online platform. CONCLUSIONS: The training-of-trainers approach may be an effective model for development of enhanced specimen collection practices in low-resource countries. |
Enhanced contact investigations for nine early travel-related cases of SARS-CoV-2 in the United States.
Burke RM , Balter S , Barnes E , Barry V , Bartlett K , Beer KD , Benowitz I , Biggs HM , Bruce H , Bryant-Genevier J , Cates J , Chatham-Stephens K , Chea N , Chiou H , Christiansen D , Chu VT , Clark S , Cody SH , Cohen M , Conners EE , Dasari V , Dawson P , DeSalvo T , Donahue M , Dratch A , Duca L , Duchin J , Dyal JW , Feldstein LR , Fenstersheib M , Fischer M , Fisher R , Foo C , Freeman-Ponder B , Fry AM , Gant J , Gautom R , Ghinai I , Gounder P , Grigg CT , Gunzenhauser J , Hall AJ , Han GS , Haupt T , Holshue M , Hunter J , Ibrahim MB , Jacobs MW , Jarashow MC , Joshi K , Kamali T , Kawakami V , Kim M , Kirking HL , Kita-Yarbro A , Klos R , Kobayashi M , Kocharian A , Lang M , Layden J , Leidman E , Lindquist S , Lindstrom S , Link-Gelles R , Marlow M , Mattison CP , McClung N , McPherson TD , Mello L , Midgley CM , Novosad S , Patel MT , Pettrone K , Pillai SK , Pray IW , Reese HE , Rhodes H , Robinson S , Rolfes M , Routh J , Rubin R , Rudman SL , Russell D , Scott S , Shetty V , Smith-Jeffcoat SE , Soda EA , Spitters C , Stierman B , Sunenshine R , Terashita D , Traub E , Vahey GM , Verani JR , Wallace M , Westercamp M , Wortham J , Xie A , Yousaf A , Zahn M . PLoS One 2020 15 (9) e0238342 Coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. In response to the first cases identified in the United States, close contacts of confirmed COVID-19 cases were investigated to enable early identification and isolation of additional cases and to learn more about risk factors for transmission. Close contacts of nine early travel-related cases in the United States were identified and monitored daily for development of symptoms (active monitoring). Selected close contacts (including those with exposures categorized as higher risk) were targeted for collection of additional exposure information and respiratory samples. Respiratory samples were tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction at the Centers for Disease Control and Prevention. Four hundred four close contacts were actively monitored in the jurisdictions that managed the travel-related cases. Three hundred thirty-eight of the 404 close contacts provided at least basic exposure information, of whom 159 close contacts had ≥1 set of respiratory samples collected and tested. Across all actively monitored close contacts, two additional symptomatic COVID-19 cases (i.e., secondary cases) were identified; both secondary cases were in spouses of travel-associated case patients. When considering only household members, all of whom had ≥1 respiratory sample tested for SARS-CoV-2, the secondary attack rate (i.e., the number of secondary cases as a proportion of total close contacts) was 13% (95% CI: 4-38%). The results from these contact tracing investigations suggest that household members, especially significant others, of COVID-19 cases are at highest risk of becoming infected. The importance of personal protective equipment for healthcare workers is also underlined. Isolation of persons with COVID-19, in combination with quarantine of exposed close contacts and practice of everyday preventive behaviors, is important to mitigate spread of COVID-19. |
Assessment of molecular markers of anti-malarial drug resistance among children participating in a therapeutic efficacy study in western Kenya.
Chebore W , Zhou Z , Westercamp N , Otieno K , Shi YP , Sergent SB , Rondini KA , Svigel SS , Guyah B , Udhayakumar V , Halsey ES , Samuels AM , Kariuki S . Malar J 2020 19 (1) 291 BACKGROUND: Anti-malarial drug resistance remains a major threat to global malaria control efforts. In Africa, Plasmodium falciparum remains susceptible to artemisinin-based combination therapy (ACT), but the emergence of resistant parasites in multiple countries in Southeast Asia and concerns over emergence and/or spread of resistant parasites in Africa warrants continuous monitoring. The World Health Organization recommends that surveillance for molecular markers of resistance be included within therapeutic efficacy studies (TES). The current study assessed molecular markers associated with resistance to Artemether-lumefantrine (AL) and Dihydroartemisinin-piperaquine (DP) from samples collected from children aged 6-59 months enrolled in a TES conducted in Siaya County, western Kenya from 2016 to 2017. METHODS: Three hundred and twenty-three samples collected pre-treatment (day-0) and 110 samples collected at the day of recurrent parasitaemia (up to day 42) were tested for the presence of drug resistance markers in the Pfk13 propeller domain, and the Pfmdr1 and Pfcrt genes by Sanger sequencing. Additionally, the Pfpm2 gene copy number was assessed by real-time polymerase chain reaction. RESULTS: No mutations previously associated with artemisinin resistance were detected in the Pfk13 propeller region. However, other non-synonymous mutations in the Pfk13 propeller region were detected. The most common mutation found on day-0 and at day of recurrence in the Pfmdr1 multidrug resistance marker was at codon 184F. Very few mutations were found in the Pfcrt marker (< 5%). Within the DP arm, all recrudescent cases (8 sample pairs) that were tested for Pfpm2 gene copy number had a single gene copy. None of the associations between observed mutations and treatment outcomes were statistically significant. CONCLUSION: The results indicate absence of Pfk13 mutations associated with parasite resistance to artemisinin in this area and a very high proportion of wild-type parasites for Pfcrt. Although the frequency of Pfmdr1 184F mutations was high in these samples, the association with treatment failure did not reach statistical significance. As the spread of artemisinin-resistant parasites remains a possibility, continued monitoring for molecular markers of ACT resistance is needed to complement clinical data to inform treatment policy in Kenya and other malaria-endemic regions. |
High burden of bloodstream infections associated with antimicrobial resistance and mortality in the neonatal intensive care unit in Pune, India
Johnson J , Robinson ML , Rajput UC , Valvi C , Kinikar A , Parikh TB , Vaidya U , Malwade S , Agarkhedkar S , Randive B , Kadam A , Smith RM , Westercamp M , Mave V , Gupta A , Milstone AM , Manabe YC . Clin Infect Dis 2020 73 (2) 271-280 BACKGROUND: Antimicrobial resistance (AMR) is a growing threat to newborns in low and middle income countries (LMIC). METHODS: We performed a prospective cohort study in three tertiary Neonatal Intensive Care Units (NICUs) in Pune, India, to describe the epidemiology of neonatal bloodstream infections (BSI). All neonates admitted to the NICU were enrolled. The primary outcome was BSI, defined as positive blood culture. Early onset BSI was defined as BSI on day of life (DOL) 0-2 and late onset BSI on DOL 3 or later. RESULTS: From May 1, 2017, until April 30, 2018, 4073 neonates were enrolled. Among at risk neonates, 55 (1.6%) developed early onset BSI and 176 (5.5%) developed late onset BSI. The majority of BSI were caused by Gram-negative bacteria (GNB) (58%); among GNB, 61 (45%) were resistant to carbapenems. Klebsiella spp. (n=53, 23%) were the most common cause of BSI. Compared with neonates without BSI, all-cause mortality was higher among neonates with early onset BSI (31% vs. 10%, p<0.001) and late onset BSI (24% vs. 7%, p<0.001). Non-low birth weight neonates with late onset BSI had the greatest excess in mortality, (22% vs. 3%, p<0.001). CONCLUSIONS: In our cohort, neonatal BSI were most commonly caused by GNB, with a high prevalence of AMR, and were associated with high mortality, even in term neonates. Effective interventions are urgently needed to reduce the burden of BSI and death due to AMR GNB in hospitalized neonates in LMIC. |
Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States.
Kujawski SA , Wong KK , Collins JP , Epstein L , Killerby ME , Midgley CM , Abedi GR , Ahmed NS , Almendares O , Alvarez FN , Anderson KN , Balter S , Barry V , Bartlett K , Beer K , Ben-Aderet MA , Benowitz I , Biggs HM , Binder AM , Black SR , Bonin B , Bozio CH , Brown CM , Bruce H , Bryant-Genevier J , Budd A , Buell D , Bystritsky R , Cates J , Charles EM , Chatham-Stephens K , Chea N , Chiou H , Christiansen D , Chu V , Cody S , Cohen M , Conners EE , Curns AT , Dasari V , Dawson P , DeSalvo T , Diaz G , Donahue M , Donovan S , Duca LM , Erickson K , Esona MD , Evans S , Falk J , Feldstein LR , Fenstersheib M , Fischer M , Fisher R , Foo C , Fricchione MJ , Friedman O , Fry A , Galang RR , Garcia MM , Gerber SI , Gerrard G , Ghinai I , Gounder P , Grein J , Grigg C , Gunzenhauser JD , Gutkin GI , Haddix M , Hall AJ , Han GS , Harcourt J , Harriman K , Haupt T , Haynes AK , Holshue M , Hoover C , Hunter JC , Jacobs MW , Jarashow C , Joshi K , Kamali T , Kamili S , Kim L , Kim M , King J , Kirking HL , Kita-Yarbro A , Klos R , Kobayashi M , Kocharian A , Komatsu KK , Koppaka R , Layden JE , Li Y , Lindquist S , Lindstrom S , Link-Gelles R , Lively J , Livingston M , Lo K , Lo J , Lu X , Lynch B , Madoff L , Malapati L , Marks G , Marlow M , Mathisen GE , McClung N , McGovern O , McPherson TD , Mehta M , Meier A , Mello L , Moon SS , Morgan M , Moro RN , Murray J , Murthy R , Novosad S , Oliver SE , O’Shea J , Pacilli M , Paden CR , Pallansch MA , Patel M , Patel S , Pedraza I , Pillai SK , Pindyck T , Pray I , Queen K , Quick N , Reese H , Reporter R , Rha B , Rhodes H , Robinson S , Robinson P , Rolfes MA , Routh JA , Rubin R , Rudman SL , Sakthivel SK , Scott S , Shepherd C , Shetty V , Smith EA , Smith S , Stierman B , Stoecker W , Sunenshine R , Sy-Santos R , Tamin A , Tao Y , Terashita D , Thornburg NJ , Tong S , Traub E , Tural A , Uehara A , Uyeki TM , Vahey G , Verani JR , Villarino E , Wallace M , Wang L , Watson JT , Westercamp M , Whitaker B , Wilkerson S , Woodruff RC , Wortham JM , Wu T , Xie A , Yousaf A , Zahn M , Zhang J . Nat Med 2020 26 (6) 861-868 Data on the detailed clinical progression of COVID-19 in conjunction with epidemiological and virological characteristics are limited. In this case series, we describe the first 12 US patients confirmed to have COVID-19 from 20 January to 5 February 2020, including 4 patients described previously(1-3). Respiratory, stool, serum and urine specimens were submitted for SARS-CoV-2 real-time reverse-transcription polymerase chain reaction (rRT-PCR) testing, viral culture and whole genome sequencing. Median age was 53 years (range: 21-68); 8 patients were male. Common symptoms at illness onset were cough (n = 8) and fever (n = 7). Patients had mild to moderately severe illness; seven were hospitalized and demonstrated clinical or laboratory signs of worsening during the second week of illness. No patients required mechanical ventilation and all recovered. All had SARS-CoV-2 RNA detected in respiratory specimens, typically for 2-3 weeks after illness onset. Lowest real-time PCR with reverse transcription cycle threshold values in the upper respiratory tract were often detected in the first week and SARS-CoV-2 was cultured from early respiratory specimens. These data provide insight into the natural history of SARS-CoV-2. Although infectiousness is unclear, highest viral RNA levels were identified in the first week of illness. Clinicians should anticipate that some patients may worsen in the second week of illness. |
Performance of simplified surgical site infection (SSI) surveillance case definitions for resource limited settings: Comparison to SSI cases reported to the National Healthcare Safety Network, 2013-2017
Westercamp MD , Dudeck MA , Allen-Bridson K , Konnor R , Edwards JR , Park BJ , Smith RM . Infect Control Hosp Epidemiol 2020 41 (5) 1-3 Surgical site infections (SSIs) are among the most common healthcare-associated infections in low- and middle-income countries. To encourage establishment of actionable and standardized SSI surveillance in these countries, we propose simplified surveillance case definitions. Here, we use NHSN reports to explore concordance of these simplified definitions to NHSN as 'reference standard.' |
Surveillance for incidence and etiology of early-onset neonatal sepsis in Soweto, South Africa.
Velaphi SC , Westercamp M , Moleleki M , Pondo T , Dangor Z , Wolter N , von Gottberg A , Shang N , Demirjian A , Winchell JM , Diaz MH , Nakwa F , Okudo G , Wadula J , Cutland C , Schrag SJ , Madhi SA . PLoS One 2019 14 (4) e0214077 BACKGROUND: Globally, over 400,000 neonatal deaths in 2015 were attributed to sepsis, however, the incidence and etiologies of these infections are largely unknown in low-middle income countries. We aimed to determine incidence and etiology of community-acquired early-onset (<72 hours age) sepsis (EOS) using culture and molecular diagnostics. METHODS: This was a prospective observational study, in which we conducted a surveillance for pathogens using a combination of blood culture and a polymerase chain reaction (PCR)-based test. Blood culture was performed on all neonates with suspected EOS. Among the subset fulfilling criteria for protocol-defined EOS, blood and nasopharyngeal (NP) respiratory swabs were tested by quantitative real-time reverse-transcriptase PCR using a Taqman Array Card (TAC) with 15 bacterial and 12 viral targets. Blood and NP samples from 312 healthy newborns were also tested by TAC to estimate background positivity rates. We used variant latent-class methods to attribute etiologies and calculate pathogen-specific proportions and incidence rates. RESULTS: We enrolled 2,624 neonates with suspected EOS and from these 1,231 newborns met criteria for protocol-defined EOS (incidence- 39.3/1,000 live-births). Using the partially latent-class modelling, only 26.7% cases with protocol-defined EOS had attributable etiology, and the largest pathogen proportion were Ureaplasma spp. (5.4%; 95%CI: 3.6-8.0) and group B Streptococcus (GBS) (4.8%; 95%CI: 4.1-5.8), and no etiology was attributable for 73.3% of cases. Blood cultures were positive in 99/1,231 (8.0%) with protocol-defined EOS (incidence- 3.2/1,000 live-births). Leading pathogens on blood culture included GBS (35%) and viridans streptococci (24%). Ureaplasma spp. was the most common organism identified on TAC among cases with protocol-defined EOS. CONCLUSION: Using a combination of blood culture and a PCR-based test the common pathogens isolated in neonates with sepsis were Ureaplasma spp. and GBS. Despite documenting higher rates of protocol-defined EOS and using a combination of tests, the etiology for EOS remains elusive. |
The tolerability of single low dose primaquine in glucose-6-phosphate deficient and normal falciparum-infected Cambodians
Dysoley L , Kim S , Lopes S , Khim N , Bjorges S , Top S , Huch C , Rekol H , Westercamp N , Fukuda MM , Hwang J , Roca-Feltrer A , Mukaka M , Menard D , Taylor WR . BMC Infect Dis 2019 19 (1) 250 BACKGROUND: The WHO recommends single low-dose primaquine (SLDPQ, 0.25 mg/kg body weight) in falciparum-infected patients to block malaria transmission and contribute to eliminating multidrug resistant Plasmodium falciparum from the Greater Mekong Sub region (GMS). However, the anxiety regarding PQ-induced acute haemolytic anaemia in glucose-6-phosphate dehydrogenase deficiency (G6PDd) has hindered its use. Therefore, we assessed the tolerability of SLDPQ in Cambodia to inform national policy. METHODS: This open randomised trial of dihydroartemisinin-piperaquine (DHAPP) + SLDPQ vs. DHAPP alone recruited Cambodians aged >/=1 year with acute uncomplicated P. falciparum. Randomisation was 4:1 DHAPP+SLDPQ: DHAPP for G6PDd patients and 1:1 for G6PDn patients, according to the results of the qualitative fluorescent spot test. Definitive G6PD status was determined by genotyping. Day (D) 7 haemoglobin (Hb) concentration was the primary outcome measure. RESULTS: One hundred nine patients (88 males, 21 females), aged 4-76 years (median 23) were enrolled; 12 were G6PDd Viangchan (9 hemizygous males, 3 heterozygous females). Mean nadir Hb occurred on D7 [11.6 (range 6.4 horizontal line 15.6) g/dL] and was significantly lower (p = 0.040) in G6PDd (n = 9) vs. G6PDn (n = 46) DHAPP+SLDPQ recipients: 10.9 vs. 12.05 g/dL, Delta = -1.15 (95% CI: -2.24 horizontal line -0.05) g/dL. Three G6PDn patients had D7 Hb concentrations < 8 g/dL; D7-D0 Hbs were 6.4 horizontal line 6.9, 7.4 horizontal line 7.4, and 7.5 horizontal line 8.2 g/dL. For all patients, mean (range) D7-D0 Hb decline was -1.45 (-4.8 horizontal line 2.4) g/dL, associated significantly with higher D0 Hb, higher D0 parasitaemia, and receiving DHAPP; G6PDd was not a factor. No patient required a blood transfusion. CONCLUSIONS: DHAPP+SLDPQ was associated with modest Hb declines in G6PD Viangchan, a moderately severe variant. Our data augment growing evidence that SLDPQ in SE Asia is well tolerated and appears safe in G6PDd patients. Cambodia is now deploying SLDPQ and this should encourage other GMS countries to follow suit. TRIAL REGISTRATION: The clinicaltrials.gov reference number is NCT02434952 . |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 07, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure