Last data update: May 16, 2025. (Total: 49299 publications since 2009)
Records 1-21 (of 21 Records) |
Query Trace: Weller D[original query] |
---|
Disparities in salmonellosis incidence for US counties with different social determinants of health profiles are also mediated by extreme weather: a counterfactual analysis of Laboratory Enteric Disease Surveillance (LEDS) data from 1997-2019
Weller DL , Tierney R , Verlander S , Bruce BB , Rose EB . J Food Prot 2024 87 (12) 100379 ![]() ![]() Understanding disparities in salmonellosis burden is critical for developing effective, equitable prevention programs. Past efforts to characterize disparities were limited in scope and by the analytical methods available when the study was conducted. We aim to address this gap by identifying disparities in salmonellosis incidence between counties with different determinants of health (DOH) profiles. Using national U.S. Laboratory-based Enteric Disease Surveillance (LEDS) data for 1997-2019, age-adjusted county-level salmonellosis incidence/100,000 persons was calculated and linked to publicly available DOH data. We used hurdle counterfactual random forest (CFRF) to quantify, for each DOH, the risk that (i) ≥1 versus no cases were reported by a county, and (ii) when ≥1 case was reported, whether a high (≥16 cases/100,000 persons) or low incidence (≥1 & <4 cases/100,000 persons) was reported. Risk in both models was significantly associated with demographic DOH, suggesting a disparity between counties with different demographic profiles. Risk was also significantly associated with food, healthcare, physical, and socioeconomic environment. The risk was generally greater for counties with more negative food resources, and for under-resourced counties (e.g., fewer healthcare and social services, fewer grocery stores). Risk was also significantly higher if any extreme weather event occurred. The study also found that underreporting and underascertainment appeared to result in underestimation of salmonellosis incidence in economically marginalized and under-resourced communities. Overall, our analyses indicated that, regardless of other county characteristics, extreme weather was associated with increased salmonellosis incidence, and that certain communities were differentially disadvantaged toward a higher incidence. This information can facilitate the development of community-specific prevention efforts. |
Racial disparities and achievement of the Low Lupus Disease Activity State (LLDAS): A CARRA Registry Study
Soulsby WD , Olveda R , He J , Berbert L , Weller E , Barbour KE , Greenlund KJ , Schanberg LE , von Scheven E , Hersh A , Son MBF , Chang J , Knight A . Arthritis Care Res (Hoboken) 2025 77 (1) 38-49 OBJECTIVE: Differential disease control may contribute to racial disparities in outcomes of childhood-onset systemic lupus erythematosus (cSLE). We evaluated associations of race and individual- or neighborhood-level social determinants of health (SDoH) with achievement of low lupus disease activity state (LLDAS), a clinically relevant treatment target. METHODS: In this cSLE cohort study using the Childhood Arthritis and Rheumatology Research Alliance (CARRA) Registry, the primary exposure was self-reported race and ethnicity, and collected SDoH included insurance status and area deprivation index (ADI). Outcomes included LLDAS, disease activity, and time-averaged prednisone exposure. Associations among race and ethnicity, SDoH, and disease activity were estimated with multivariable regression models, adjusting for disease-related and demographic factors. RESULTS: Among 540 children with cSLE, 27% identified as Black, 25% identified as White, 23% identified as Latino/a, 11% identified as Asian, 9% identified as more than one race, and 5% identified as other. More Black children (41%) lived in neighborhoods of highest ADI compared to White children (16%). Black race was associated with lower LLDAS achievement (adjusted odds ratio 0.56, 95% confidence interval [CI] 0.38-0.82) and higher disease activity (adjusted β 0.94, 95% CI 0.11-1.78). The highest ADI was not associated with lower LLDAS achievement on adjustment for renal disease and insurance. However, renal disease was found to be a significant mediator (P = 0.04) of the association between ADI and prednisone exposure. CONCLUSIONS: Children with cSLE who identified as Black are less likely to achieve LLDAS and have a higher disease activity. Living in areas of higher ADI may relate to renal disease and subsequent prednisone exposure. Strategies to address root causes will be important to design interventions mitigating cSLE racial disparities. |
Reported incidence of infections caused by pathogens transmitted commonly through food: Impact of increased use of culture-independent diagnostic tests - Foodborne Diseases Active Surveillance Network, 1996-2023
Shah HJ , Jervis RH , Wymore K , Rissman T , LaClair B , Boyle MM , Smith K , Lathrop S , McGuire S , Trevejo R , McMillian M , Harris S , Zablotsky Kufel J , Houck K , Lau CE , Devine CJ , Boxrud D , Weller DL . MMWR Morb Mortal Wkly Rep 2024 73 (26) 584-593 Reducing foodborne disease incidence is a public health priority. This report summarizes preliminary 2023 Foodborne Diseases Active Surveillance Network (FoodNet) data and highlights efforts to increase the representativeness of FoodNet. During 2023, incidences of domestically acquired campylobacteriosis, Shiga toxin-producing Escherichia coli infection, yersiniosis, vibriosis, and cyclosporiasis increased, whereas those of listeriosis, salmonellosis, and shigellosis remained stable compared with incidences during 2016-2018, the baseline used for tracking progress towards federal disease reduction goals. During 2023, the incidence and percentage of infections diagnosed by culture-independent diagnostic tests (CIDTs) reported to FoodNet continued to increase, and the percentage of cases that yielded an isolate decreased, affecting observed trends in incidence. Because CIDTs allow for diagnosis of infections that previously would have gone undetected, lack of progress toward disease reduction goals might reflect changing diagnostic practices rather than an actual increase in incidence. Continued surveillance is needed to monitor the impact of changing diagnostic practices on disease trends, and targeted prevention efforts are needed to meet disease reduction goals. During 2023, FoodNet expanded its catchment area for the first time since 2004. This expansion improved the representativeness of the FoodNet catchment area, the ability of FoodNet to monitor trends in disease incidence, and the generalizability of FoodNet data. |
A one health approach for monitoring antimicrobial resistance: developing a national freshwater pilot effort
Franklin AM , Weller DL , Durso LM , Bagley M , Davis BC , Frye JG , Grim CJ , Ibekwe AM , Jahne MA , Keely SP , Kraft AL , McConn BR , Mitchell RM , Ottesen AR , Sharma M , Strain EA , Tadesse DA , Tate H , Wells JE , Williams CF , Cook KL , Kabera C , McDermott PF , Garland JL . Front Water 2024 6 ![]() ![]() Antimicrobial resistance (AMR) is a world-wide public health threat that is projected to lead to 10 million annual deaths globally by 2050. The AMR public health issue has led to the development of action plans to combat AMR, including improved antimicrobial stewardship, development of new antimicrobials, and advanced monitoring. The National Antimicrobial Resistance Monitoring System (NARMS) led by the United States (U.S) Food and Drug Administration along with the U.S. Centers for Disease Control and U.S. Department of Agriculture has monitored antimicrobial resistant bacteria in retail meats, humans, and food animals since the mid 1990's. NARMS is currently exploring an integrated One Health monitoring model recognizing that human, animal, plant, and environmental systems are linked to public health. Since 2020, the U.S. Environmental Protection Agency has led an interagency NARMS environmental working group (EWG) to implement a surface water AMR monitoring program (SWAM) at watershed and national scales. The NARMS EWG divided the development of the environmental monitoring effort into five areas: (i) defining objectives and questions, (ii) designing study/sampling design, (iii) selecting AMR indicators, (iv) establishing analytical methods, and (v) developing data management/analytics/metadata plans. For each of these areas, the consensus among the scientific community and literature was reviewed and carefully considered prior to the development of this environmental monitoring program. The data produced from the SWAM effort will help develop robust surface water monitoring programs with the goal of assessing public health risks associated with AMR pathogens in surface water (e.g., recreational water exposures), provide a comprehensive picture of how resistant strains are related spatially and temporally within a watershed, and help assess how anthropogenic drivers and intervention strategies impact the transmission of AMR within human, animal, and environmental systems. |
Syndromic gastrointestinal panel diagnostic tests have changed our understanding of the epidemiology of yersiniosis-Foodborne Diseases Active Surveillance Network, 2010-2021
Ray LC , Payne DC , Rounds J , Trevejo RT , Wilson E , Burzlaff K , Garman KN , Lathrop S , Rissman T , Wymore K , Wozny S , Wilson S , Francois Watkins LK , Bruce BB , Weller DL . Open Forum Infect Dis 2024 11 (6) ofae199 ![]() ![]() BACKGROUND: In the US, yersinosis was understood to predominantly occur in winter and among Black or African American infants and Asian children. Increased use of culture-independent diagnostic tests (CIDTs) has led to marked increases in yersinosis diagnoses. METHODS: We describe differences in the epidemiology of yersiniosis diagnosed by CIDT versus culture in 10 US sites, and identify determinants of health associated with diagnostic method. RESULTS: Annual reported incidence increased from 0.3/100 000 in 2010 to 1.3/100 000 in 2021, particularly among adults ≥18 years, regardless of race and ethnicity, and during summer months. The proportion of CIDT-diagnosed infections increased from 3% in 2012 to 89% in 2021. An ill person's demographic characteristics and location of residence had a significant impact on their odds of being diagnosed by CIDT. CONCLUSIONS: Improved detection due to increased CIDT use has altered our understanding of yersinosis epidemiology, however differential access to CIDTs may still affect our understanding of yersinosis. |
Notes from the field: Severe vibrio vulnificus infections during heat waves - Three Eastern U.S. States, July-August 2023
Hughes MJ , Flaherty E , Lee N , Robbins A , Weller DL . MMWR Morb Mortal Wkly Rep 2024 73 (4) 84-85 |
Author Correction: Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants
Welch NL , Zhu M , Hua C , Weller J , Mirhashemi ME , Nguyen TG , Mantena S , Bauer MR , Shaw BM , Ackerman CM , Thakku SG , Tse MW , Kehe J , Uwera MM , Eversley JS , Bielwaski DA , McGrath G , Braidt J , Johnson J , Cerrato F , Moreno GK , Krasilnikova LA , Petros BA , Gionet GL , King E , Huard RC , Jalbert SK , Cleary ML , Fitzgerald NA , Gabriel SB , Gallagher GR , Smole SC , Madoff LC , Brown CM , Keller MW , Wilson MM , Kirby MK , Barnes JR , Park DJ , Siddle KJ , Happi CT , Hung DT , Springer M , MacInnis BL , Lemieux JE , Rosenberg E , Branda JA , Blainey PC , Sabeti PC , Myhrvold C . Nat Med 2023 ![]() In the version of the article originally published, some of the oligonucleotide sequences in Supplementary Table 4, on the “21 viruses” and “RVP” tabs, were mislabeled. The Supplementary Tables file has now been corrected. |
An enhanced method for calculating trends in infections caused by pathogens transmitted commonly through food (preprint)
Weller DL , Ray LC , Payne DC , Griffin PM , Hoekstra RM , Rose EB , Bruce BB . medRxiv 2022 17 This brief methods paper is being published concomitantly with "Preliminary Incidence and Trends of Infections Caused by Pathogens Transmitted Commonly Through Food- Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2016-2021" in Morbidity and Mortality Weekly Reports (MMWR). That article describes the application of the new model described here to analyze trends and evaluate progress towards the prevention of infection from enteric pathogens in the United States. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Preliminary incidence and trends of infections caused by pathogens transmitted commonly through food - Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2022
Delahoy MJ , Shah HJ , Weller DL , Ray LC , Smith K , McGuire S , Trevejo RT , Scallan Walter E , Wymore K , Rissman T , McMillian M , Lathrop S , LaClair B , Boyle MM , Harris S , Zablotsky-Kufel J , Houck K , Devine CJ , Lau CE , Tauxe RV , Bruce BB , Griffin PM , Payne DC . MMWR Morb Mortal Wkly Rep 2023 72 (26) 701-706 Each year, infections from major foodborne pathogens are responsible for an estimated 9.4 million illnesses, 56,000 hospitalizations, and 1,350 deaths in the United States (1). To evaluate progress toward prevention of enteric infections in the United States, the Foodborne Diseases Active Surveillance Network (FoodNet) conducts surveillance for laboratory-diagnosed infections caused by eight pathogens transmitted commonly through food at 10 U.S. sites. During 2020-2021, FoodNet detected decreases in many infections that were due to behavioral modifications, public health interventions, and changes in health care-seeking and testing practices during the COVID-19 pandemic. This report presents preliminary estimates of pathogen-specific annual incidences during 2022, compared with average annual incidences during 2016-2018, the reference period for the U.S. Department of Health and Human Services' Healthy People 2030 targets (2). Many pandemic interventions ended by 2022, resulting in a resumption of outbreaks, international travel, and other factors leading to enteric infections. During 2022, annual incidences of illnesses caused by the pathogens Campylobacter, Salmonella, Shigella, and Listeria were similar to average annual incidences during 2016-2018; however, incidences of Shiga toxin-producing Escherichia coli (STEC), Yersinia, Vibrio, and Cyclospora illnesses were higher. Increasing culture-independent diagnostic test (CIDT) usage likely contributed to increased detection by identifying infections that would have remained undetected before widespread CIDT usage. Reducing pathogen contamination during poultry slaughter and processing of leafy greens requires collaboration among food growers and processors, retail stores, restaurants, and regulators. |
Racial and ethnic disparities in Mpox cases and vaccination among adult males - United States, May-December 2022
Kota KK , Hong J , Zelaya C , Riser AP , Rodriguez A , Weller DL , Spicknall IH , Kriss JL , Lee F , Boersma P , Hurley E , Hicks P , Wilkins C , Chesson H , Concepción-Acevedo J , Ellington S , Belay E , Mermin J . MMWR Morb Mortal Wkly Rep 2023 72 (15) 398-403 As of December 31, 2022, a total of 29,939 monkeypox (mpox) cases* had been reported in the United States, 93.3% of which occurred in adult males. During May 10-December 31, 2022, 723,112 persons in the United States received the first dose in a 2-dose mpox (JYNNEOS)(†) vaccination series; 89.7% of these doses were administered to males (1). The current mpox outbreak has disproportionately affected gay, bisexual, and other men who have sex with men (MSM) and racial and ethnic minority groups (1,2). To examine racial and ethnic disparities in mpox incidence and vaccination rates, rate ratios (RRs) for incidence and vaccination rates and vaccination-to-case ratios were calculated, and trends in these measures were assessed among males aged ≥18 years (males) (3). Incidence in males in all racial and ethnic minority groups except non-Hispanic Asian (Asian) males was higher than that among non-Hispanic White (White) males. At the peak of the outbreak in August 2022, incidences among non-Hispanic Black or African American (Black) and Hispanic or Latino (Hispanic) males were higher than incidence among White males (RR = 6.9 and 4.1, respectively). Overall, vaccination rates were higher among males in racial and ethnic minority groups than among White males. However, the vaccination-to-case ratio was lower among Black (8.8) and Hispanic (16.2) males than among White males (42.5) during the full analytic period, indicating that vaccination rates among Black and Hispanic males were not proportionate to the elevated incidence rates (i.e., these groups had a higher unmet vaccination need). Efforts to increase vaccination among Black and Hispanic males might have resulted in the observed relative increased rates of vaccination; however, these increases were only partially successful in reducing overall incidence disparities. Continued implementation of equity-based vaccination strategies is needed to further increase vaccination rates and reduce the incidence of mpox among all racial and ethnic groups. Recent modeling data (4) showing that, based on current vaccination coverage levels, many U.S. jurisdictions are vulnerable to resurgent mpox outbreaks, underscore the need for continued vaccination efforts, particularly among racial and ethnic minority groups. |
Epidemiologic features of the monkeypox outbreak and the public health response - United States, May 17-October 6, 2022
Kava CM , Rohraff DM , Wallace B , Mendoza-Alonzo JL , Currie DW , Munsey AE , Roth NM , Bryant-Genevier J , Kennedy JL , Weller DL , Christie A , McQuiston JH , Hicks P , Strid P , Sims E , Negron ME , Iqbal K , Ellington S , Smith DK . MMWR Morb Mortal Wkly Rep 2022 71 (45) 1449-1456 On May 17, 2022, the Massachusetts Department of Health announced the first suspected case of monkeypox associated with the global outbreak in a U.S. resident. On May 23, 2022, CDC launched an emergency response (1,2). CDC's emergency response focused on surveillance, laboratory testing, medical countermeasures, and education. Medical countermeasures included rollout of a national JYNNEOS vaccination strategy, Food and Drug Administration (FDA) issuance of an emergency use authorization to allow for intradermal administration of JYNNEOS, and use of tecovirimat for patients with, or at risk for, severe monkeypox. During May 17-October 6, 2022, a total of 26,384 probable and confirmed* U.S. monkeypox cases were reported to CDC. Daily case counts peaked during mid-to-late August. Among 25,001 of 25,569 (98%) cases in adults with information on gender identity,(†) 23,683 (95%) occurred in cisgender men. Among 13,997 cisgender men with information on recent sexual or close intimate contact,(§) 10,440 (75%) reported male-to-male sexual contact (MMSC) ≤21 days preceding symptom onset. Among 21,211 (80%) cases in persons with information on race and ethnicity,(¶) 6,879 (32%), 6,628 (31%), and 6,330 (30%) occurred in non-Hispanic Black or African American (Black), Hispanic or Latino (Hispanic), and non-Hispanic White (White) persons, respectively. Among 5,017 (20%) cases in adults with information on HIV infection status, 2,876 (57%) had HIV infection. Prevention efforts, including vaccination, should be prioritized among persons at highest risk within groups most affected by the monkeypox outbreak, including gay, bisexual, and other men who have sex with men (MSM); transgender, nonbinary, and gender-diverse persons; racial and ethnic minority groups; and persons who are immunocompromised, including persons with advanced HIV infection or newly diagnosed HIV infection. |
Preliminary Incidence and Trends of Infections Caused by Pathogens Transmitted Commonly Through Food - Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2016-2021.
Collins JP , Shah HJ , Weller DL , Ray LC , Smith K , McGuire S , Trevejo RT , Jervis RH , Vugia DJ , Rissman T , Garman KN , Lathrop S , LaClair B , Boyle MM , Harris S , Kufel JZ , Tauxe RV , Bruce BB , Rose EB , Griffin PM , Payne DC . MMWR Morb Mortal Wkly Rep 2022 71 (40) 1260-1264 To evaluate progress toward prevention of enteric infections in the United States, the Foodborne Diseases Active Surveillance Network (FoodNet) conducts active population-based surveillance for laboratory-diagnosed infections caused by Campylobacter, Cyclospora, Listeria, Salmonella, Shiga toxin-producing Escherichia coli (STEC), Shigella, Vibrio, and Yersinia at 10 U.S. sites. This report summarizes preliminary 2021 data and describes changes in annual incidence compared with the average annual incidence for 2016-2018, the reference period for the U.S. Department of Health and Human Services' (HHS) Healthy People 2030 goals for some pathogens (1). During 2021, the incidence of infections caused by Salmonella decreased, incidence of infections caused by Cyclospora, Yersinia, and Vibrio increased, and incidence of infections caused by other pathogens did not change. As in 2020, behavioral modifications and public health interventions implemented to control the COVID-19 pandemic might have decreased transmission of enteric infections (2). Other factors (e.g., increased use of telemedicine and continued increase in use of culture-independent diagnostic tests [CIDTs]) might have altered their detection or reporting (2). Much work remains to achieve HHS Healthy People 2030 goals, particularly for Salmonella infections, which are frequently attributed to poultry products and produce, and Campylobacter infections, which are frequently attributed to chicken products (3). |
Health Impairments in Children and Adolescents After Hospitalization for Acute COVID-19 or MIS-C.
Maddux AB , Berbert L , Young CC , Feldstein LR , Zambrano LD , Kucukak S , Newhams MM , Miller K , FitzGerald MM , He J , Halasa NB , Cvijanovich NZ , Loftis LL , Walker TC , Schwartz SP , Gertz SJ , Tarquinio KM , Fitzgerald JC , Kong M , Schuster JE , Mack EH , Hobbs CV , Rowan CM , Staat MA , Zinter MS , Irby K , Crandall H , Flori H , Cullimore ML , Nofziger RA , Shein SL , Gaspers MG , Hume JR , Levy ER , Chen SR , Patel MM , Tenforde MW , Weller E , Campbell AP , Randolph AG . Pediatrics 2022 150 (3) OBJECTIVE: To evaluate risk factors for post-discharge sequelae in children and adolescents after hospitalization for acute COVID-19 or multisystem inflammatory syndrome in children (MIS-C). METHODS: Multicenter prospective observational cohort study conducted in 25 US pediatric hospitals. Patients <21-years-old, hospitalized May 2020 to May 2021 for acute COVID-19 or MIS-C with follow-up 2-4 months after admission. We assessed readmissions, caregiver-reported persistent symptoms or activity impairment, and new morbidities identified by the Functional Status Scale. Multivariable regression was used to calculate adjusted risk ratios (aRR). RESULTS: Of 358 eligible patients, 2-4 month survey data were available for 119/155 (76.8%) with acute COVID-19 and 160/203 (78.8%) with MIS-C. Thirteen (11%) patients with acute COVID-19 and 12 (8%) with MIS-C had a readmission. Thirty-two (26.9%) patients with acute COVID-19 had persistent symptoms (22.7%) or activity impairment (14.3%) and 48 (30.0%) patients with MIS-C had persistent symptoms (20.0%) or activity impairment (21.3%). For patients with acute COVID-19, persistent symptoms (aRR, 1.29[95% CI, 1.04-1.59]) and activity impairment (aRR, 1.37[95% CI, 1.06-1.78]) were associated with more organs systems involved. Patients with MIS-C and pre-existing respiratory conditions more frequently had persistent symptoms (aRR, 3.09[95% CI, 1.55-6.14]) and those with obesity more frequently had activity impairment (aRR, 2.52[95% CI, 1.35-4.69]). New morbidities were infrequent (9% COVID-19 and 1% MIS-C). CONCLUSIONS: Over one in four children hospitalized with acute COVID-19 or MIS-C experienced persistent symptoms or activity impairment for at least 2 months. Patients with MIS-C and respiratory conditions or obesity are at higher risk of prolonged recovery. |
Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory viruses and identification of SARS-CoV-2 variants.
Welch NL , Zhu M , Hua C , Weller J , Mirhashemi ME , Nguyen TG , Mantena S , Bauer MR , Shaw BM , Ackerman CM , Thakku SG , Tse MW , Kehe J , Uwera MM , Eversley JS , Bielwaski DA , McGrath G , Braidt J , Johnson J , Cerrato F , Moreno GK , Krasilnikova LA , Petros BA , Gionet GL , King E , Huard RC , Jalbert SK , Cleary ML , Fitzgerald NA , Gabriel SB , Gallagher GR , Smole SC , Madoff LC , Brown CM , Keller MW , Wilson MM , Kirby MK , Barnes JR , Park DJ , Siddle KJ , Happi CT , Hung DT , Springer M , MacInnis BL , Lemieux JE , Rosenberg E , Branda JA , Blainey PC , Sabeti PC , Myhrvold C . Nat Med 2022 28 (5) 1083-1094 ![]() The COVID-19 pandemic has demonstrated a clear need for high-throughput, multiplexed, and sensitive assays for detecting SARS-CoV-2 and other respiratory viruses as well as their emerging variants. Here, we present a cost-effective virus and variant detection platform, called microfluidic CARMEN (mCARMEN), that combines CRISPR-based diagnostics and microfluidics with a streamlined workflow for clinical use. We developed the mCARMEN respiratory virus panel (RVP) to test for up to 21 viruses, including SARS-CoV-2, other coronaviruses and both influenza strains, and demonstrated its diagnostic-grade performance on 525 patient specimens in an academic setting and 166 specimens in a clinical setting. We further developed an mCARMEN panel to enable identification of 6 SARS-CoV-2 variant lineages, including Delta and Omicron, and evaluated it on 2,088 patient specimens, with near-perfect concordance to sequencing-based variant classification. Lastly, we implemented a combined Cas13 and Cas12 approach that enables quantitative measurement of SARS-CoV-2 and influenza A viral copies in samples. The mCARMEN platform enables high-throughput surveillance of multiple viruses and variants simultaneously, enabling rapid detection of SARS-CoV-2 variants. |
A Research and Development (R&D) roadmap for influenza vaccines: Looking toward the future
Moore KA , Ostrowsky JT , Kraigsley AM , Mehr AJ , Bresee JS , Friede MH , Gellin BG , Golding JP , Hart PJ , Moen A , Weller CL , Osterholm MT . Vaccine 2021 39 (45) 6573-6584 Improved influenza vaccines are urgently needed to reduce the burden of seasonal influenza and to ensure a rapid and effective public-health response to future influenza pandemics. The Influenza Vaccines Research and Development (R&D) Roadmap (IVR) was created, through an extensive international stakeholder engagement process, to promote influenza vaccine R&D. The roadmap covers a 10-year timeframe and is organized into six sections: virology; immunology; vaccinology for seasonal influenza vaccines; vaccinology for universal influenza vaccines; animal and human influenza virus infection models; and policy, finance, and regulation. Each section identifies barriers, gaps, strategic goals, milestones, and additional R&D priorities germane to that area. The roadmap includes 113 specific R&D milestones, 37 of which have been designated high priority by the IVR expert taskforce. This report summarizes the major issues and priority areas of research outlined in the IVR. By identifying the key issues and steps to address them, the roadmap not only encourages research aimed at new solutions, but also provides guidance on the use of innovative tools to drive breakthroughs in influenza vaccine R&D. |
COVID-19 Vaccination Coverage Among Adults - United States, December 14, 2020-May 22, 2021.
Diesel J , Sterrett N , Dasgupta S , Kriss JL , Barry V , Vanden Esschert K , Whiteman A , Cadwell BL , Weller D , Qualters JR , Harris L , Bhatt A , Williams C , Fox LM , Meaney Delman D , Black CL , Barbour KE . MMWR Morb Mortal Wkly Rep 2021 70 (25) 922-927 The U.S. COVID-19 vaccination program launched on December 14, 2020. The Advisory Committee on Immunization Practices recommended prioritizing COVID-19 vaccination for specific groups of the U.S. population who were at highest risk for COVID-19 hospitalization and death, including adults aged ≥75 years*; implementation varied by state, and eligibility was gradually expanded to persons aged ≥65 years beginning in January 2021. By April 19, 2021, eligibility was expanded to all adults aged ≥18 years nationwide.(†) To assess patterns of COVID-19 vaccination coverage among U.S. adults, CDC analyzed data submitted on vaccinations administered during December 14, 2020-May 22, 2021, by age, sex, and community-level characteristics. By May 22, 2021, 57.0% of persons aged ≥18 years had received ≥1 COVID-19 vaccine dose; coverage was highest among persons aged ≥65 years (80.0%) and lowest among persons aged 18-29 years (38.3%). During the week beginning February 7, 2021, vaccination initiation among adults aged ≥65 years peaked at 8.2%, whereas weekly initiation among other age groups peaked later and at lower levels. During April 19-May 22, 2021, the period following expanded eligibility to all adults, weekly initiation remained <4.0% and decreased for all age groups, including persons aged 18-29 years (3.6% to 1.9%) and 30-49 years (3.5% to 1.7%); based on the current rate of weekly initiation (as of May 22), younger persons will not reach the same levels of coverage as older persons by the end of August. Across all age groups, coverage (≥1 dose) was lower among men compared with women, except among adults aged ≥65 years, and lower among persons living in counties that were less urban, had higher social vulnerabilities, or had higher percentages of social determinants of poor health. Continued efforts to improve vaccination confidence and alleviate barriers to vaccination initiation, especially among adults aged 18-49 years, could improve vaccination coverage. |
Patterns in COVID-19 Vaccination Coverage, by Social Vulnerability and Urbanicity - United States, December 14, 2020-May 1, 2021.
Barry V , Dasgupta S , Weller DL , Kriss JL , Cadwell BL , Rose C , Pingali C , Musial T , Sharpe JD , Flores SA , Greenlund KJ , Patel A , Stewart A , Qualters JR , Harris L , Barbour KE , Black CL . MMWR Morb Mortal Wkly Rep 2021 70 (22) 818-824 Disparities in vaccination coverage by social vulnerability, defined as social and structural factors associated with adverse health outcomes, were noted during the first 2.5 months of the U.S. COVID-19 vaccination campaign, which began during mid-December 2020 (1). As vaccine eligibility and availability continue to expand, assuring equitable coverage for disproportionately affected communities remains a priority. CDC examined COVID-19 vaccine administration and 2018 CDC social vulnerability index (SVI) data to ascertain whether inequities in COVID-19 vaccination coverage with respect to county-level SVI have persisted, overall and by urbanicity. Vaccination coverage was defined as the number of persons aged ≥18 years (adults) who had received ≥1 dose of any Food and Drug Administration (FDA)-authorized COVID-19 vaccine divided by the total adult population in a specified SVI category.(†) SVI was examined overall and by its four themes (socioeconomic status, household composition and disability, racial/ethnic minority status and language, and housing type and transportation). Counties were categorized into SVI quartiles, in which quartile 1 (Q1) represented the lowest level of vulnerability and quartile 4 (Q4), the highest. Trends in vaccination coverage were assessed by SVI quartile and urbanicity, which was categorized as large central metropolitan, large fringe metropolitan (areas surrounding large cities, e.g., suburban), medium and small metropolitan, and nonmetropolitan counties.(§) During December 14, 2020-May 1, 2021, disparities in vaccination coverage by SVI increased, especially in large fringe metropolitan (e.g., suburban) and nonmetropolitan counties. By May 1, 2021, vaccination coverage was lower among adults living in counties with the highest overall SVI; differences were most pronounced in large fringe metropolitan (Q4 coverage = 45.0% versus Q1 coverage = 61.7%) and nonmetropolitan (Q4 = 40.6% versus Q1 = 52.9%) counties. Vaccination coverage disparities were largest for two SVI themes: socioeconomic status (Q4 = 44.3% versus Q1 = 61.0%) and household composition and disability (Q4 = 42.0% versus Q1 = 60.1%). Outreach efforts, including expanding public health messaging tailored to local populations and increasing vaccination access, could help increase vaccination coverage in high-SVI counties. |
Disparities in COVID-19 Vaccination Coverage Between Urban and Rural Counties - United States, December 14, 2020-April 10, 2021.
Murthy BP , Sterrett N , Weller D , Zell E , Reynolds L , Toblin RL , Murthy N , Kriss J , Rose C , Cadwell B , Wang A , Ritchey MD , Gibbs-Scharf L , Qualters JR , Shaw L , Brookmeyer KA , Clayton H , Eke P , Adams L , Zajac J , Patel A , Fox K , Williams C , Stokley S , Flores S , Barbour KE , Harris LQ . MMWR Morb Mortal Wkly Rep 2021 70 (20) 759-764 Approximately 60 million persons in the United States live in rural counties, representing almost one fifth (19.3%) of the population.* In September 2020, COVID-19 incidence (cases per 100,000 population) in rural counties surpassed that in urban counties (1). Rural communities often have a higher proportion of residents who lack health insurance, live with comorbidities or disabilities, are aged ≥65 years, and have limited access to health care facilities with intensive care capabilities, which places these residents at increased risk for COVID-19-associated morbidity and mortality (2,3). To better understand COVID-19 vaccination disparities across the urban-rural continuum, CDC analyzed county-level vaccine administration data among adults aged ≥18 years who received their first dose of either the Pfizer-BioNTech or Moderna COVID-19 vaccine, or a single dose of the Janssen COVID-19 vaccine (Johnson & Johnson) during December 14, 2020-April 10, 2021 in 50 U.S. jurisdictions (49 states and the District of Columbia [DC]). Adult COVID-19 vaccination coverage was lower in rural counties (38.9%) than in urban counties (45.7%) overall and among adults aged 18-64 years (29.1% rural, 37.7% urban), those aged ≥65 years (67.6% rural, 76.1% urban), women (41.7% rural, 48.4% urban), and men (35.3% rural, 41.9% urban). Vaccination coverage varied among jurisdictions: 36 jurisdictions had higher coverage in urban counties, five had higher coverage in rural counties, and five had similar coverage (i.e., within 1%) in urban and rural counties; in four jurisdictions with no rural counties, the urban-rural comparison could not be assessed. A larger proportion of persons in the most rural counties (14.6%) traveled for vaccination to nonadjacent counties (i.e., farther from their county of residence) compared with persons in the most urban counties (10.3%). As availability of COVID-19 vaccines expands, public health practitioners should continue collaborating with health care providers, pharmacies, employers, faith leaders, and other community partners to identify and address barriers to COVID-19 vaccination in rural areas (2). |
County-Level COVID-19 Vaccination Coverage and Social Vulnerability - United States, December 14, 2020-March 1, 2021.
Hughes MM , Wang A , Grossman MK , Pun E , Whiteman A , Deng L , Hallisey E , Sharpe JD , Ussery EN , Stokley S , Musial T , Weller DL , Murthy BP , Reynolds L , Gibbs-Scharf L , Harris L , Ritchey MD , Toblin RL . MMWR Morb Mortal Wkly Rep 2021 70 (12) 431-436 The U.S. COVID-19 vaccination program began in December 2020, and ensuring equitable COVID-19 vaccine access remains a national priority.* COVID-19 has disproportionately affected racial/ethnic minority groups and those who are economically and socially disadvantaged (1,2). Thus, achieving not just vaccine equality (i.e., similar allocation of vaccine supply proportional to its population across jurisdictions) but equity (i.e., preferential access and administra-tion to those who have been most affected by COVID-19 disease) is an important goal. The CDC social vulnerability index (SVI) uses 15 indicators grouped into four themes that comprise an overall SVI measure, resulting in 20 metrics, each of which has national and state-specific county rankings. The 20 metric-specific rankings were each divided into lowest to highest tertiles to categorize counties as low, moderate, or high social vulnerability counties. These tertiles were combined with vaccine administration data for 49,264,338 U.S. residents in 49 states and the District of Columbia (DC) who received at least one COVID-19 vaccine dose during December 14, 2020-March 1, 2021. Nationally, for the overall SVI measure, vaccination coverage was higher (15.8%) in low social vulnerability counties than in high social vulnerability counties (13.9%), with the largest coverage disparity in the socioeconomic status theme (2.5 percentage points higher coverage in low than in high vulnerability counties). Wide state variations in equity across SVI metrics were found. Whereas in the majority of states, vaccination coverage was higher in low vulnerability counties, some states had equitable coverage at the county level. CDC, state, and local jurisdictions should continue to monitor vaccination coverage by SVI metrics to focus public health interventions to achieve equitable coverage with COVID-19 vaccine. |
Reply to Apolipoprotein E polymorphisms and their protective effect on Hepatitis E virus replication
Teo CG , Yesupriya A , Chang MH , Zhang L . Hepatology 2016 We appreciate the attention that Weller et al. have given to our report and findings. Weller et al. used an in vitro system based on Huh-7.5 cells silenced for endogenous apolipoprotein E (apoE) protein expression to investigate if genetic variants of the APOE gene (ϵ2, ϵ3, and ϵ4), when ectopically expressed, influence the production of intracellular hepatitis E virus (HEV) RNA and the expression of HEV open reading frame 2 (ORF2) protein after the cells were transfected with an HEV genotype 3 replicon. Finding that HEV RNA and ORF2 protein production were not affected regardless of which isoforms were expressed, they concluded that APOE polymorphisms do not affect HEV RNA replication and virus production. | HEV RNA quantification was applied by Weller et al. as an index of viral replication, and ORF2 protein quantification was used as a marker of the extent of viral particle assembly. However, HEV RNA measurement shows replication of the viral genome, not productive viral replication. Furthermore, measurement of the ORF2 protein, per se, is inadequate to indicate virion assembly; and other means of verifying if assembly has taken place are needed.(1) |
Coxiella burnetii exposure in northern sea otters Enhydra lutris kenyoni
Duncan C , Gill VA , Worman K , Burek-Huntington K , Pabilonia KL , Johnson S , Fitzpatrick KA , Weller C , Kersh GJ . Dis Aquat Organ 2015 114 (1) 83-7 Valvular endocarditis has been well described in northern sea otters Enhydra lutris kenyoni of Alaska and in many cases no cause has been identified. It is also one of the most common conditions observed in people with chronic Coxiella burnetii infection. Given the high levels of C. burnetii exposure in marine mammals distributed throughout the same geographic range as the northern sea otter, and the presence of valvular lesions seen in otters, the objective of this study was to determine the level of C. burnetii exposure in otters and investigate any association between exposure, infection and valvular disease in this species. Archived serum from 75 live captured, apparently healthy otters (25 from each of 3 stocks) and 30 dead otters were tested for C. burnetii antibodies by indirect florescent antibody assay (IFA). Archived bone marrow and heart valves were tested for C. burnetii DNA by real-time PCR (qPCR). Overall, the seroprevalence in live otters was 17%, with significantly more exposed animals in the south central (40%) stock relative to the southwest (8%) and southeast (4%). The seroprevalence of animals sampled post mortem was 27%, although none of the bone marrow or heart valve samples were positive by qPCR. Results of this study failed to demonstrate a significant association between C. burnetii infection and valvular endocarditis in sea otters; however, the differing seroprevalence suggests that exposure opportunities vary geographically. |
- Page last reviewed:Feb 1, 2024
- Page last updated:May 16, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure