Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-30 (of 49 Records) |
Query Trace: Welcome DE[original query] |
---|
Rat-tail models for studying hand-arm vibration syndrome: A comparison between living and cadaver rat tails
Warren CM , Xu XS , Jackson M , McKinney WG , Wu JZ , Welcome DE , Waugh S , Chapman P , Sinsel EW , Service S , Krajnak K , Dong RG . Vib 2024 7 (3) 722-737 Over-exposure of the hand-arm system to intense vibration and force over time may cause degeneration of the vascular, neurological, and musculoskeletal systems in the fingers. A novel animal model using rat tails has been developed to understand the health effects on human fingers exposed to vibration and force when operating powered hand tools or workpieces. The biodynamic responses, such as vibration stress, strain, and power absorption density, of the rat tails can be used to help evaluate the health effects related to vibration and force and to establish a dose-effect relationship. While the biodynamic responses of cadaver rat tails have been investigated, the objective of the current study was to determine whether the biodynamic responses of living rat tails are different from those of cadaver rat tails, and whether the biodynamic responses of both living and cadaver tails change with exposure duration. To make direct comparisons, the responses of both cadaver and living rat tails were examined on four different testing stations. The transfer function of each tail under a given contact force (2 N) was measured at each frequency in the one-third octave bands from 20 to 1000 Hz, and used to calculate the mechanical system parameters of the tails. The transfer functions were also measured at different exposure durations to determine the time dependency of the response. Differences were observed in the vibration biodynamic responses between living and cadaver tails, but the general trends were similar. The biodynamic responses of both cadaver and living rat tails varied with exposure duration. © 2024 by the authors. |
A novel rat-tail model for studying human finger vibration health effects
Dong RG , Warren C , Xu XS , Wu JZ , Welcome DE , Waugh S , Krajnak K . Proc Inst Mech Eng H 2023 237 (7) 9544119231181246 It has been hypothesized that the biodynamic responses of the human finger tissues to vibration are among the major stimuli that cause vibration health effects. Furthermore, the finger contact pressure can alter these effects. It is difficult to test these hypotheses using human subjects or existing animal models. The objective of this study was to develop a new rat-tail vibration model to investigate the combined effects of vibration and contact pressure and to identify their relationships with the biodynamic responses. Physically, the new exposure system was developed by adding a loading device to an existing rat-tail model. An analytical model of the rat-tail exposure system was proposed and used to formulate the methods for quantifying the biodynamic responses. A series of tests with six tails dissected from rat cadavers were conducted to test and evaluate the new model. The experimental and modeling results demonstrate that the new model behaves as predicted. Unlike the previous model, the vibration strain and stress of the rat tail does not depend primarily on the vibration response of the tail itself but on that of the loading device. This makes it possible to quantify and control the biodynamic responses conveniently and reliably by measuring the loading device response. This study also identified the basic characteristics of the tail biodynamic responses in the exposure system, which can be used to help design the experiments for studying vibration biological effects. |
A review of hand-arm vibration studies conducted by US NIOSH since 2000
Dong RG , Wu JZ , Xu XS , Welcome DE , Krajnak K . Vibration 2021 4 (2) 482-528 Studies on hand-transmitted vibration exposure, biodynamic responses, and biological effects were conducted by researchers at the Health Effects Laboratory Division (HELD) of the National Institute for Occupational Safety and Health (NIOSH) during the last 20 years. These studies are systematically reviewed in this report, along with the identification of areas where additional research is needed. The majority of the studies cover the following aspects: (i) the methods and techniques for measuring hand-transmitted vibration exposure; (ii) vibration biodynamics of the hand-arm system and the quantification of vibration exposure; (iii) biological effects of hand-transmitted vibration exposure; (iv) measurements of vibration-induced health effects; (iv) quantification of influencing biomechanical effects; and (v) intervention methods and technologies for controlling hand-transmitted vibration exposure. The major findings of the studies are summarized and discussed. |
An investigation of the effectiveness of vibration-reducing gloves for controlling vibration exposures during grinding handheld workpieces
Xu XS , Welcome DE , McDowell TW , Warren C , Service S , Lin H , Chen Q , Dong RG . Appl Ergon 2021 95 103454 Prolonged and intensive vibration exposures during the grinding of handheld workpieces may cause hand-arm vibration syndrome. The objectives of this study are to develop an on-the-hand method for evaluating vibration-reducing (VR) gloves, and to determine whether VR gloves can significantly reduce the vibration exposures. A worker holding and pressing a typical workpiece (golf club head) against a grinding wheel or belt in order to shape the workpiece was simulated, and the input vibration and those on the workpiece and hand-arm system were measured. Ten human subjects participated in the experiment. The results demonstrate that VR gloves significantly reduced the vibrations at the palm, hand dorsum, and wrist. The grinding interface condition and hand feed force did not substantially affect glove effectiveness. The use of gloves slightly increased the workpiece resonant response, but the resonant response did not significantly affect glove effectiveness. This study concluded that the use of VR gloves can help control vibration exposures of workers performing grinding of handheld workpieces. |
An approach to characterize the impact absorption performance of construction helmets in top impact
Pan CS , Wimer BM , Welcome DE , Wu JZ . J Test Eval 2020 49 (3) The helmets used by construction site workers are mainly designed for head protection when objects are dropped from heights. Construction helmets are also casually called hard hats in industries. Common construction helmets are mostly categorized as type 1 according to different standards. All type 1 helmets have to pass type 1 standard impact tests, which are top impact tests--the helmet is fixed and is impacted by a free falling impactor on the top crown of the helmet shell. The purpose of this study was to develop an approach that can determine the performance characterization of a helmet. A total of 31 drop impact tests using a representative type 1 helmet model were performed at drop heights from 0.30 to 2.23 m, which were estimated to result in impact speeds from 2.4 to 6.6 m/s. Based on our results, we identified a critical drop height that was used to evaluate the performance of helmets. The peak impact forces and peak accelerations varied nonproportionally with the drop height. When the drop height is less than the critical height, the peak force and peak acceleration increase gradually and slowly with increasing drop height. When the drop height is greater than the critical height, the peak force and peak acceleration increase steeply with even a slight increase in drop height. Based on the critical drop height, we proposed an approach to determine the safety margin of a helmet. The proposed approach would make it possible to determine the performance characteristics of a helmet and to estimate the safety margin afforded by the helmet, if the helmet first passes the existing standardized tests. The proposed test approach would provide supplementary information for consumers to make knowledgeable decisions when selecting construction helmets. |
Characterizing vibration responses of a handheld workpiece and the handarm system
Xu XS , Welcome DE , McDowell TW , Warren C , Lin H , Xiao B , Chen Q , Dong RG . J Low Freq Noise Vib Act Control 2020 40 (2) 802-822 The objective of this study is to characterize the vibration responses of a handheld workpiece and the handarm system, which is an important step toward identifying and developing effective methods and technologies for controlling the vibration exposures to workers performing the grinding of handheld workpieces. This study established a method for measuring the vibration responses of the entire workpiecehandarm system; the vibration exposure of a worker holding and pressing a typical workpiece against a sanding belt or grinding wheel in order to shape the workpiece was simulated. This method was applied to measure the apparent mass and vibration transmissibility of the system under two different feed forces (15 N and 30 N) and six simulated grinding interfaces with different stiffness values. A major resonance was observed in each transmissibility spectrum of the workpiece, which was correlated with the major resonance of the impedance of the entire system. This resonant frequency depended primarily on the workpiece mass and the grinding interface stiffness, but the handarm system could substantially affect the resonance magnitude. The feed force also significantly affected the resonance frequency and magnitude. While increasing the feed force increased the overall vibration transmissibility on the handarm system, the transmissibility with respect to the workpiece was not significantly affected by the interface conditions. The implications of the results are discussed. |
Identification of effective engineering methods for controlling handheld workpiece vibration in grinding processes
Dong RG , Welcome DE , Xu XS , McDowell TW . Int J Ind Ergon 2020 77 The objective of this study is to identify effective engineering methods for controlling handheld workpiece vibration during grinding processes. Prolonged and intensive exposures to such vibration can cause hand-arm vibration syndrome among workers performing workpiece grinding, but how to effectively control these exposures remains an important issue. This study developed a methodology for performing their analyses and evaluations based on a model of the entire grinding machine-workpiece-hand-arm system. The model can simulate the vibration responses of a workpiece held in the worker's hands and pressed against a grinding wheel in order to shape the workpiece in the major frequency range of concern (6.3-1600 Hz). The methodology was evaluated using available experimental data. The results suggest that the methodology is acceptable for these analyses and evaluations. The results also suggest that the workpiece vibration resulting from the machine vibration generally depends on two mechanisms or pathways: (1) the direct vibration transmission from the grinding machine; and (2) the indirect transmission that depends on both the machine vibration transmission to the workpiece and the interface excitation transformation to the workpiece vibration. The methodology was applied to explore and/or analyze various engineering methods for controlling workpiece vibrations. The modeling results suggest that while these intervention methods have different advantages and limitations, some of their combinations can effectively reduce the vibration exposures of grinding workers. These findings can be used as guidance for selecting and developing more effective technologies to control handheld workpiece vibration exposures. |
Development of a finger adapter method for testing and evaluating vibration-reducing gloves and materials
Xu XS , Welcome DE , Warren CM , McDowell TW , Dong RG . Measurement (Lond) 2019 137 362-374 The objective of this study was to develop a convenient and reliable adapter method for testing and evaluating vibration-reducing (VR) gloves and VR materials at the fingers. The general requirements and technical specifications for the design of the new adapter were based on our previous studies of hand-held adapters for vibration measurement and a conceptual model of the fingers-adapter-glove-handle system developed in this study. Two thicknesses (2 mm and 3 mm) of the adapter beam were fabricated using a 3-D printer. Each adapter is a thin beam equipped with a miniature tri-axial accelerometer (1.1 g) mounted at its center, with a total weight ≤ 2.2 g. To measure glove vibration transmissibility, the adapter is held with two gloved fingers; a finger is positioned on each side of the accelerometer. Each end of the adapter beam is slotted between the glove material and the finger. A series of experiments was conducted to evaluate this two-fingers-held adapter method by measuring the transmissibility of typical VR gloves and a sample VR material. The experimental results indicate that the major resonant frequency of the lightweight adapter on the VR material (≥800 Hz) is much higher than the resonant frequencies of the gloved fingers grasping a cylindrical handle (≤300 Hz). The experimental results were repeatable across the test treatments. The basic characteristics of the measured glove vibration transmissibility are consistent with the theoretical predictions based on the biodynamics of the gloved fingers-hand-arm system. The results suggest that VR glove fingers can effectively reduce only high-frequency vibration, and VR effectiveness can be increased by reducing the finger contact force. This study also demonstrated that the finger adapter method can be combined with the palm adapter method prescribed in the standardized glove test, which can double the test efficiency without substantially increasing the expense of the test. |
An evaluation of the contact forces on the fingers when squeezing a spherical rehabilitation ball
Wu JZ , Sinsel EW , Warren CM , Welcome DE . Biomed Mater Eng 2018 29 (5) 629-639 The rehabilitation squeeze ball is a popular device to help strengthen the hand, fingers and forearm muscles. The distributions of the contact pressure in the interface between the therapy ball and hand/fingers can affect the joint moment of each of the individual fingers, thereby affecting rehabilitation effects. In the current study, we evaluated the contact force distributions on the fingers when gripping a spherical object. Eight female adults [age 29 (9.1) years, mass 64.6 (7.1) kg, height 163.5 (1.9) cm, hand length 17.2 (0.7) cm] participated in the study. Contact force sensors were attached to the middle of the palmar surfaces of the distal, middle, and proximal phalanges of the four fingers in the longitudinal direction. In order to evaluate the effects of the ball stiffness on the contact force distributions on the fingers, subjects were requested to perform quasi-static gripping on a standard tennis ball and on a rehabilitation ball. The tennis ball is much stiffer and experiences smaller deformation under compression compared to the rehabilitation ball. We analyzed the force share among the distal, middle, and proximal finger segments, when subjects gripping balls of different stiffnesses (tennis ball vs. rehabilitation ball) and at three different grip efforts. Our results indicated that the grip force is contributed about 60% and 40% by the middle/ring fingers and by the index/little fingers, respectively. These characteristics are independent of the grip force levels and stiffness of the contact surface. |
A model for simulating vibration responses of grinding machine-workpiece-hand-arm systems
Dong RG , Welcome DE , Xu X , Chen Q , Lin H , McDowell TW , Wu JZ . J Sound Vib 2018 431 276-294 The objective of this study was to develop a vibration model of a grinding machine-workpiece-hand-arm system. A lumped-parameter model structure of the system was proposed, and its major parameters were determined using the mechanical impedance measured at the grinding point of a typical workpiece (golf club head) held by two hands and referenced to the vibration transmissibility spectra measured at the wrist and on the upper arm of human subjects. The model reasonably predicted the vibration transmissibility spectra measured on the club head and the driving-point response function when the grinding contact stiffness was below a certain value. This suggests that the model is acceptable not only to enhance the understanding of the system responses, but also to explore some engineering methods for controlling vibration exposures during the grinding process. The identified model parameters reveal that the major resonance of the handheld workpiece depends primarily on its mass and grinding contact stiffness. The feed force applied in the grinding process can substantially affect the grinding contact stiffness; as a result, it can significantly influence the resonance. Vibration-reducing gloves can marginally increase the workpiece resonance, but these gloves can reduce some vibration transmitted to the hand-arm system. This study also clarified an important mechanism for the prediction errors of linear human vibration models, which is useful to further improve human vibration modeling. |
The effects of feed force on rivet bucking bar vibrations
McDowell TW , Xu XS , Warren C , Welcome DE , Dong RG . Int J Ind Ergon 2018 67 145-158 Percussive riveting is the primary process for attaching the outer sheet metal “skins” of an aircraft to its airframe. Workers using manually-operated riveting tools (riveting hammers and rivet bucking bars) are exposed to significant levels of hand-transmitted vibration (HTV) and are at risk of developing components of hand-arm vibration syndrome (HAVS). To protect workers, employers can assess and select riveting tools that produce reduced HTV exposures. Researchers at the National Institute for Occupational Safety & Health (NIOSH) have developed a laboratory-based apparatus and methodology to evaluate the vibrations of rivet bucking bars. Using this simulated riveting approach, this study investigated the effects of feed force on the vibrations of several typical rivet bucking bars and that transmitted to the bucking bar operator's wrist. Five bucking bar models were assessed under three levels of feed force. The study results demonstrate that the feed force can be a major influencing factor on bucking bar vibrations. Similar feed force effects were observed at the bucking bar operator's wrist. This study also shows that different bucking bar designs will respond differently to variations in feed force. Some bucking bar designs may offer reduced vibration exposures to the bar operator's fingers while providing little attenuation of wrist acceleration. Knowledge of how rivet bucking bar models respond to riveting hammer vibrations can be important for making informed bucking bar selections. The study results indicate that, to help in the appropriate selection of bucking bars, candidate bar models should be evaluated at multiple feed force levels. The results also indicate that the bucking bar model, feed force level, or the bucking bar operator have no meaningful effects on the vibration excitation (riveting hammer), which further suggests that the test apparatus proposed by NIOSH researchers meets the basic requirements for a stable vibration source in laboratory-based bucking bar vibration assessments. This study provides relevant information that can be used to help develop a standardized laboratory-based bucking bar evaluation methodology and to help in the selection of appropriate bucking bars for various workplace riveting applications. Relevance to Industry: Because the feed force level can affect HTV exposures to bucking bar operators, the feed force required for specific riveting operations should be an important consideration when selecting bucking bar models. This study provides useful information about bucking bar responses to riveting hammer vibrations; this knowledge can improve bucking bar selections. |
The relationships between hand coupling force and vibration biodynamic responses of the hand-arm system
Pan D , Xu XS , Welcome DE , McDowell TW , Warren C , Wu J , Dong RG . Ergonomics 2017 61 (6) 1-38 This study conducted two series of experiments to investigate the relationships between hand coupling force and biodynamic responses of the hand-arm system. In the first experiment, the vibration transmissibility on the system was measured as a continuous function of grip force while the hand was subjected to discrete sinusoidal excitations. In the second experiment, the biodynamic responses of the system subjected to a broadband random vibration were measured under five levels of grip forces and a combination of grip and push forces. This study found that the transmissibility at each given frequency increased with the increase in the grip force before reaching a maximum level. The transmissibility then tended to plateau or decrease when the grip force was further increased. This threshold force increased with an increase in the vibration frequency. These relationships remained the same for both types of vibrations. The implications of the experimental results are discussed. Practitioner Summary Shocks and vibrations transmitted to the hand-arm system may cause injuries and disorders of the system. How to take hand coupling force into account in the risk assessment of vibration exposure remains an important issue for further studies. This study is designed and conducted to help resolve this issue. |
Modeling of the interaction between grip force and vibration transmissibility of a finger
Wu JZ , Welcome DE , McDowell TW , Xu XS , Dong RG . Med Eng Phys 2017 45 61-70 It is known that the vibration characteristics of the fingers and hand and the level of grip action interacts when operating a power tool. In the current study, we developed a hybrid finger model to simulate the vibrations of the hand-finger system when gripping a vibrating handle covered with soft materials. The hybrid finger model combines the characteristics of conventional finite element (FE) models, multi-body musculoskeletal models, and lumped mass models. The distal, middle, and proximal finger segments were constructed using FE models, the finger segments were connected via three flexible joint linkages (i.e., distal interphalangeal joint (DIP), proximal interphalangeal joint (PIP), and metacarpophalangeal (MCP) joint), and the MCP joint was connected to the ground and handle via lumped parameter elements. The effects of the active muscle forces were accounted for via the joint moments. The bone, nail, and hard connective tissues were assumed to be linearly elastic whereas the soft tissues, which include the skin and subcutaneous tissues, were considered as hyperelastic and viscoelastic. The general trends of the model predictions agree well with the previous experimental measurements in that the resonant frequency increased from proximal to the middle and to the distal finger segments for the same grip force, that the resonant frequency tends to increase with increasing grip force for the same finger segment, especially for the distal segment, and that the magnitude of vibration transmissibility tends to increase with increasing grip force, especially for the proximal segment. The advantage of the proposed model over the traditional vibration models is that it can predict the local vibration behavior of the finger to a tissue level, while taking into account the effects of the active musculoskeletal force, the effects of the contact conditions on vibrations, the global vibration characteristics. |
Vibration characteristics of golf club heads in their handheld grinding process and potential approaches for reducing the vibration exposure
Chen Q , Lin H , Xiao B , Welcome DE , Lee J , Chen G , Tang S , Zhang D , Xu G , Yan M , Yan H , Xu X , Qu H , Dong RG . Int J Ind Ergon 2016 62 27-41 To control vibration-induced white finger among workers performing the fine grinding of golf club heads, the aims of this study are to clarify the major vibration sources in the grinding process, to identify and understand the basic characteristics of the club head vibration, and to propose potential approaches for reducing the vibration exposure. The vibrations on two typical club heads and two belt grinding machines were measured at a workplace. A simulated test station was also constructed and used to help examine some influencing factors of the club head vibration. This study found that the club head vibration was the combination of the vibration transmitted from the grinding machines and that generated in the grinding process. As a result, any factor that affects the machine vibration, the grinding vibration, and/or the dynamic response of the club head can influence the vibration exposure of the fingers or hands holding the club head in the grinding process. The significant influencing factors identified in the study include testing subject, grinding machine, machine operation speed, drive wheel condition, club head model, mechanical constraints imposed on the club head during the grinding, and machine foot pad. These findings suggest that the vibration exposure can be controlled by reducing the grinding machine vibration, changing the workpiece dynamic properties, and mitigating the vibration transmission in its pathway. Many potential methods for the control are proposed and discussed. Relevance to industry: Vibrations on handheld workpieces can be effectively transmitted to the hands, especially the fingers. As a result, a major component of the hand-arm vibration syndrome - vibration-induced white finger - has been observed among some workers performing the grinding and/or polishing tasks of the handheld workpieces such as golf club heads. The results of this study can be used to develop more effective methods and technologies to control the vibration exposure of these workers. This may help effectively control this occupational disease. |
Vibrations transmitted from human hands to upper arm, shoulder, back, neck, and head
Xu XS , Dong RG , Welcome DE , Warren C , McDowell TW , Wu JZ . Int J Ind Ergon 2016 62 1-12 Some powered hand tools can generate significant vibration at frequencies below 25 Hz. It is not clear whether such vibration can be effectively transmitted to the upper arm, shoulder, neck, and head and cause adverse effects in these substructures. The objective of this study is to investigate the vibration transmission from the human hands to these substructures. Eight human subjects participated in the experiment, which was conducted on a 1-D vibration test system. Unlike many vibration transmission studies, both the right and left hand-arm systems were simultaneously exposed to the vibration to simulate a working posture in the experiment. A laser vibrometer and three accelerometers were used to measure the vibration transmitted to the substructures. The apparent mass at the palm of each hand was also measured to help in understanding the transmitted vibration and biodynamic response. This study found that the upper arm resonance frequency was 7-12 Hz, the shoulder resonance was 7-9 Hz, and the back and neck resonances were 6-7 Hz. The responses were affected by the hand-arm posture, applied hand force, and vibration magnitude. The transmissibility measured on the upper arm had a trend similar to that of the apparent mass measured at the palm in their major resonant frequency ranges. The implications of the results are discussed. Relevance to industry: Musculoskeletal disorders (MSDs) of the shoulder and neck are important issues among many workers. Many of these workers use heavy-duty powered hand tools. The combined mechanical loads and vibration exposures are among the major factors contributing to the development of MSDs. The vibration characteristics of the body segments examined in this study can be used to help understand MSDs and to help develop more effective intervention methods. © 2016. |
Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration
Welcome DE , Dong RG , Xu XS , Warren C , McDowell TW . Occup Ergon 2016 13 (1) 23-44 BACKGROUND: Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE: The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS: A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS: When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS: This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for better effectiveness for protecting the fingers. |
The effect of a mechanical arm system on portable grinder vibration emissions
McDowell TW , Welcome DE , Warren C , Xu XS , Dong RG . Ann Occup Hyg 2015 60 (3) 371-86 Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank orders. |
Review and evaluation of hand-arm coordinate systems for measuring vibration exposure, biodynamic responses, and hand forces
Dong RG , Sinsel EW , Welcome DE , Warren C , Xu XS , McDowell TW , Wu JZ . Saf Health Work 2015 6 (3) 159-73 The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study. |
Theoretical foundation, methods, and criteria for calibrating human vibration models using frequency response functions
Dong RG , Welcome DE , McDowell TW , Wu JZ . J Sound Vib 2015 356 195-216 While simulations of the measured biodynamic responses of the whole human body or body segments to vibration are conventionally interpreted as summaries of biodynamic measurements, and the resulting models are considered quantitative, this study looked at these simulations from a different angle: model calibration. The specific aims of this study are to review and clarify the theoretical basis for model calibration, to help formulate the criteria for calibration validation, and to help appropriately select and apply calibration methods. In addition to established vibration theory, a novel theorem of mechanical vibration is also used to enhance the understanding of the mathematical and physical principles of the calibration. Based on this enhanced understanding, a set of criteria was proposed and used to systematically examine the calibration methods. Besides theoretical analyses, a numerical testing method is also used in the examination. This study identified the basic requirements for each calibration method to obtain a unique calibration solution. This study also confirmed that the solution becomes more robust if more than sufficient calibration references are provided. Practically, however, as more references are used, more inconsistencies can arise among the measured data for representing the biodynamic properties. To help account for the relative reliabilities of the references, a baseline weighting scheme is proposed. The analyses suggest that the best choice of calibration method depends on the modeling purpose, the model structure, and the availability and reliability of representative reference data. |
An examination of an adapter method for measuring the vibration transmitted to the human arms
Xu XS , Dong RG , Welcome DE , Warren C , McDowell TW . Measurement (Lond) 2015 73 318-334 The objective of this study is to evaluate an adapter method for measuring the vibration on the human arms. Four instrumented adapters with different weights were used to measure the vibration transmitted to the wrist, forearm, and upper arm of each subject. Each adapter was attached at each location on the subjects using an elastic cloth wrap. Two laser vibrometers were also used to measure the transmitted vibration at each location to evaluate the validity of the adapter method. The apparent mass at the palm of the hand along the forearm direction was also measured to enhance the evaluation. This study found that the adapter and laser-measured transmissibility spectra were comparable with some systematic differences. While increasing the adapter mass reduced the resonant frequency at the measurement location, increasing the tightness of the adapter attachment increased the resonant frequency. However, the use of lightweight (15 g) adapters under medium attachment tightness did not change the basic trends of the transmissibility spectrum. The resonant features observed in the transmissibility spectra were also correlated with those observed in the apparent mass spectra. Because the local coordinate systems of the adapters may be significantly misaligned relative to the global coordinates of the vibration test systems, large errors were observed for the adapter-measured transmissibility in some individual orthogonal directions. This study, however, also demonstrated that the misalignment issue can be resolved by either using the total vibration transmissibility or by measuring the misalignment angles to correct the errors. Therefore, the adapter method is acceptable for understanding the basic characteristics of the vibration transmission in the human arms, and the adapter-measured data are acceptable for approximately modeling the system. |
An examination of the vibration transmissibility of the hand-arm system in three orthogonal directions
Welcome DE , Dong RG , Xu XS , Warren C , McDowell TG , Wu JZ . Int J Ind Ergon 2015 45 (1) 21-34 The objective of this study is to enhance the understanding of the vibration transmission in the hand-arm system in three orthogonal directions (X, Y, and Z). For the first time, the transmitted vibrations distributed on the entire hand-arm system exposed in the three orthogonal directions via a 3-D vibration test system were measured using a 3-D laser vibrometer. Seven adult male subjects participated in the experiment. This study confirms that the vibration transmissibility generally decreased with the increase in distance from the hand and it varied with the vibration direction. Specifically, to the upper arm and shoulder, only moderate vibration transmission was measured in the test frequency range (16 to 500Hz), and virtually no transmission was measured in the frequency range higher than 50Hz. The resonance vibration on the forearm was primarily in the range of 16-30Hz with the peak amplitude of approximately 1.5 times of the input vibration amplitude. The major resonance on the dorsal surfaces of the hand and wrist occurred at around 30-40Hz and, in the Y direction, with peak amplitude of more than 2.5 times of the input amplitude. At higher than 50Hz, vibration transmission was effectively limited to the hand and fingers. A major finger resonance was observed at around 100Hz in the X and Y directions and around 200Hz in the Z direction. In the fingers, the resonance magnitude in the Z direction was generally the lowest, and the resonance magnitude in the Y direction was generally the highest with the resonance amplitude of 3 times the input vibration, which was similar to the transmissibility at the wrist and hand dorsum. The implications of the results are discussed. RELEVANCE TO INDUSTRY: Prolonged, intensive exposure to hand-transmitted vibration could result in hand-arm vibration syndrome. While the syndrome's precise mechanisms remain unclear, the characterization of the vibration transmissibility of the system in the three orthogonal dimensions performed in this study can help understand the syndrome and help develop improved frequency weightings for assessing the risk of the exposure for developing various components of the syndrome. |
Tool-specific performance of vibration-reducing gloves for attenuating palm-transmitted vibrations in three orthogonal directions
Dong RG , Welcome DE , Peterson DR , Xu XS , McDowell TW , Warren C , Asaki T , Kudernatsch S , Brammer A . Int J Ind Ergon 2014 44 (6) 827-839 Vibration-reducing (VR) gloves have been increasingly used to help reduce vibration exposure, but it remains unclear how effective these gloves are. The purpose of this study was to estimate tool-specific performances of VR gloves for reducing the vibrations transmitted to the palm of the hand in three orthogonal directions (3-D) in an attempt to assess glove effectiveness and aid in the appropriate selection of these gloves. Four typical VR gloves were considered in this study, two of which can be classified as anti-vibration (AV) gloves according to the current AV glove test standard. The average transmissibility spectrum of each glove in each direction was synthesized based on spectra measured in this study and other spectra collected from reported studies. More than seventy vibration spectra of various tools or machines were considered in the estimations, which were also measured in this study or collected from reported studies. The glove performance assessments were based on the percent reduction of frequency-weighted acceleration as is required in the current standard for assessing the risk of vibration exposures. The estimated tool-specific vibration reductions of the gloves indicate that the VR gloves could slightly reduce (<5%) or marginally amplify (<10%) the vibrations generated from low-frequency (<25 Hz) tools or those vibrating primarily along the axis of the tool handle. With other tools, the VR gloves could reduce palm-transmitted vibrations in the range of 5%–58%, primarily depending on the specific tool and its vibration spectra in the three directions. The two AV gloves were not more effective than the other gloves with some of the tools considered in this study. The implications of the results are discussed. Relevance to industry Hand-transmitted vibration exposure may cause hand-arm vibration syndrome. Vibration-reducing gloves are considered as an alternative approach to reduce the vibration exposure. This study provides useful information on the effectiveness of the gloves when used with many tools for reducing the vibration transmitted to the palm in three directions. The results can aid in the appropriate selection and use of these gloves. |
Laboratory and workplace assessments of rivet bucking bar vibration emissions
McDowell TW , Warren C , Xu XS , Welcome DE , Dong RG . Ann Occup Hyg 2014 59 (3) 382-97 Sheet metal workers operating rivet bucking bars are at risk of developing hand and wrist musculoskeletal disorders associated with exposures to hand-transmitted vibrations and forceful exertions required to operate these hand tools. New bucking bar technologies have been introduced in efforts to reduce workplace vibration exposures to these workers. However, the efficacy of these new bucking bar designs has not been well documented. While there are standardized laboratory-based methodologies for assessing the vibration emissions of many types of powered hand tools, no such standard exists for rivet bucking bars. Therefore, this study included the development of a laboratory-based method for assessing bucking bar vibrations which utilizes a simulated riveting task. With this method, this study evaluated three traditional steel bucking bars, three similarly shaped tungsten alloy bars, and three bars featuring spring-dampeners. For comparison the bucking bar vibrations were also assessed during three typical riveting tasks at a large aircraft maintenance facility. The bucking bars were rank-ordered in terms of unweighted and frequency-weighted acceleration measured at the hand-tool interface. The results suggest that the developed laboratory method is a reasonable technique for ranking bucking bar vibration emissions; the lab-based riveting simulations produced similar rankings to the workplace rankings. However, the laboratory-based acceleration averages were considerably lower than the workplace measurements. These observations suggest that the laboratory test results are acceptable for comparing and screening bucking bars, but the laboratory measurements should not be directly used for assessing the risk of workplace bucking bar vibration exposures. The newer bucking bar technologies exhibited significantly reduced vibrations compared to the traditional steel bars. The results of this study, together with other information such as rivet quality, productivity, tool weight, comfort, worker acceptance, and initial cost can be used to make informed bucking bar selections. |
Anti-vibration gloves?
Hewitt S , Dong RG , Welcome DE , McDowell TW . Ann Occup Hyg 2014 59 (2) 127-41 For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. |
Analysis of the effects of surface stiffness on the contact interaction between a finger and a cylindrical handle using a three-dimensional hybrid model
Wu JZ , Dong RG , Warren CM , Welcome DE , McDowell TW . Med Eng Phys 2014 36 (7) 831-41 Contact interactions between the hand and handle, such as the contact surface softness and contact surface curvature, will affect both physical effort and musculoskeletal fatigue, thereby the comfort and safety of power tool operations. Previous models of hand gripping can be categorized into two groups: multi-body dynamic models and finite element (FE) models. The goal of the current study is to develop a hybrid FE hand gripping model, which combines the features of conventional FE models and multi-body dynamic models. The proposed model is applied to simulate hand-gripping on a cylindrical handle with covering materials of different softness levels. The model included three finger segments (distal, middle, and proximal phalanxes), three finger joints (the distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joint), and major anatomical substructures. The model was driven by joint moments, which are the net effects of all passive and active muscular forces acting about the joints. The finger model was first calibrated by using experimental data of human subject tests, and then applied to investigate the effects of surface softness on contact interactions between a finger and a cylindrical handle. Our results show that the maximal compressive stress and strain in the soft tissues of the fingers can be effectively reduced by reducing the stiffness of the covering material. |
Analysis of the musculoskeletal loading of the thumb during pipetting - A pilot study
Wu JZ , Sinsel EW , Shroyer JF , Warren CM , Welcome DE , Zhao KD , An KN , Buczek FL . J Biomech 2013 47 (2) 392-9 Previous epidemiological studies indicate that the use of thumb-push mechanical pipettes is associated with musculoskeletal disorders (MSDs) in the hand. The goal of the current study was to analyze the loading in the muscle-tendon units in the thumb during pipetting. The hand is modeled as a multi-body linkage system and includes four fingers (index, long, ring, and little finger), a thumb, and a palm segment. Since the current study is focused on the thumb, the model includes only nine muscles attached to the thumb via tendons. The time-histories of joint angles and push force at the pipette plunger during pipetting were determined experimentally and used as model input; whereas forces in the muscle-tendon units in the thumb were calculated via an inverse dynamic approach combined with an optimization procedure. Results indicate that all nine muscles have force outputs during pipetting, and the maximal force was in the abductor pollicis brevis (APB). The ratio of the mean peak muscle force to the mean peak push force during the dispensing cycle was approximately 2.3, which is comparable to values observed in grasping tasks in the literature. The analysis method and results in the current study provide a mechanistic understanding of MSD risk factors associated with pipetting, and may be useful in guiding ergonomic designs for manual pipettes. |
Vibration-reducing gloves: transmissibility at the palm of the hand in three orthogonal directions
McDowell TW , Dong RG , Welcome DE , Xu XS , Warren C . Ergonomics 2013 56 (12) 1823-40 Vibration-reducing (VR) gloves are commonly used as a means to help control exposures to hand-transmitted vibrations generated by powered hand tools. The objective of this study was to characterise the vibration transmissibility spectra and frequency-weighted vibration transmissibility of VR gloves at the palm of the hand in three orthogonal directions. Seven adult males participated in the evaluation of seven glove models using a three-dimensional hand-arm vibration test system. Three levels of hand coupling force were applied in the experiment. This study found that, in general, VR gloves are most effective at reducing vibrations transmitted to the palm along the forearm direction. Gloves that are found to be superior at reducing vibrations in the forearm direction may not be more effective in the other directions when compared with other VR gloves. This casts doubts on the validity of the standardised glove screening test. Practitioner Summary: This study used human subjects to measure three-dimensional vibration transmissibility of vibration-reducing gloves at the palm and identified their vibration attenuation characteristics. This study found the gloves to be most effective at reducing vibrations along the forearm direction. These gloves did not effectively attenuate vibration along the handle axial direction. |
Theoretical relationship between vibration transmissibility and driving-point response functions of the human body
Dong RG , Welcome DE , McDowell TW , Wu JZ . J Sound Vib 2013 332 (24) 6193-6202 The relationship between the vibration transmissibility and driving-point response functions (DPRFs) of the human body is important for understanding vibration exposures of the system and for developing valid models. This study identified their theoretical relationship and demonstrated that the sum of the DPRFs can be expressed as a linear combination of the transmissibility functions of the individual mass elements distributed throughout the system. The relationship is verified using several human vibration models. This study also clarified the requirements for reliably quantifying transmissibility values used as references for calibrating the system models. As an example application, this study used the developed theory to perform a preliminary analysis of the method for calibrating models using both vibration transmissibility and DPRFs. The results of the analysis show that the combined method can theoretically result in a unique and valid solution of the model parameters, at least for linear systems. However, the validation of the method itself does not guarantee the validation of the calibrated model, because the validation of the calibration also depends on the model structure and the reliability and appropriate representation of the reference functions. The basic theory developed in this study is also applicable to the vibration analyses of other structures. Published by Elsevier Ltd. |
The musculoskeletal loading profile of the thumb during pipetting based on tendon displacement
Wu JZ , Sinsel EW , Shroyer JF , Welcome DE , Zhao KD , An KN , Buczek FL . Med Eng Phys 2013 35 (12) 1801-10 Strong evidence indicates that highly repetitive manual work is associated with the development of upper extremity musculoskeletal disorders (MSDs). One of the occupational activities that involves highly repetitive and forceful hand work is manual pipetting in chemical or biological laboratories. In the current study, we quantified tendon displacement as a parameter to assess the cumulative loading exposure of the musculoskeletal system in the thumb during pipetting. The maximal tendon displacement was found in the flexor pollicis longus (FPL) tendon. Assuming that subjects' pipetting rates were maintained constant during a period of 1h, the average accumulated tendon displacement in the FPL reached 29m, which is in the lower range of those observed in other occupational activities, such as typing and nail gun operations. Our results showed that tendon displacement data contain relatively small standard deviations, despite high variances in thumb kinematics, suggesting that the tendon displacements may be useful in evaluating the musculoskeletal loading profile. |
Assessment of hand-transmitted vibration exposure from motorized forks used for beach-cleaning operations
McDowell TW , Welcome DE , Warren C , Xu XS , Dong RG . Ann Occup Hyg 2013 57 (1) 43-53 Motorized vibrating manure forks were used in beach-cleaning operations following the massive Deepwater Horizon oil spill in the Gulf of Mexico during the summer of 2010. OBJECTIVES: The objectives of this study were to characterize the vibration emissions of these motorized forks and to provide a first approximation of hand-transmitted vibration exposures to workers using these forks for beach cleaning. METHODS: Eight operators were recruited to operate the motorized forks during this laboratory study. Four fork configurations were used in the study; two motor speeds and two fork basket options were evaluated. Accelerations were measured near each hand as the operators completed the simulated beach-cleaning task. RESULTS: The dominant vibration frequency for these tools was identified to be around 20 Hz. Because acceleration was found to increase with motor speed, workers should consider operating these tools with just enough speed to get the job done. These forks exhibited considerable acceleration magnitudes when unloaded. CONCLUSIONS: The study results suggest that the motor should not be operated with the fork in the unloaded state. Anti-vibration gloves are not effective at attenuating the vibration frequencies produced by these forks, and they may even amplify the transmitted vibration and increase hand/arm fatigue. While regular work gloves are suitable, vibration-reducing gloves may not be appropriate for use with these tools. These considerations may also be generally applicable for the use of motorized forks in other workplace environments. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure