Last data update: Jan 21, 2025. (Total: 48615 publications since 2009)
Records 1-18 (of 18 Records) |
Query Trace: Wallace Megan[original query] |
---|
The Advisory Committee on Immunization Practices' Ethical Principles for Allocating Initial Supplies of COVID-19 Vaccine-United States, 2020.
McClung N , Chamberland M , Kinlaw K , Matthew DB , Wallace M , Bell BP , Lee GM , Talbot HK , Romero JR , Oliver SE , Dooling K . Am J Transplant 2021 21 (1) 420-425 To reduce the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) and its associated impacts on health and society, COVID-19 vaccines are essential. The U.S. government is working to produce and deliver safe and effective COVID-19 vaccines for the entire U.S. population. The Advisory Committee on Immunization Practices (ACIP)1 has broadly outlined its approach for developing recommendations for the use of each COVID-19 vaccine authorized or approved by the Food and Drug Administration (FDA) for Emergency Use Authorization or licensure.1 ACIP’s recommendation process includes an explicit and transparent evidence-based method for assessing a vaccine’s safety and efficacy as well as consideration of other factors, including implementation.2 Because the initial supply of vaccine will likely be limited, ACIP will also recommend which groups should receive the earliest allocations of vaccine. The ACIP COVID-19 Vaccines Work Group and consultants with expertise in ethics and health equity considered external expert committee reports and published literature and deliberated the ethical issues associated with COVID-19 vaccine allocation decisions. The purpose of this report is to describe the four ethical principles that will assist ACIP in formulating recommendations for the allocation of COVID-19 vaccine while supply is limited, in addition to scientific data and implementation feasibility: (1) maximize benefits and minimize harms; (2) promote justice; (3) mitigate health inequities; and (4) promote transparency. These principles can also aid state, tribal, local, and territorial public health authorities as they develop vaccine implementation strategies within their own communities based on ACIP recommendations. |
Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak - United States, December 31, 2019-February 4, 2020.
Patel A , Jernigan DB , 2019-nCOV CDC Response Team , Abdirizak Fatuma , Abedi Glen , Aggarwal Sharad , Albina Denise , Allen Elizabeth , Andersen Lauren , Anderson Jade , Anderson Megan , Anderson Tara , Anderson Kayla , Bardossy Ana Cecilia , Barry Vaughn , Beer Karlyn , Bell Michael , Berger Sherri , Bertulfo Joseph , Biggs Holly , Bornemann Jennifer , Bornstein Josh , Bower Willie , Bresee Joseph , Brown Clive , Budd Alicia , Buigut Jennifer , Burke Stephen , Burke Rachel , Burns Erin , Butler Jay , Cantrell Russell , Cardemil Cristina , Cates Jordan , Cetron Marty , Chatham-Stephens Kevin , Chatham-Stevens Kevin , Chea Nora , Christensen Bryan , Chu Victoria , Clarke Kevin , Cleveland Angela , Cohen Nicole , Cohen Max , Cohn Amanda , Collins Jennifer , Conners Erin , Curns Aaron , Dahl Rebecca , Daley Walter , Dasari Vishal , Davlantes Elizabeth , Dawson Patrick , Delaney Lisa , Donahue Matthew , Dowell Chad , Dyal Jonathan , Edens William , Eidex Rachel , Epstein Lauren , Evans Mary , Fagan Ryan , Farris Kevin , Feldstein Leora , Fox LeAnne , Frank Mark , Freeman Brandi , Fry Alicia , Fuller James , Galang Romeo , Gerber Sue , Gokhale Runa , Goldstein Sue , Gorman Sue , Gregg William , Greim William , Grube Steven , Hall Aron , Haynes Amber , Hill Sherrasa , Hornsby-Myers Jennifer , Hunter Jennifer , Ionta Christopher , Isenhour Cheryl , Jacobs Max , Jacobs Slifka Kara , Jernigan Daniel , Jhung Michael , Jones-Wormley Jamie , Kambhampati Anita , Kamili Shifaq , Kennedy Pamela , Kent Charlotte , Killerby Marie , Kim Lindsay , Kirking Hannah , Koonin Lisa , Koppaka Ram , Kosmos Christine , Kuhar David , Kuhnert-Tallman Wendi , Kujawski Stephanie , Kumar Archana , Landon Alexander , Lee Leslie , Leung Jessica , Lindstrom Stephen , Link-Gelles Ruth , Lively Joana , Lu Xiaoyan , Lynch Brian , Malapati Lakshmi , Mandel Samantha , Manns Brian , Marano Nina , Marlow Mariel , Marston Barbara , McClung Nancy , McClure Liz , McDonald Emily , McGovern Oliva , Messonnier Nancy , Midgley Claire , Moulia Danielle , Murray Janna , Noelte Kate , Noonan-Smith Michelle , Nordlund Kristen , Norton Emily , Oliver Sara , Pallansch Mark , Parashar Umesh , Patel Anita , Patel Manisha , Pettrone Kristen , Pierce Taran , Pietz Harald , Pillai Satish , Radonovich Lewis , Reagan-Steiner Sarah , Reel Amy , Reese Heather , Rha Brian , Ricks Philip , Rolfes Melissa , Roohi Shahrokh , Roper Lauren , Rotz Lisa , Routh Janell , Sakthivel Senthil Kumar Sarmiento Luisa , Schindelar Jessica , Schneider Eileen , Schuchat Anne , Scott Sarah , Shetty Varun , Shockey Caitlin , Shugart Jill , Stenger Mark , Stuckey Matthew , Sunshine Brittany , Sykes Tamara , Trapp Jonathan , Uyeki Timothy , Vahey Grace , Valderrama Amy , Villanueva Julie , Walker Tunicia , Wallace Megan , Wang Lijuan , Watson John , Weber Angie , Weinbaum Cindy , Weldon William , Westnedge Caroline , Whitaker Brett , Whitaker Michael , Williams Alcia , Williams Holly , Willams Ian , Wong Karen , Xie Amy , Yousef Anna . Am J Transplant 2020 20 (3) 889-895 This article summarizes what is currently known about the 2019 novel coronavirus and offers interim guidance. |
The Advisory Committee on Immunization Practices' Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine in Adolescents Aged 12-15 Years - United States, May 2021.
Wallace M , Woodworth KR , Gargano JW , Scobie HM , Blain AE , Moulia D , Chamberland M , Reisman N , Hadler SC , MacNeil JR , Campos-Outcalt D , Morgan RL , Daley MF , Romero JR , Talbot HK , Lee GM , Bell BP , Oliver SE . MMWR Morb Mortal Wkly Rep 2021 70 (20) 749-752 The Pfizer-BioNTech COVID-19 (BNT162b2) vaccine is a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine encoding the prefusion spike glycoprotein of SARS-CoV-2, the virus that causes COVID-19. Vaccination with the Pfizer-BioNTech COVID-19 vaccine consists of 2 intramuscular doses (30 μg, 0.3 mL each) administered 3 weeks apart. On December 11, 2020, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for use of the Pfizer-BioNTech COVID-19 vaccine (Pfizer, Inc; Philadelphia, Pennsylvania) in persons aged ≥16 years (1); on December 12, 2020, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation for use of the vaccine in the same age group (2). As of May 12, 2021, approximately 141.6 million doses of the Pfizer-BioNTech COVID-19 vaccine had been administered to persons aged ≥16 years.* On May 10, 2021, FDA expanded the EUA for the Pfizer-BioNTech COVID-19 vaccine to include adolescents aged 12-15 years (1). On May 12, 2021, ACIP issued an interim recommendation(†) for use of the Pfizer-BioNTech COVID-19 vaccine in adolescents aged 12-15 years for the prevention of COVID-19. To guide its deliberations regarding the vaccine, ACIP used the Evidence to Recommendation (EtR) Framework,(§) using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.(¶) The ACIP recommendation for the use of the Pfizer-BioNTech COVID-19 vaccine in persons aged ≥12 years under an EUA is interim and will be updated as additional information becomes available. |
Updated Recommendations from the Advisory Committee on Immunization Practices for Use of the Janssen (Johnson & Johnson) COVID-19 Vaccine After Reports of Thrombosis with Thrombocytopenia Syndrome Among Vaccine Recipients - United States, April 2021.
MacNeil JR , Su JR , Broder KR , Guh AY , Gargano JW , Wallace M , Hadler SC , Scobie HM , Blain AE , Moulia D , Daley MF , McNally VV , Romero JR , Talbot HK , Lee GM , Bell BP , Oliver SE . MMWR Morb Mortal Wkly Rep 2021 70 (17) 651-656 On February 27, 2021, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the Janssen COVID-19 (Ad.26.COV2.S) vaccine (Janssen Biotech, Inc., a Janssen Pharmaceutical company, Johnson & Johnson; New Brunswick, New Jersey), and on February 28, 2021, the Advisory Committee on Immunization Practices (ACIP) issued interim recommendations for its use in persons aged ≥18 years (1,2). On April 13, 2021, CDC and FDA recommended a pause in the use of the Janssen COVID-19 vaccine after reports of six U.S. cases of cerebral venous sinus thrombosis (CVST) with thrombocytopenia, a rare thromboembolic syndrome, among Janssen COVID-19 vaccine recipients (3). Two emergency ACIP meetings were rapidly convened to review reported cases of thrombosis with thrombocytopenia syndrome (TTS) and to consider updated recommendations for use of the Janssen COVID-19 vaccine in the United States. On April 23, 2021, after a discussion of the benefits and risks of resuming vaccination, ACIP reaffirmed its interim recommendation for use of the Janssen COVID-19 vaccine in all persons aged ≥18 years under the FDA's EUA, which now includes a warning that rare clotting events might occur after vaccination, primarily among women aged 18-49 years. Patient and provider education about the risk for TTS with the Janssen COVID-19 vaccine, especially among women aged <50 years, as well as the availability of alternative COVID-19 vaccines, is required to guide vaccine decision-making and ensure early recognition and clinical management of TTS. |
The Advisory Committee on Immunization Practices' Interim Recommendation for Use of Janssen COVID-19 Vaccine - United States, February 2021.
Oliver SE , Gargano JW , Scobie H , Wallace M , Hadler SC , Leung J , Blain AE , McClung N , Campos-Outcalt D , Morgan RL , Mbaeyi S , MacNeil J , Romero JR , Talbot HK , Lee GM , Bell BP , Dooling K . MMWR Morb Mortal Wkly Rep 2021 70 (9) 329-332 On February 27, 2021, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the Janssen COVID-19 (Ad.26.COV2.S) vaccine (Janssen Biotech, Inc, a Janssen Pharmaceutical company, Johnson & Johnson; New Brunswick, New Jersey). The Janssen COVID-19 vaccine is a recombinant, replication-incompetent adenovirus serotype 26 (Ad26) vector vaccine, encoding the stabilized prefusion spike glycoprotein of SARS-CoV-2, the virus that causes COVID-19 (1). Vaccination with the Janssen COVID-19 vaccine consists of a single dose (5 × 1010 virus particles per 0.5-mL dose) administered intramuscularly. On February 28, 2021, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation* for use of the Janssen COVID-19 vaccine in persons aged ≥18 years for the prevention of COVID-19. This vaccine is the third COVID-19 vaccine authorized under an EUA for the prevention of COVID-19 in the United States (2). To guide its deliberations regarding the vaccine, ACIP used the Evidence to Recommendations (EtR) framework,† following the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.§ The ACIP recommendation for the use of the Janssen COVID-19 vaccine under an EUA is interim and will be updated as additional information becomes available. |
Rapid Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 in Detention Facility, Louisiana, USA, May-June, 2020.
Wallace M , James AE , Silver R , Koh M , Tobolowsky FA , Simonson S , Gold JAW , Fukunaga R , Njuguna H , Bordelon K , Wortham J , Coughlin M , Harcourt JL , Tamin A , Whitaker B , Thornburg NJ , Tao Y , Queen K , Uehara A , Paden CR , Zhang J , Tong S , Haydel D , Tran H , Kim K , Fisher KA , Marlow M , Tate JE , Doshi RH , Sokol T , Curran KG . Emerg Infect Dis 2021 27 (2) 421-429 To assess transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a detention facility experiencing a coronavirus disease outbreak and evaluate testing strategies, we conducted a prospective cohort investigation in a facility in Louisiana, USA. We conducted SARS-CoV-2 testing for detained persons in 6 quarantined dormitories at various time points. Of 143 persons, 53 were positive at the initial test, and an additional 58 persons were positive at later time points (cumulative incidence 78%). In 1 dormitory, all 45 detained persons initially were negative; 18 days later, 40 (89%) were positive. Among persons who were SARS-CoV-2 positive, 47% (52/111) were asymptomatic at the time of specimen collection; 14 had replication-competent virus isolated. Serial SARS-CoV-2 testing might help interrupt transmission through medical isolation and quarantine. Testing in correctional and detention facilities will be most effective when initiated early in an outbreak, inclusive of all exposed persons, and paired with infection prevention and control. |
The Advisory Committee on Immunization Practices' Updated Interim Recommendation for Allocation of COVID-19 Vaccine - United States, December 2020.
Dooling K , Marin M , Wallace M , McClung N , Chamberland M , Lee GM , Talbot HK , Romero JR , Bell BP , Oliver SE . MMWR Morb Mortal Wkly Rep 2021 69 (5152) 1657-1660 The first vaccines for prevention of coronavirus disease 2019 (COVID-19) in the United States were authorized for emergency use by the Food and Drug Administration (FDA) (1) and recommended by the Advisory Committee on Immunization Practices (ACIP) in December 2020.* However, demand for COVID-19 vaccines is expected to exceed supply during the first months of the national COVID-19 vaccination program. ACIP advises CDC on population groups and circumstances for vaccine use.(†) On December 1, ACIP recommended that 1) health care personnel(§) and 2) residents of long-term care facilities(¶) be offered COVID-19 vaccination first, in Phase 1a of the vaccination program (2). On December 20, 2020, ACIP recommended that in Phase 1b, vaccine should be offered to persons aged ≥75 years and frontline essential workers (non-health care workers), and that in Phase 1c, persons aged 65-74 years, persons aged 16-64 years with high-risk medical conditions, and essential workers not recommended for vaccination in Phase 1b should be offered vaccine.** These recommendations for phased allocation provide guidance for federal, state, and local jurisdictions while vaccine supply is limited. In its deliberations, ACIP considered scientific evidence regarding COVID-19 epidemiology, ethical principles, and vaccination program implementation considerations. ACIP's recommendations for COVID-19 vaccine allocation are interim and might be updated based on changes in conditions of FDA Emergency Use Authorization, FDA authorization for new COVID-19 vaccines, changes in vaccine supply, or changes in COVID-19 epidemiology. |
The Advisory Committee on Immunization Practices' Interim Recommendation for Use of Moderna COVID-19 Vaccine - United States, December 2020.
Oliver SE , Gargano JW , Marin M , Wallace M , Curran KG , Chamberland M , McClung N , Campos-Outcalt D , Morgan RL , Mbaeyi S , Romero JR , Talbot HK , Lee GM , Bell BP , Dooling K . MMWR Morb Mortal Wkly Rep 2021 69 (5152) 1653-1656 On December 18, 2020, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the Moderna COVID-19 (mRNA-1273) vaccine (ModernaTX, Inc; Cambridge, Massachusetts), a lipid nanoparticle-encapsulated, nucleoside-modified mRNA vaccine encoding the stabilized prefusion spike glycoprotein of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1). This vaccine is the second COVID-19 vaccine authorized under an EUA for the prevention of COVID-19 in the United States (2). Vaccination with the Moderna COVID-19 vaccine consists of 2 doses (100 μg, 0.5 mL each) administered intramuscularly, 1 month (4 weeks) apart. On December 19, 2020, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation* for use of the Moderna COVID-19 vaccine in persons aged ≥18 years for the prevention of COVID-19. To guide its deliberations regarding the vaccine, ACIP employed the Evidence to Recommendation (EtR) Framework,(†) using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.(§) Use of all COVID-19 vaccines authorized under an EUA, including the Moderna COVID-19 vaccine, should be implemented in conjunction with ACIP's interim recommendations for allocating initial supplies of COVID-19 vaccines (3). The ACIP recommendation for the use of the Moderna COVID-19 vaccine under EUA is interim and will be updated as additional information becomes available. |
The Advisory Committee on Immunization Practices' Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine - United States, December 2020.
Oliver SE , Gargano JW , Marin M , Wallace M , Curran KG , Chamberland M , McClung N , Campos-Outcalt D , Morgan RL , Mbaeyi S , Romero JR , Talbot HK , Lee GM , Bell BP , Dooling K . MMWR Morb Mortal Wkly Rep 2020 69 (50) 1922-1924 On December 11, 2020, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the Pfizer-BioNTech COVID-19 (BNT162b2) vaccine (Pfizer, Inc; Philadelphia, Pennsylvania), a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine encoding the prefusion spike glycoprotein of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1). Vaccination with the Pfizer-BioNTech COVID-19 vaccine consists of 2 doses (30 μg, 0.3 mL each) administered intramuscularly, 3 weeks apart. On December 12, 2020, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation* for use of the Pfizer-BioNTech COVID-19 vaccine in persons aged ≥16 years for the prevention of COVID-19. To guide its deliberations regarding the vaccine, ACIP employed the Evidence to Recommendation (EtR) Framework,(†) using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.(§) The recommendation for the Pfizer-BioNTech COVID-19 vaccine should be implemented in conjunction with ACIP's interim recommendation for allocating initial supplies of COVID-19 vaccines (2). The ACIP recommendation for the use of the Pfizer-BioNTech COVID-19 vaccine under EUA is interim and will be updated as additional information becomes available. |
The Advisory Committee on Immunization Practices' Interim Recommendation for Allocating Initial Supplies of COVID-19 Vaccine - United States, 2020.
Dooling K , McClung N , Chamberland M , Marin M , Wallace M , Bell BP , Lee GM , Talbot HK , Romero JR , Oliver SE . MMWR Morb Mortal Wkly Rep 2020 69 (49) 1857-1859 The emergence of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), has led to a global pandemic that has disrupted all sectors of society. Less than 1 year after the SARS-CoV-2 genome was first sequenced, an application* for Emergency Use Authorization for a candidate vaccine has been filed with the Food and Drug Administration (FDA). However, even if one or more vaccine candidates receive authorization for emergency use, demand for COVID-19 vaccine is expected to exceed supply during the first months of the national vaccination program. The Advisory Committee on Immunization Practices (ACIP) advises CDC on population groups and circumstances for vaccine use.(†) ACIP convened on December 1, 2020, in advance of the completion of FDA's review of the Emergency Use Authorization application, to provide interim guidance to federal, state, and local jurisdictions on allocation of initial doses of COVID-19 vaccine. ACIP recommended that, when a COVID-19 vaccine is authorized by FDA and recommended by ACIP, both 1) health care personnel(§) and 2) residents of long-term care facilities (LTCFs)(¶) be offered vaccination in the initial phase of the COVID-19 vaccination program (Phase 1a**).(††) In its deliberations, ACIP considered scientific evidence of SARS-CoV-2 epidemiology, vaccination program implementation, and ethical principles.(§§) The interim recommendation might be updated over the coming weeks based on additional safety and efficacy data from phase III clinical trials and conditions of FDA Emergency Use Authorization. |
The Advisory Committee on Immunization Practices' Ethical Principles for Allocating Initial Supplies of COVID-19 Vaccine - United States, 2020.
McClung N , Chamberland M , Kinlaw K , Bowen Matthew D , Wallace M , Bell BP , Lee GM , Talbot HK , Romero JR , Oliver SE , Dooling K . MMWR Morb Mortal Wkly Rep 2020 69 (47) 1782-1786 To reduce the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) and its associated impacts on health and society, COVID-19 vaccines are essential. The U.S. government is working to produce and deliver safe and effective COVID-19 vaccines for the entire U.S. population. The Advisory Committee on Immunization Practices (ACIP)* has broadly outlined its approach for developing recommendations for the use of each COVID-19 vaccine authorized or approved by the Food and Drug Administration (FDA) for Emergency Use Authorization or licensure (1). ACIP's recommendation process includes an explicit and transparent evidence-based method for assessing a vaccine's safety and efficacy as well as consideration of other factors, including implementation (2). Because the initial supply of vaccine will likely be limited, ACIP will also recommend which groups should receive the earliest allocations of vaccine. The ACIP COVID-19 Vaccines Work Group and consultants with expertise in ethics and health equity considered external expert committee reports and published literature and deliberated the ethical issues associated with COVID-19 vaccine allocation decisions. The purpose of this report is to describe the four ethical principles that will assist ACIP in formulating recommendations for the allocation of COVID-19 vaccine while supply is limited, in addition to scientific data and implementation feasibility: 1) maximize benefits and minimize harms; 2) promote justice; 3) mitigate health inequities; and 4) promote transparency. These principles can also aid state, tribal, local, and territorial public health authorities as they develop vaccine implementation strategies within their own communities based on ACIP recommendations. |
Lack of Serologic Evidence of Infection Among Health Care Personnel and Other Contacts of First 2 Confirmed Patients With COVID-19 in Illinois, 2020.
McPherson TD , Ghinai I , Binder AM , Freeman BD , Hoskin Snelling C , Hunter JC , Anderson KM , Davenport P , Rudd DL , Zafer M , Christiansen D , Joshi K , Rubin R , Black SR , Fricchione MJ , Pacilli M , Walblay KA , Korpics J , Moeller D , Quartey-Kumapley P , Wang C , Charles EM , Kauerauf J , Patel MT , Disari VS , Fischer M , Jacobs MW , Lester SN , Midgley CM , Rasheed MAU , Reese HE , Verani JR , Wallace M , Watson JT , Thornburg NJ , Layden JE , Kirking HL . Public Health Rep 2020 136 (1) 88-96 OBJECTIVES: Widespread global transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), continues. Many questions remain about asymptomatic or atypical infections and transmission dynamics. We used comprehensive contact tracing of the first 2 confirmed patients in Illinois with COVID-19 and serologic SARS-CoV-2 antibody testing to determine whether contacts had evidence of undetected COVID-19. METHODS: Contacts were eligible for serologic follow-up if previously tested for COVID-19 during an initial investigation or had greater-risk exposures. Contacts completed a standardized questionnaire during the initial investigation. We classified exposure risk as high, medium, or low based on interactions with 2 index patients and use of personal protective equipment (PPE). Serologic testing used a SARS-CoV-2 spike enzyme-linked immunosorbent assay on serum specimens collected from participants approximately 6 weeks after initial exposure to either index patient. The 2 index patients provided serum specimens throughout their illness. We collected data on demographic, exposure, and epidemiologic characteristics. RESULTS: Of 347 contacts, 110 were eligible for serologic follow-up; 59 (17% of all contacts) enrolled. Of these, 53 (90%) were health care personnel and 6 (10%) were community contacts. Seventeen (29%) reported high-risk exposures, 15 (25%) medium-risk, and 27 (46%) low-risk. No participant had evidence of SARS-CoV-2 antibodies. The 2 index patients had antibodies detected at dilutions >1:6400 within 4 weeks after symptom onset. CONCLUSIONS: In serologic follow-up of the first 2 known patients in Illinois with COVID-19, we found no secondary transmission among tested contacts. Lack of seroconversion among these contacts adds to our understanding of conditions (ie, use of PPE) under which SARS-CoV-2 infections might not result in transmission and demonstrates that SARS-CoV-2 antibody testing is a useful tool to verify epidemiologic findings. |
Enhanced contact investigations for nine early travel-related cases of SARS-CoV-2 in the United States.
Burke RM , Balter S , Barnes E , Barry V , Bartlett K , Beer KD , Benowitz I , Biggs HM , Bruce H , Bryant-Genevier J , Cates J , Chatham-Stephens K , Chea N , Chiou H , Christiansen D , Chu VT , Clark S , Cody SH , Cohen M , Conners EE , Dasari V , Dawson P , DeSalvo T , Donahue M , Dratch A , Duca L , Duchin J , Dyal JW , Feldstein LR , Fenstersheib M , Fischer M , Fisher R , Foo C , Freeman-Ponder B , Fry AM , Gant J , Gautom R , Ghinai I , Gounder P , Grigg CT , Gunzenhauser J , Hall AJ , Han GS , Haupt T , Holshue M , Hunter J , Ibrahim MB , Jacobs MW , Jarashow MC , Joshi K , Kamali T , Kawakami V , Kim M , Kirking HL , Kita-Yarbro A , Klos R , Kobayashi M , Kocharian A , Lang M , Layden J , Leidman E , Lindquist S , Lindstrom S , Link-Gelles R , Marlow M , Mattison CP , McClung N , McPherson TD , Mello L , Midgley CM , Novosad S , Patel MT , Pettrone K , Pillai SK , Pray IW , Reese HE , Rhodes H , Robinson S , Rolfes M , Routh J , Rubin R , Rudman SL , Russell D , Scott S , Shetty V , Smith-Jeffcoat SE , Soda EA , Spitters C , Stierman B , Sunenshine R , Terashita D , Traub E , Vahey GM , Verani JR , Wallace M , Westercamp M , Wortham J , Xie A , Yousaf A , Zahn M . PLoS One 2020 15 (9) e0238342 Coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. In response to the first cases identified in the United States, close contacts of confirmed COVID-19 cases were investigated to enable early identification and isolation of additional cases and to learn more about risk factors for transmission. Close contacts of nine early travel-related cases in the United States were identified and monitored daily for development of symptoms (active monitoring). Selected close contacts (including those with exposures categorized as higher risk) were targeted for collection of additional exposure information and respiratory samples. Respiratory samples were tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction at the Centers for Disease Control and Prevention. Four hundred four close contacts were actively monitored in the jurisdictions that managed the travel-related cases. Three hundred thirty-eight of the 404 close contacts provided at least basic exposure information, of whom 159 close contacts had ≥1 set of respiratory samples collected and tested. Across all actively monitored close contacts, two additional symptomatic COVID-19 cases (i.e., secondary cases) were identified; both secondary cases were in spouses of travel-associated case patients. When considering only household members, all of whom had ≥1 respiratory sample tested for SARS-CoV-2, the secondary attack rate (i.e., the number of secondary cases as a proportion of total close contacts) was 13% (95% CI: 4-38%). The results from these contact tracing investigations suggest that household members, especially significant others, of COVID-19 cases are at highest risk of becoming infected. The importance of personal protective equipment for healthcare workers is also underlined. Isolation of persons with COVID-19, in combination with quarantine of exposed close contacts and practice of everyday preventive behaviors, is important to mitigate spread of COVID-19. |
COVID-19 in Americans aboard the Diamond Princess cruise ship.
Plucinski MM , Wallace M , Uehara A , Kurbatova EV , Tobolowsky FA , Schneider ZD , Ishizumi A , Bozio CH , Kobayashi M , Toda M , Stewart A , Wagner RL , Moriarty LF , Murray R , Queen K , Tao Y , Paden C , Mauldin MR , Zhang J , Li Y , Elkins CA , Lu X , Herzig CTA , Novak R , Bower W , Medley AM , Acosta AM , Knust B , Cantey PT , Pesik NT , Halsey ES , Cetron MS , Tong S , Marston BJ , Friedman CR . Clin Infect Dis 2020 72 (10) e448-e457 BACKGROUND: The Diamond Princess cruise ship was the site of a large outbreak of coronavirus disease 2019 (COVID-19). Of 437 Americans and their travel companions on the ship, 114 (26%) tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We interviewed 229 American passengers and crew after disembarkation following a ship-based quarantine to identify risk factors for infection and characterize transmission onboard the ship. RESULTS: The attack rate for passengers in single-person cabins or without infected cabinmates was 18% (58/329), compared with 63% (27/43) for those sharing a cabin with an asymptomatic infected cabinmate, and 81% (25/31) for those with a symptomatic infected cabinmate. Whole genome sequences from specimens from passengers who shared cabins clustered together. Of 66 SARS-CoV-2-positive American travelers with complete symptom information, 14 (21%) were asymptomatic while on the ship. Among SARS-CoV-2-positive Americans, 10 (9%) required intensive care, of whom 7 were ≥70 years. CONCLUSION: Our findings highlight the high risk of SARS-CoV-2 transmission on cruise ships. High rates of SARS-CoV-2 positivity in cabinmates of individuals with asymptomatic infections suggest that triage by symptom status in shared quarters is insufficient to halt transmission. A high rate of intensive care unit admission among older individuals complicates the prospect of future cruise travel during the pandemic, given typical cruise passenger demographics. The magnitude and severe outcomes of this outbreak were major factors contributing to the Centers for Disease Control and Prevention's decision to halt cruise ship travel in U.S. waters in March 2020. |
Serial Laboratory Testing for SARS-CoV-2 Infection Among Incarcerated and Detained Persons in a Correctional and Detention Facility - Louisiana, April-May 2020.
Njuguna H , Wallace M , Simonson S , Tobolowsky FA , James AE , Bordelon K , Fukunaga R , Gold JAW , Wortham J , Sokol T , Haydel D , Tran H , Kim K , Fisher KA , Marlow M , Tate JE , Doshi RH , Curran KG . MMWR Morb Mortal Wkly Rep 2020 69 (26) 836-840 Transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), by asymptomatic and presymptomatic persons poses important challenges to controlling spread of the disease, particularly in congregate settings such as correctional and detention facilities (1). On March 29, 2020, a staff member in a correctional and detention facility in Louisiana developed symptoms(dagger) and later had a positive test result for SARS-CoV-2. During April 2-May 7, two additional cases were detected among staff members, and 36 cases were detected among incarcerated and detained persons at the facility; these persons were removed from dormitories and isolated, and the five dormitories that they had resided in before diagnosis were quarantined. On May 7, CDC and the Louisiana Department of Health initiated an investigation to assess the prevalence of SARS-CoV-2 infection among incarcerated and detained persons residing in quarantined dormitories. Goals of this investigation included evaluating COVID-19 symptoms in this setting and assessing the effectiveness of serial testing to identify additional persons with SARS-CoV-2 infection as part of efforts to mitigate transmission. During May 7-21, testing of 98 incarcerated and detained persons residing in the five quarantined dormitories (A-E) identified an additional 71 cases of SARS-CoV-2 infection; 32 (45%) were among persons who reported no symptoms at the time of testing, including three who were presymptomatic. Eighteen cases (25%) were identified in persons who had received negative test results during previous testing rounds. Serial testing of contacts from shared living quarters identified persons with SARS-CoV-2 infection who would not have been detected by symptom screening alone or by testing at a single time point. Prompt identification and isolation of infected persons is important to reduce further transmission in congregate settings such as correctional and detention facilities and the communities to which persons return when released. |
COVID-19 in Correctional and Detention Facilities - United States, February-April 2020.
Wallace M , Hagan L , Curran KG , Williams SP , Handanagic S , Bjork A , Davidson SL , Lawrence RT , McLaughlin J , Butterfield M , James AE , Patil N , Lucas K , Hutchinson J , Sosa L , Jara A , Griffin P , Simonson S , Brown CM , Smoyer S , Weinberg M , Pattee B , Howell M , Donahue M , Hesham S , Shelley E , Philips G , Selvage D , Staley EM , Lee A , Mannell M , McCotter O , Villalobos R , Bell L , Diedhiou A , Ortbahn D , Clayton JL , Sanders K , Cranford H , Barbeau B , McCombs KG , Holsinger C , Kwit NA , Pringle JC , Kariko S , Strick L , Allord M , Tillman C , Morrison A , Rowe D , Marlow M . MMWR Morb Mortal Wkly Rep 2020 69 (19) 587-590 An estimated 2.1 million U.S. adults are housed within approximately 5,000 correctional and detention facilities(dagger) on any given day (1). Many facilities face significant challenges in controlling the spread of highly infectious pathogens such as SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). Such challenges include crowded dormitories, shared lavatories, limited medical and isolation resources, daily entry and exit of staff members and visitors, continual introduction of newly incarcerated or detained persons, and transport of incarcerated or detained persons in multiperson vehicles for court-related, medical, or security reasons (2,3). During April 22-28, 2020, aggregate data on COVID-19 cases were reported to CDC by 37 of 54 state and territorial health department jurisdictions. Thirty-two (86%) jurisdictions reported at least one laboratory-confirmed case from a total of 420 correctional and detention facilities. Among these facilities, COVID-19 was diagnosed in 4,893 incarcerated or detained persons and 2,778 facility staff members, resulting in 88 deaths in incarcerated or detained persons and 15 deaths among staff members. Prompt identification of COVID-19 cases and consistent application of prevention measures, such as symptom screening and quarantine, are critical to protecting incarcerated and detained persons and staff members. |
Public Health Response to COVID-19 Cases in Correctional and Detention Facilities - Louisiana, March-April 2020.
Wallace M , Marlow M , Simonson S , Walker M , Christophe N , Dominguez O , Kleamenakis L , Orellana A , Pagan-Pena D , Singh C , Pogue M , Saucier L , Lo T , Benson K , Sokol T . MMWR Morb Mortal Wkly Rep 2020 69 (19) 594-598 Correctional and detention facilities face unique challenges in the control of infectious diseases, including coronavirus disease 2019 (COVID-19) (1-3). Among >10 million annual admissions to U.S. jails, approximately 55% of detainees are released back into their communities each week (4); in addition, staff members at correctional and detention facilities are members of their local communities. Thus, high rates of COVID-19 in correctional and detention facilities also have the potential to influence broader community transmission. In March 2020, the Louisiana Department of Health (LDH) began implementing surveillance for COVID-19 among correctional and detention facilities in Louisiana and identified cases and outbreaks in many facilities. In response, LDH and CDC developed and deployed the COVID-19 Management Assessment and Response (CMAR) tool to guide technical assistance focused on infection prevention and control policies and case management with correctional and detention facilities. This report describes COVID-19 prevalence in correctional and detention facilities detected through surveillance and findings of the CMAR assessment. During March 25-April 22, 489 laboratory-confirmed COVID-19 cases, including 37 (7.6%) hospitalizations and 10 (2.0%) deaths among incarcerated or detained persons, and 253 cases, including 19 (7.5%) hospitalizations and four (1.6%) deaths among staff members were reported. During April 8-22, CMAR telephone-based assessments were conducted with 13 of 31 (42%) facilities with laboratory-confirmed cases and 11 of 113 (10%) facilities without known cases. Administrators had awareness and overall understanding of CDC guidance for prevention of transmission in these facilities but reported challenges in implementation, related to limited space to quarantine close contacts of COVID-19 patients and inability of incarcerated and detained persons to engage in social distancing, particularly in dormitory-style housing. CMAR was a useful tool that helped state and federal public health officials assist multiple correctional and detention facilities to better manage COVID-19 patients and guide control activities to prevent or mitigate transmission. |
First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA.
Ghinai I , McPherson TD , Hunter JC , Kirking HL , Christiansen D , Joshi K , Rubin R , Morales-Estrada S , Black SR , Pacilli M , Fricchione MJ , Chugh RK , Walblay KA , Ahmed NS , Stoecker WC , Hasan NF , Burdsall DP , Reese HE , Wallace M , Wang C , Moeller D , Korpics J , Novosad SA , Benowitz I , Jacobs MW , Dasari VS , Patel MT , Kauerauf J , Charles EM , Ezike NO , Chu V , Midgley CM , Rolfes MA , Gerber SI , Lu X , Lindstrom S , Verani JR , Layden JE . Lancet 2020 395 (10230) 1137-1144 BACKGROUND: Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in China in December, 2019. In January, 2020, state, local, and federal public health agencies investigated the first case of COVID-19 in Illinois, USA. METHODS: Patients with confirmed COVID-19 were defined as those with a positive SARS-CoV-2 test. Contacts were people with exposure to a patient with COVID-19 on or after the patient's symptom onset date. Contacts underwent active symptom monitoring for 14 days following their last exposure. Contacts who developed fever, cough, or shortness of breath became persons under investigation and were tested for SARS-CoV-2. A convenience sample of 32 asymptomatic health-care personnel contacts were also tested. FINDINGS: Patient 1-a woman in her 60s-returned from China in mid-January, 2020. One week later, she was hospitalised with pneumonia and tested positive for SARS-CoV-2. Her husband (Patient 2) did not travel but had frequent close contact with his wife. He was admitted 8 days later and tested positive for SARS-CoV-2. Overall, 372 contacts of both cases were identified; 347 underwent active symptom monitoring, including 152 community contacts and 195 health-care personnel. Of monitored contacts, 43 became persons under investigation, in addition to Patient 2. These 43 persons under investigation and all 32 asymptomatic health-care personnel tested negative for SARS-CoV-2. INTERPRETATION: Person-to-person transmission of SARS-CoV-2 occurred between two people with prolonged, unprotected exposure while Patient 1 was symptomatic. Despite active symptom monitoring and testing of symptomatic and some asymptomatic contacts, no further transmission was detected. FUNDING: None. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure