Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-2 (of 2 Records) |
Query Trace: Voth-Gaeddert L[original query] |
---|
Microbial characterization, factors contributing to contamination, and household use of cistern water, U.S. Virgin Islands
Rao Gouthami , Kahler Amy , Voth-Gaeddert Lee E , Cranford Hannah , Libbey Stephen , Galloway Renee , Molinari Noelle-Angelique , Ellis Esther M , Yoder Jonathan S , Mattioli Mia C , Ellis Brett R . ACS ES T Water 2022 2 (12) 2634-2644 Households in the United States Virgin Islands (USVI) heavily rely on roof-harvested rainwater stored in cisterns for their daily activities. However, there are insufficient data on cistern water microbiological and physicochemical characteristics to inform appropriate cistern water management. Cistern and kitchen tap water samples were collected from 399 geographically representative households across St. Croix, St. Thomas, and St. John and an administered survey captured household site and cistern characteristics and water use behaviors. Water samples were analyzed for Escherichia coli by culture, and a subset of cistern water samples (N = 47) were analyzed for Salmonella, Naegleria fowleri, pathogenic Leptospira, Cryptosporidium, Giardia, and human-specific fecal contamination using real-time polymerase chain reaction (PCR). Associations between E. coli cistern contamination and cistern and site characteristics were evaluated to better understand possible mechanisms of contamination. E. coli was detected in 80% of cistern water samples and in 58% of kitchen tap samples. For the subset of samples tested by PCR, at least one of the pathogens was detected in 66% of cisterns. Our results suggest that covering overflow pipes with screens, decreasing animal presence at the household, and preventing animals or insects from entering the cisterns can decrease the likelihood of E. coli contamination in USVI cistern water. |
Passive in-line chlorination for drinking water disinfection: A critical review
Lindmark M , Cherukumilli K , Crider YS , Marcenac P , Lozier M , Voth-Gaeddert L , Lantagne DS , Mihelcic JR , Zhang QM , Just C , Pickering AJ . Environ Sci Technol 2022 56 (13) 9164-9181 The world is not on track to meet Sustainable Development Goal 6.1 to provide universal access to safely managed drinking water by 2030. Removal of priority microbial contaminants by disinfection is one aspect of ensuring water is safely managed. Passive chlorination (also called in-line chlorination) represents one approach to disinfecting drinking water before or at the point of collection (POC), without requiring daily user input or electricity. In contrast to manual household chlorination methods typically implemented at the point of use (POU), passive chlorinators can reduce the user burden for chlorine dosing and enable treatment at scales ranging from communities to small municipalities. In this review, we synthesized evidence from 27 evaluations of passive chlorinators (in 19 articles, 3 NGO reports, and 5 theses) conducted across 16 countries in communities, schools, health care facilities, and refugee camps. Of the 27 passive chlorinators we identified, the majority (22/27) were solid tablet or granular chlorine dosers, and the remaining devices were liquid chlorine dosers. We identified the following research priorities to address existing barriers to scaled deployment of passive chlorinators: (i) strengthening local chlorine supply chains through decentralized liquid chlorine production, (ii) validating context-specific business models and financial sustainability, (iii) leveraging remote monitoring and sensing tools to monitor real-time chlorine levels and potential system failures, and (iv) designing handpump-compatible passive chlorinators to serve the many communities reliant on handpumps as a primary drinking water source. We also propose a set of reporting indicators for future studies to facilitate standardized evaluations of the technical performance and financial sustainability of passive chlorinators. In addition, we discuss the limitations of chlorine-based disinfection and recognize the importance of addressing chemical contamination in drinking water supplies. Passive chlorinators deployed and managed at-scale have the potential to elevate the quality of existing accessible and available water services to meet "safely managed" requirements. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure