Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-3 (of 3 Records) |
Query Trace: Velasquez-Portocarrero DE[original query] |
---|
Anti-rotavirus antibody measurement in a rotavirus vaccine trial: Choice of vaccine antigen in immunoassays does matter
Wang X , Velasquez Portocarrero DE , Cortese MM , Parashar U , Zaman K , Jiang B . Hum Vaccin Immunother 2023 19 (1) 2167437 In a clinical trial of Bangladeshi infants who received three doses of RotaTeq (ages 6, 10, and 14 weeks), we did a head-to-head assessment of two vaccine virus strains to measure rotavirus IgA in sera. Serum samples collected at pre-dose 1 (age 6 weeks) and post-dose 3 (age 22 weeks) were tested for rotavirus IgA by EIA by using the matching vaccine strain (RotaTeq) and a different vaccine strain (Rotarix) as antigens. Overall, rotavirus IgA seropositivity and titers with each antigen were compared. At age 22 weeks (N = 531), the proportion of infants who tested rotavirus IgA seropositive was similar when measured using the RotaTeq (412/531 [78%]) or the Rotarix antigen (403/531 [76%]) in the EIA. However, the IgA geometric mean titer was higher when measured using the RotaTeq antigen as compared to that measured using the Rotarix antigen [218 (95%CI: 176-270) vs. 93 (77-111), p < .0001]. We have compared two globally licensed vaccines, the human monovalent, and the pentavalent reassortant, as antigens on a RotaTeq cohort, resulting in higher estimations of IgA antibodies in the same sample when measured using the RotaTeq antigen. Our findings support matching vaccine antigens in EIA for the most desired immunogenicity testing of the RotaTeq vaccine. |
Head-to-head comparison of the immunogenicity of RotaTeq and Rotarix rotavirus vaccines and factors associated with seroresponse in infants in Bangladesh: a randomised, controlled, open-label, parallel, phase 4 trial
Velasquez-Portocarrero DE , Wang X , Cortese MM , Snider CJ , Anand A , Costantini VP , Yunus M , Aziz AB , Haque W , Parashar U , Sisay Z , Soeters HM , Hyde TB , Jiang B , Zaman K . Lancet Infect Dis 2022 22 (11) 1606-1616 BACKGROUND: A head-to-head comparison of the most widely used oral rotavirus vaccines has not previously been done, particularly in a high child mortality setting. We therefore aimed to compare the immunogenicity of RotaTeq (Merck, Kenilworth, NJ, USA) and Rotarix (GlaxoSmithKline, Rixensart, Belgium) rotavirus vaccines in the same population and examined risk factors for low seroresponse. METHODS: We did a randomised, controlled, open-label, parallel, phase 4 trial in urban slums within Mirpur and Mohakahli (Dhaka, Bangladesh). We enrolled eligible participants who were healthy infants aged 6 weeks and full-term (ie, >37 weeks' gestation). We randomly assigned participants (1:1), using block randomisation via a computer-generated electronic allocation with block sizes of 8, 16, 24, and 32, to receive either three RotaTeq vaccine doses at ages 6, 10, and 14 weeks or two Rotarix doses at ages 6 and 10 weeks without oral poliovirus vaccine. Coprimary outcomes were the rotavirus-specific IgA seroconversion in both vaccines, and the comparison of the rotavirus IgA seroconversion by salivary secretor phenotype in each vaccine arm. Seroconversion at age 18 weeks in the RotaTeq arm and age of 14 weeks in the Rotarix arm was used to compare the complete series of each vaccine. Seroconversion at age 14 weeks was used to compare two RotaTeq doses versus two Rotarix doses. Seroconversion at age 22 weeks was used to compare the immunogenicity at the same age after receiving the full vaccine series. Safety was assessed for the duration of study participation. This study is registered with ClinicalTrials.gov, NCT02847026. FINDINGS: Between Sept 1 and Dec 8, 2016, a total of 1144 infants were randomly assigned to either the RotaTeq arm (n=571) or Rotarix arm (n=573); 1080 infants (531 in the RotaTeq arm and 549 in the Rotarix arm) completed the study. Rotavirus IgA seroconversion 4 weeks after the full series occurred in 390 (73%) of 531 infants age 18 weeks in the RotaTeq arm and 354 (64%) of 549 infants age 14 weeks in the Rotarix arm (p=0·01). At age 14 weeks, 4 weeks after two doses, RotaTeq recipients had lower seroconversion than Rotarix recipients (268 [50%] of 531 vs 354 [64%] of 549; p<0·0001). However, at age 22 weeks, RotaTeq recipients had higher seroconversion than Rotarix recipients (394 [74%] of 531 vs 278 [51%] of 549; p<0·0001). Among RotaTeq recipients, seroconversion 4 weeks after the third dose was higher than after the second dose (390 [73%] of 531 vs 268 [50%] of 531; p<0·0001]. In the RotaTeq arm, rotavirus IgA seroconversion was lower in non-secretors than in secretors at ages 14 weeks (p=0·08), 18 weeks (p=0·01), and 22 weeks (p=0·02). Similarly, in the Rotarix arm, rotavirus IgA seroconversion was lower in non-secretors than in secretors at ages 14 weeks (p=0·02) and 22 weeks (p=0·01). 65 (11%) of 571 infants had adverse events in the RotaTeq arm compared with 63 (11%) of 573 infants in the Rotarix arm; no adverse events were attributed to the use of either vaccine. One death due to aspiration occurred in the RotaTeq arm, which was not related to the vaccine. INTERPRETATION: RotaTeq induced a higher magnitude and longer duration of rotavirus IgA response than Rotarix in this high child mortality setting. Additional vaccination strategies should be evaluated to overcome the suboptimal performance of current oral rotavirus vaccines in these settings. FUNDING: US Centers for Disease Control and Prevention. |
First isolation and whole-genome characterization of a G9P[14] rotavirus strain from a diarrheic child in Egypt
Shoeib A , Velasquez Portocarrero DE , Wang Y , Jiang B . J Gen Virol 2020 101 (9) 896-901 An unusual group A rotavirus (RVA) strain (RVA/Human-tc/EGY/AS997/2012/G9[14]) was isolated for the first time in a faecal sample from a 6-month-old child who was hospitalized for treatment of acute gastroenteritis in Egypt in 2012. Whole-genome analysis showed that the strain AS997 had a unique genotype constellation: G9-P[14]-I2-R2-C2-M2-A11-N2-T1-E2-H1. Phylogenetic analysis indicated that the strain AS997 had the consensus P[14] genotype constellation with the G9, T1 and H1 reassortment. This suggests either a mixed gene configuration originated from a human Wa-like strain and a P[14]-containing animal virus, or that this P[14] could have been acquired via reassortment of human strains only. The study shows the possible roles of interspecies transmission and multiple reassortment events leading to the generation of novel rotavirus genotypes and underlines the importance of whole-genome characterization of rotavirus strains in surveillance studies. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure