Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-7 (of 7 Records) |
Query Trace: Van Gundy TJ[original query] |
---|
Complete genome sequence of Borrelia miyamotoi strain MN18-0001, an Am-East-2 strain type isolate derived from an Ixodes scapularis tick (Minnesota)
Kneubehl AR , Osikowicz LM , Parise CM , Van Gundy TJ , Replogle AJ , Lopez JE , Eisen RJ , Hojgaard A . Microbiol Resour Announc 2024 e0049024 We report the genomic sequence of the hard tick relapsing fever spirochete Borrelia miyamotoi strain MN18-0001. B. miyamotoi causes human illness and is geographically widespread in Ixodes spp. (Acari: Ixodidae) ticks. This is a chromosome- and plasmid-resolved genome assembly of an Am-East-2 strain type isolate from the midwestern United States. |
Corrigendum to "A transwell assay method to evaluate Borrelia burgdorferi sensu stricto migratory chemoattraction toward tick saliva proteins" [Ticks Tick Borne Dis. 2021 Sep; 12(5): 101782. PMCID: PMC10895706]
Van Gundy TJ , Ullmann AJ , Brandt KS , Gilmore RD . Ticks Tick Borne Dis 2024 102378 |
Analysis of variable major protein antigenic variation in the relapsing fever spirochete, Borrelia miyamotoi, in response to polyclonal antibody selection pressure.
Gilmore RD , Armstrong BA , Brandt KS , Van Gundy TJ , Hojgaard A , Lopez JE , Kneubehl AR . PLoS One 2023 18 (2) e0281942 Borrelia miyamotoi is a tick-transmitted spirochete that is genetically grouped with relapsing fever Borrelia and possesses multiple archived pseudogenes that encode variable major proteins (Vmps). Vmps are divided into two groups based on molecular size; variable large proteins (Vlps) and variable small proteins (Vsps). Relapsing fever Borrelia undergo Vmp gene conversion at a single expression locus to generate new serotypes by antigenic switching which is the basis for immune evasion that causes relapsing fever in patients. This study focused on B. miyamotoi vmp expression when spirochetes were subjected to antibody killing selection pressure. We incubated a low passage parent strain with mouse anti-B. miyamotoi polyclonal antiserum which killed the majority population, however, antibody-resistant reisolates were recovered. PCR analysis of the gene expression locus in the reisolates showed vsp1 was replaced by Vlp-encoded genes. Gel electrophoresis protein profiles and immunoblots of the reisolates revealed additional Vlps indicating that new serotype populations were selected by antibody pressure. Sequencing of amplicons from the expression locus of the reisolates confirmed the presence of a predominant majority serotype population with minority variants. These findings confirm previous work demonstrating gene conversion in B. miyamotoi and that multiple serotype populations expressing different vmps arise when subjected to antibody selection. The findings also provide evidence for spontaneous serotype variation emerging from culture growth in the absence of antibody pressure. Validation and determination of the type, number, and frequency of serotype variants that arise during animal infections await further investigations. |
Modification of the multiplex plasmid PCR assay for Borrelia miyamotoi strain LB-2001 based on the complete genome sequence reflecting genomic rearrangements differing from strain CT13-2396.
Gilmore RD , Kneubehl AR , Lopez JE , Armstrong BA , Brandt KS , Van Gundy TJ . Ticks Tick Borne Dis 2021 13 (1) 101843 The genome of Borrelia spp. consists of an approximate 1 megabase chromosome and multiple linear and circular plasmids. We previously described a multiplex PCR assay to detect plasmids in the North American Borrelia miyamotoi strains LB-2001 and CT13-2396. The primer pair sets specific for each plasmid were derived from the genome sequence for B. miyamotoi strain CT13-2396, because the LB-2001 complete sequence had not been generated. The recent completion of the LB-2001 genome sequence revealed a distinct number of plasmids (n = 12) that differed from CT13-2396 (n = 14). Notable was a 97-kilobase plasmid in LB-2001, not present in CT13-2396, that appeared to be a rearrangement of the circular plasmids of strain CT13-2396. Strain LB-2001 contained two plasmids, cp30-2 and cp24, that were not annotated for strain CT13-2396. Therefore, we re-evaluated the original CT13-2396-derived multiplex PCR primer pairs and determined their location in the LB-2001 plasmids. We modified the original multiplex plasmid PCR assay for strain LB-2001 to include cp30-2 and cp24. We also determined which LB-2001 plasmids corresponded to the amplicons generated from the original CT13-2396 primer sets. These observations provide a more precise plasmid profile based on the multiplex PCR assay and reflect the complexity of gene rearrangements that occur in B. miyamotoi strains isolated from the same geographic region. |
A transwell assay method to evaluate Borrelia burgdorferi sensu stricto migratory chemoattraction toward tick saliva proteins
Van Gundy TJ , Ullmann AJ , Brandt KS , Gilmore RD . Ticks Tick Borne Dis 2021 12 (5) 101782 We developed a transwell assay to quantify migration of the Lyme disease agent, Borrelia burgdorferi sensu stricto (s.s.), toward Ixodes scapularis salivary gland proteins. The assay was designed to assess B. burgdorferi s.s. migration upward against gravity through a transwell polycarbonate membrane overlaid with 6% gelatin. Borreliae that channeled into the upper transwell chamber in response to test proteins were enumerated by flow cytometry. The transwell assay measured chemoattractant activity for B. burgdorferi s.s. from salivary gland extract (SGE) harvested from nymphal ticks during bloodmeal engorgement on mice 42 h post-attachment and saliva collected from adult ticks. Additionally, SGE protein fractions separated by size exclusion chromatography demonstrated various levels of chemoattractant activity in the transwell assay. Sialostatin L, and Salp-like proteins 9 and 11 were identified by mass spectrometry in SGE fractions that exhibited elevated activity. Recombinant forms of these proteins were tested in the transwell assay and showed positive chemoattractant properties compared to controls and another tick protein, S15A. These results were reproducible providing evidence that the transwell assay is a useful method for continuing investigations to find tick saliva components instrumental in driving B. burgdorferi s.s. chemotaxis. |
Borrelia miyamotoi strain LB-2001 retains plasmids and infectious phenotype throughout continuous culture passages as evaluated by multiplex PCR.
Gilmore RD , Mikula S , Harris EK , Van Gundy TJ , Goodrich I , Brandt KS . Ticks Tick Borne Dis 2020 12 (1) 101587 Borrelia miyamotoi is a tick-borne spirochete of the relapsing fever borrelia group and an emerging pathogen of public health significance. The genomes of relapsing fever borreliae and Lyme disease borreliae consist of multiple linear and circular plasmids in addition to the chromosome. Previous work with B. burgdorferi sensu lato found diminished infectivity upon continuous in vitro culture passage that was attributable to plasmid loss. The effect of long-term culture passage on B. miyamotoi is not known. We generated a series of plasmid-specific primer sets and developed a multiplex PCR assay to detect the 14 known plasmids of B. miyamotoi North American strains LB-2001 and CT13-2396. We assessed the plasmid content of B. miyamotoi LB-2001 over 64 culture passages spanning 15 months and determined that strain LB-2001 retained all plasmids upon prolonged in vitro cultivation and remained infectious in mice. We also found that strain LB-2001 lacks plasmid lp20-1 which is present in strain CT13-2396. These results suggest that B. miyamotoi remains genetically stable when cultured and passaged in vitro. |
Characterization of a Borrelia miyamotoi membrane antigen (BmaA) for serodiagnosis of Borrelia miyamotoi disease.
Harris EK , Brandt KS , Van Gundy TJ , Goodrich I , Wormser GP , Armstrong BA , Gilmore RD . Ticks Tick Borne Dis 2020 11 (5) 101476 Borrelia miyamotoi is a tick-borne pathogen that causes Borrelia miyamotoi disease (BMD), an emerging infectious disease of increasing public health significance. B. miyamotoi is transmitted by the same tick vector (Ixodes spp.) as B. burgdorferi sensu lato (s.l.), the causative agent of Lyme disease, therefore laboratory assays to differentiate BMD from Lyme disease are needed to avoid misdiagnoses and for disease confirmation. We previously performed a global immunoproteomic analysis of the murine host antibody response against B. miyamotoi infection to discover antigens that could serologically distinguish the two infections. An initial assessment identified a putative lipoprotein antigen, here termed BmaA, as a promising candidate to augment current research-based serological assays. In this study, we show that BmaA is an outer surface-associated protein by its susceptibility to protease digestion. Synthesis of BmaA in culture was independent of temperature at either 23 °C or 34 °C. The BmaA gene is present in two identical loci harbored on separate plasmids in North American strains LB-2001 and CT13-2396. bmaA-like sequences are present in other B. miyamotoi strains and relapsing fever borrelia as multicopy genes and as paralogous or orthologous gene families. IgM and IgG antibodies in pooled serum from BMD patients reacted with native BmaA fractionated by 2-dimensional gel electrophoresis and identified by mass spectrometry. IgG against recombinant BmaA was detected in 4 of 5 BMD patient serum samples as compared with 1 of 23 serum samples collected from patients with various stages of Lyme disease. Human anti-B. turicatae serum did not seroreact with recombinant BmaA suggesting a role as a species-specific diagnostic antigen. These results demonstrated that BmaA elicits a human host antibody response during B. miyamotoi infection but not in a tested group of B. burgdorferi-infected Lyme disease patients, thereby providing a potentially useful addition for developing BMD serodiagnostic tests. © 2020 Elsevier GmbH |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure