Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-26 (of 26 Records) |
Query Trace: Uyeki Timothy[original query] |
---|
First Case of Covid-19 in the United States. Reply.
Uyeki TM , Holshue ML , Diaz G . N Engl J Med 2020 382 (21) e53 The authors reply: Weng et al. question the clinical benefit of remdesivir treatment. In our article, we noted that the decision to administer remdesivir for compassionate use was based on the patient’s worsening clinical status. No inferences are possible from the uncontrolled treatment of one patient, and we stated, “randomized, controlled trials are needed to determine the safety and efficacy of remdesivir and any other investigational agents for treatment of patients with 2019-nCoV infection.” | | Tsung notes that an increase in lymphocyte counts and subsequent clinical improvement are consistent with activation of the adaptive immune response and resolution of SARS-CoV-2 infection. IgM and IgA antibodies may be detectable early in the clinical course, and IgG antibodies can be detected a median of 14 days after the onset of illness.1 We agree that the adaptive immune response contributes to clinical recovery and clearance of SARS-CoV-2, although one study showed that seroconversion was not correlated with a rapid decline in the SARS-CoV-2 load.2 In another study that showed a good correlation between IgG and neutralizing antibody titers, an increase in IgG antibody levels was correlated with a decrease in the viral load between 1 and 3 weeks after the onset of illness, but SARS-CoV-2 RNA was still detectable for prolonged periods.3 | | Zhang inquires about detection of SARS-CoV-2 in stool and urine specimens after remdesivir treatment. In our patient, although a stool specimen collected on day 7 of illness was positive with high cycle threshold values (36 to 38) that were consistent with detection of viral RNA and probably not infectious virus, a stool specimen obtained from the patient on day 14 of illness was negative. SARS-CoV-2 RNA was not detected in urine specimens; these findings are consistent with those in a larger study.4 | | Wen et al. and Link and Hold raise the issue of fecal–oral transmission of SARS-CoV-2. Diarrhea has been reported to occur in patients with Covid-19, and it can precede the development of respiratory symptoms and progression to pneumonia. SARS-CoV-2 RNA has been detected in stool specimens, and recovery of live infectious virus from stool has been reported.4 Further studies are needed to understand the implications of SARS-CoV-2 detected in stool for transmission of the virus. | | Ren et al. argue that high-resolution low-dose chest CT should be performed instead of chest radiography in persons with fever and suspected Covid-19. The Centers for Disease Control and Prevention recommends collection of nasopharyngeal swab specimens and lower respiratory specimens, if available, for SARS-CoV-2 testing and prioritizes testing of hospitalized patients and symptomatic health care workers. Furthermore, the American College of Radiology has noted concerns regarding prevention and control of SARS-CoV-2 transmission in health care facilities, including transmission that may occur with the use of CT scanners, and has recommended that CT should not be used to screen for or diagnose Covid-19.5 |
Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak - United States, December 31, 2019-February 4, 2020.
Patel A , Jernigan DB , 2019-nCOV CDC Response Team , Abdirizak Fatuma , Abedi Glen , Aggarwal Sharad , Albina Denise , Allen Elizabeth , Andersen Lauren , Anderson Jade , Anderson Megan , Anderson Tara , Anderson Kayla , Bardossy Ana Cecilia , Barry Vaughn , Beer Karlyn , Bell Michael , Berger Sherri , Bertulfo Joseph , Biggs Holly , Bornemann Jennifer , Bornstein Josh , Bower Willie , Bresee Joseph , Brown Clive , Budd Alicia , Buigut Jennifer , Burke Stephen , Burke Rachel , Burns Erin , Butler Jay , Cantrell Russell , Cardemil Cristina , Cates Jordan , Cetron Marty , Chatham-Stephens Kevin , Chatham-Stevens Kevin , Chea Nora , Christensen Bryan , Chu Victoria , Clarke Kevin , Cleveland Angela , Cohen Nicole , Cohen Max , Cohn Amanda , Collins Jennifer , Conners Erin , Curns Aaron , Dahl Rebecca , Daley Walter , Dasari Vishal , Davlantes Elizabeth , Dawson Patrick , Delaney Lisa , Donahue Matthew , Dowell Chad , Dyal Jonathan , Edens William , Eidex Rachel , Epstein Lauren , Evans Mary , Fagan Ryan , Farris Kevin , Feldstein Leora , Fox LeAnne , Frank Mark , Freeman Brandi , Fry Alicia , Fuller James , Galang Romeo , Gerber Sue , Gokhale Runa , Goldstein Sue , Gorman Sue , Gregg William , Greim William , Grube Steven , Hall Aron , Haynes Amber , Hill Sherrasa , Hornsby-Myers Jennifer , Hunter Jennifer , Ionta Christopher , Isenhour Cheryl , Jacobs Max , Jacobs Slifka Kara , Jernigan Daniel , Jhung Michael , Jones-Wormley Jamie , Kambhampati Anita , Kamili Shifaq , Kennedy Pamela , Kent Charlotte , Killerby Marie , Kim Lindsay , Kirking Hannah , Koonin Lisa , Koppaka Ram , Kosmos Christine , Kuhar David , Kuhnert-Tallman Wendi , Kujawski Stephanie , Kumar Archana , Landon Alexander , Lee Leslie , Leung Jessica , Lindstrom Stephen , Link-Gelles Ruth , Lively Joana , Lu Xiaoyan , Lynch Brian , Malapati Lakshmi , Mandel Samantha , Manns Brian , Marano Nina , Marlow Mariel , Marston Barbara , McClung Nancy , McClure Liz , McDonald Emily , McGovern Oliva , Messonnier Nancy , Midgley Claire , Moulia Danielle , Murray Janna , Noelte Kate , Noonan-Smith Michelle , Nordlund Kristen , Norton Emily , Oliver Sara , Pallansch Mark , Parashar Umesh , Patel Anita , Patel Manisha , Pettrone Kristen , Pierce Taran , Pietz Harald , Pillai Satish , Radonovich Lewis , Reagan-Steiner Sarah , Reel Amy , Reese Heather , Rha Brian , Ricks Philip , Rolfes Melissa , Roohi Shahrokh , Roper Lauren , Rotz Lisa , Routh Janell , Sakthivel Senthil Kumar Sarmiento Luisa , Schindelar Jessica , Schneider Eileen , Schuchat Anne , Scott Sarah , Shetty Varun , Shockey Caitlin , Shugart Jill , Stenger Mark , Stuckey Matthew , Sunshine Brittany , Sykes Tamara , Trapp Jonathan , Uyeki Timothy , Vahey Grace , Valderrama Amy , Villanueva Julie , Walker Tunicia , Wallace Megan , Wang Lijuan , Watson John , Weber Angie , Weinbaum Cindy , Weldon William , Westnedge Caroline , Whitaker Brett , Whitaker Michael , Williams Alcia , Williams Holly , Willams Ian , Wong Karen , Xie Amy , Yousef Anna . Am J Transplant 2020 20 (3) 889-895 This article summarizes what is currently known about the 2019 novel coronavirus and offers interim guidance. |
Remdesivir for the Treatment of Covid-19 - Final Report
Beigel JH , Tomashek KM , Dodd LE , Mehta AK , Zingman BS , Kalil AC , Hohmann E , Chu HY , Luetkemeyer A , Kline S , Lopez de Castilla D , Finberg RW , Dierberg K , Tapson V , Hsieh L , Patterson TF , Paredes R , Sweeney DA , Short WR , Touloumi G , Lye DC , Ohmagari N , Oh MD , Ruiz-Palacios GM , Benfield T , Fätkenheuer G , Kortepeter MG , Atmar RL , Creech CB , Lundgren J , Babiker AG , Pett S , Neaton JD , Burgess TH , Bonnett T , Green M , Makowski M , Osinusi A , Nayak S , Lane HC , ACTT-1 Study Group Members , Uyeki Timothy . N Engl J Med 2020 383 (19) 1813-1826 BACKGROUND: Although several therapeutic agents have been evaluated for the treatment of coronavirus disease 2019 (Covid-19), no antiviral agents have yet been shown to be efficacious. METHODS: We conducted a double-blind, randomized, placebo-controlled trial of intravenous remdesivir in adults who were hospitalized with Covid-19 and had evidence of lower respiratory tract infection. Patients were randomly assigned to receive either remdesivir (200 mg loading dose on day 1, followed by 100 mg daily for up to 9 additional days) or placebo for up to 10 days. The primary outcome was the time to recovery, defined by either discharge from the hospital or hospitalization for infection-control purposes only. RESULTS: A total of 1062 patients underwent randomization (with 541 assigned to remdesivir and 521 to placebo). Those who received remdesivir had a median recovery time of 10 days (95% confidence interval [CI], 9 to 11), as compared with 15 days (95% CI, 13 to 18) among those who received placebo (rate ratio for recovery, 1.29; 95% CI, 1.12 to 1.49; P<0.001, by a log-rank test). In an analysis that used a proportional-odds model with an eight-category ordinal scale, the patients who received remdesivir were found to be more likely than those who received placebo to have clinical improvement at day 15 (odds ratio, 1.5; 95% CI, 1.2 to 1.9, after adjustment for actual disease severity). The Kaplan-Meier estimates of mortality were 6.7% with remdesivir and 11.9% with placebo by day 15 and 11.4% with remdesivir and 15.2% with placebo by day 29 (hazard ratio, 0.73; 95% CI, 0.52 to 1.03). Serious adverse events were reported in 131 of the 532 patients who received remdesivir (24.6%) and in 163 of the 516 patients who received placebo (31.6%). CONCLUSIONS: Our data show that remdesivir was superior to placebo in shortening the time to recovery in adults who were hospitalized with Covid-19 and had evidence of lower respiratory tract infection. (Funded by the National Institute of Allergy and Infectious Diseases and others; ACTT-1 ClinicalTrials.gov number, NCT04280705.). |
Implementation of the Ebola Virus Persistence in Ocular Tissues and Fluids (EVICT) study: Lessons learned for vision health systems strengthening in Sierra Leone.
Shantha JG , Crozier I , Kraft CS , Grant DG , Goba A , Hayek BR , Hartley C , Barnes KG , Uyeki TM , Schieffelin J , Garry RF , Bausch DG , Farmer PE , Mattia JG , Vandy MJ , Yeh S . PLoS One 2021 16 (7) e0252905 ![]() ![]() BACKGROUND: Following the West African Ebola virus disease (EVD) outbreak of 2013-2016 and more recent EVD outbreaks in the Democratic Republic of Congo, thousands of EVD survivors are at-risk for sequelae including uveitis, which can lead to unremitting inflammation and vision loss from cataract. Because of the known risk of Ebola virus persistence in ocular fluid and the need to provide vision-restorative, safe cataract surgery, the Ebola Virus Persistence in Ocular Tissues and Fluids (EVICT) Study was implemented in Sierra Leone. During implementation of this multi-national study, challenges included regulatory approvals, mobilization, community engagement, infection prevention and control, and collaboration between multiple disciplines. In this report, we address the multifacted approach to address these challenges and the impact of implementation science research to address an urgent clinical subspecialty need in an outbreak setting. METHODOLOGY/PRINCIPAL FINDINGS: Given the patient care need to develop a protocol to evaluate ocular fluid for Ebola virus RNA persistence prior to cataract surgery, as well as protocols to provide reassurance to ophthalmologists caring for EVD survivors with cataracts, the EVICT study was designed and implemented through the work of the Ministry of Health, Sierra Leone National Eye Programme, and international partnerships. The EVICT study showed that all 50 patients who underwent ocular fluid sampling at 19 and 34 months, respectively, tested negative for Ebola virus RNA. Thirty-four patients underwent successful cataract surgery with visual acuity improvement. Here we describe the methodology for study implementation, challenges encountered, and key issues that impacted EVD vision care in the immediate aftermath of the EVD outbreak. Key aspects of the EVICT study included defining the pertinent questions and clinical need, partnership alignment with key stakeholders, community engagement with EVD survivor associations, in-country and international regulatory approvals, study site design for infection prevention and control, and thorough plans for EVD survivor follow-up care and monitoring. Challenges encountered included patient mobilization owing to transportation routes and distance of patients in rural districts. Strong in-country partnerships and multiple international organizations overcame these challenges so that lessons learned could be applied for future EVD outbreaks in West and Central Africa including EVD outbreaks that are ongoing in Guinea and Democratic Republic of Congo. CONCLUSIONS/SIGNIFICANCE: The EVICT Study showed that cataract surgery with a protocol-driven approach was safe and vision-restorative for EVD survivors, which provided guidance for EVD ophthalmic surgical care. Ophthalmologic care remains a key aspect of the public health response for EVD outbreaks but requires a meticulous, yet partnered approach with international and local in-country partners. Future efforts may build on this framework for clinical care and to improve our understanding of ophthalmic sequelae, develop treatment paradigms for EVD survivors, and strengthen vision health systems in resource-limited settings. |
Comparison of Symptoms and RNA Levels in Children and Adults With SARS-CoV-2 Infection in the Community Setting.
Chung E , Chow EJ , Wilcox NC , Burstein R , Brandstetter E , Han PD , Fay K , Pfau B , Adler A , Lacombe K , Lockwood CM , Uyeki TM , Shendure J , Duchin JS , Rieder MJ , Nickerson DA , Boeckh M , Famulare M , Hughes JP , Starita LM , Bedford T , Englund JA , Chu HY . JAMA Pediatr 2021 175 (10) e212025 ![]() ![]() IMPORTANCE: The association between COVID-19 symptoms and SARS-CoV-2 viral levels in children living in the community is not well understood. OBJECTIVE: To characterize symptoms of pediatric COVID-19 in the community and analyze the association between symptoms and SARS-CoV-2 RNA levels, as approximated by cycle threshold (Ct) values, in children and adults. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study used a respiratory virus surveillance platform in persons of all ages to detect community COVID-19 cases from March 23 to November 9, 2020. A population-based convenience sample of children younger than 18 years and adults in King County, Washington, who enrolled online for home self-collection of upper respiratory samples for SARS-CoV-2 testing were included. EXPOSURES: Detection of SARS-CoV-2 RNA by reverse transcription-polymerase chain reaction (RT-PCR) from participant-collected samples. MAIN OUTCOMES AND MEASURES: RT-PCR-confirmed SARS-CoV-2 infection, with Ct values stratified by age and symptoms. RESULTS: Among 555 SARS-CoV-2-positive participants (mean [SD] age, 33.7 [20.1] years; 320 were female [57.7%]), 47 of 123 children (38.2%) were asymptomatic compared with 31 of 432 adults (7.2%). When symptomatic, fewer symptoms were reported in children compared with adults (mean [SD], 1.6 [2.0] vs 4.5 [3.1]). Symptomatic individuals had lower Ct values (which corresponded to higher viral RNA levels) than asymptomatic individuals (adjusted estimate for children, -3.0; 95% CI, -5.5 to -0.6; P = .02; adjusted estimate for adults, -2.9; 95% CI, -5.2 to -0.6; P = .01). The difference in mean Ct values was neither statistically significant between symptomatic children and symptomatic adults (adjusted estimate, -0.7; 95% CI, -2.2 to 0.9; P = .41) nor between asymptomatic children and asymptomatic adults (adjusted estimate, -0.6; 95% CI, -4.0 to 2.8; P = .74). CONCLUSIONS AND RELEVANCE: In this community-based cross-sectional study, SARS-CoV-2 RNA levels, as determined by Ct values, were significantly higher in symptomatic individuals than in asymptomatic individuals and no significant age-related differences were found. Further research is needed to understand the role of SARS-CoV-2 RNA levels and viral transmission. |
Seroepidemiology of SARS-CoV-2, Yamagata, Japan, June 2020.
Morikane K , Satoh N , Hatano K , Kanouchi K , Kakehata S , Satoh S , Uyeki TM , Ueno Y . Western Pac Surveill Response J 2021 12 (1) 69-71 In Japan, the first case of coronavirus disease 2019 (COVID-19) was identified in mid-January 2020, and cases peaked in the spring at 720 cases per day on 11 April. Thereafter, the number of reported cases per day declined to 50 on 15 May and remained low until mid-June, when numbers again started to increase. On 5 August, 1234 cases were reported, giving a cumulative total of 40 485 cases, with a case fatality proportion of 2.5% (1021 deaths). (1) Although COVID-19 is designated as a reportable disease in Japan, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing capacity was limited in the early stage of the pandemic. It took up to 4 days for specimens to be tested by reverse transcription polymerase chain reaction (RT–PCR). The Japanese Government recommended that anyone with mild illness symptoms should stay at home, to avoid overwhelming health-care facilities. SARS-CoV-2 testing was prioritized for hospitalized patients and those with chronic comorbidities. Thus, the true number of symptomatic cases of COVID-19 in Japan is likely to be far greater than the number of reported cases. |
Administration of Bamlanivimab to Skilled Nursing Facility Residents During a COVID-19 Outbreak, January-February 2021, Arizona.
Dale AP , Hudson M , Cullen T , Ellingson K , Davis K , Armenta D , Friebus H , Currie C , Bhattarai R , Brady S , Komatsu K , Stone N , Uyeki T , Slifka KJ , Perez-Velez C , Keaton A . J Am Med Dir Assoc 2021 22 (7) 1357-1358 In November 2020, the Food and Drug Administration (FDA) issued an emergency use authorization (EUA) for bamlanivimab, a monoclonal antibody (mAb), for treatment of mild to moderate COVID-19 in nonhospitalized individuals at high risk for severe disease.1 Since that time, several other mAb therapies, either alone or in combination, have also been issued EUA for use in the treatment of mild-to-moderate COVID-19.2 Although COVID-19 poses a high morbidity and mortality risk among older adult residents of long-term care facilities, reports on mAb use in the management of COVID-19 in skilled nursing facilities (SNFs) are limited, and perceived logistical barriers to on-site infusion of the mAb therapy may reduce their use in these settings.3 , 4 This letter describes the use of bamlanivimab during a large SARS-CoV-2 outbreak at a 270-bed SNF (Facility A). |
A remote household-based approach to influenza self-testing and antiviral treatment.
Heimonen J , McCulloch DJ , O'Hanlon J , Kim AE , Emanuels A , Wilcox N , Brandstetter E , Stewart M , McCune D , Fry S , Parsons S , Hughes JP , Jackson ML , Uyeki TM , Boeckh M , Starita LM , Bedford T , Englund JA , Chu HY . Influenza Other Respir Viruses 2021 15 (4) 469-477 ![]() BACKGROUND: Households represent important settings for transmission of influenza and other respiratory viruses. Current influenza diagnosis and treatment relies upon patient visits to healthcare facilities, which may lead to under-diagnosis and treatment delays. This study aimed to assess the feasibility of an at-home approach to influenza diagnosis and treatment via home testing, telehealth care, and rapid antiviral home delivery. METHODS: We conducted a pilot interventional study of remote influenza diagnosis and treatment in Seattle-area households with children during the 2019-2020 influenza season using pre-positioned nasal swabs and home influenza tests. Home monitoring for respiratory symptoms occurred weekly; if symptoms were reported within 48 hours of onset, participants collected mid-nasal swabs and used a rapid home-based influenza immunoassay. An additional home-collected swab was returned to a laboratory for confirmatory influenza RT-PCR testing. Baloxavir antiviral treatment was prescribed and delivered to symptomatic and age-eligible participants, following a telehealth encounter. RESULTS: 124 households comprising 481 individuals self-monitored for respiratory symptoms, with 58 home tests administered. 12 home tests were positive for influenza, of which eight were true positives confirmed by RT-PCR. The sensitivity and specificity of the home influenza test were 72.7% and 96.2%, respectively. There were eight home deliveries of baloxavir, with 7 (87.5%) occurring within 3 hours of prescription and all within 48 hours of symptom onset. CONCLUSIONS: We demonstrate the feasibility of self-testing combined with rapid home delivery of influenza antiviral treatment. This approach may be an important control strategy for influenza epidemics and pandemics. |
COVID-19 Clinical Phenotypes: Presentation and Temporal Progression of Disease in a Cohort of Hospitalized Adults in Georgia, United States.
da Silva JF , Hernandez-Romieu AC , Browning SD , Bruce BB , Natarajan P , Morris SB , Gold JAW , Neblett Fanfair R , Rogers-Brown J , Rossow J , Szablewski CM , Oosmanally N , D'Angelo MT , Drenzek C , Murphy DJ , Hollberg J , Blum JM , Jansen R , Wright DW , Sewell W , Owens J , Lefkove B , Brown FW , Burton DC , Uyeki TM , Patel PR , Jackson BR , Wong KK . Open Forum Infect Dis 2021 8 (1) ofaa596 BACKGROUND: The epidemiological features and outcomes of hospitalized adults with coronavirus disease 2019 (COVID-19) have been described; however, the temporal progression and medical complications of disease among hospitalized patients require further study. Detailed descriptions of the natural history of COVID-19 among hospitalized patients are paramount to optimize health care resource utilization, and the detection of different clinical phenotypes may allow tailored clinical management strategies. METHODS: This was a retrospective cohort study of 305 adult patients hospitalized with COVID-19 in 8 academic and community hospitals. Patient characteristics included demographics, comorbidities, medication use, medical complications, intensive care utilization, and longitudinal vital sign and laboratory test values. We examined laboratory and vital sign trends by mortality status and length of stay. To identify clinical phenotypes, we calculated Gower's dissimilarity matrix between each patient's clinical characteristics and clustered similar patients using the partitioning around medoids algorithm. RESULTS: One phenotype of 6 identified was characterized by high mortality (49%), older age, male sex, elevated inflammatory markers, high prevalence of cardiovascular disease, and shock. Patients with this severe phenotype had significantly elevated peak C-reactive protein creatinine, D-dimer, and white blood cell count and lower minimum lymphocyte count compared with other phenotypes (P < .01, all comparisons). CONCLUSIONS: Among a cohort of hospitalized adults, we identified a severe phenotype of COVID-19 based on the characteristics of its clinical course and poor prognosis. These findings need to be validated in other cohorts, as improved understanding of clinical phenotypes and risk factors for their development could help inform prognosis and tailored clinical management for COVID-19. |
Evidence of SARS-CoV-2 Replication and Tropism in the Lungs, Airways and Vascular Endothelium of Patients with Fatal COVID-19: An Autopsy Case-Series.
Bhatnagar J , Gary J , Reagan-Steiner S , Estetter LB , Tong S , Tao Y , Denison AM , Lee E , DeLeon-Carnes M , Li Y , Uehara A , Paden CR , Leitgeb B , Uyeki TM , Martines RB , Ritter JM , Paddock CD , Shieh WJ , Zaki SR . J Infect Dis 2021 223 (5) 752-764 ![]() ![]() BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic continues to produce substantial morbidity and mortality. To understand the reasons for the wide-spectrum complications and severe outcomes of COVID-19, we aimed to identify cellular targets of SARS-CoV-2 tropism and replication in various tissues. METHODS: We evaluated RNA extracted from formalin-fixed, paraffin-embedded autopsy tissues from 64 case-patients (age range: 1 month to 84 years; COVID-19 confirmed n=21, suspected n=43) by SARS-CoV-2 RT-PCR. For cellular localization of SARS-CoV-2 RNA and viral characterization, we performed in-situ hybridization (ISH), subgenomic RNA RT-PCR, and whole genome sequencing. RESULTS: SARS-CoV-2 was identified by RT-PCR in 32 case-patients (confirmed n=21 and suspected n=11). ISH was positive in 20 and subgenomic RNA RT-PCR was positive in 17 of 32 RT-PCR-positive case-patients. SARS-CoV-2 RNA was localized by ISH in hyaline membranes, pneumocytes and macrophages of lungs, epithelial cells of airways, and in endothelial cells and vessels wall of brain stem, leptomeninges, lung, heart, liver, kidney, and pancreas. D614G variant was detected in 9 RT-PCR-positive case-patients. CONCLUSIONS: We identified cellular targets of SARS-CoV-2 tropism and replication in the lungs and airways and demonstrated its direct infection in vascular endothelium. This work provides important insights into COVID-19 pathogenesis and mechanisms of severe outcomes. |
Bioaerosol sampling for SARS-CoV-2 in a referral center with critically ill COVID-19 patients March-May 2020.
Lane MA , Brownsword EA , Babiker A , Ingersoll JM , Waggoner J , Ayers M , Klopman M , Uyeki TM , Lindsley WG , Kraft CS . Clin Infect Dis 2021 73 (7) e1790-e1794 ![]() BACKGROUND: Previous research has shown that rooms of patients with COVID-19 present the potential for healthcare-associated transmission through aerosols containing SARS-CoV-2. However, data on the presence of these aerosols outside of patient rooms are limited. We investigated whether virus-containing aerosols were present in nursing stations and patient room hallways in a referral center with critically ill COVID-19 patients. METHODS: Eight National Institute for Occupational Safety and Health BC 251 two-stage cyclone samplers were set up throughout six units, including nursing stations and visitor corridors in intensive care units and general medical units, for six hours each sampling period. Samplers were placed on tripods which held two samplers positioned 102 cm and 152 cm above the floor. Units were sampled for three days. Extracted samples underwent reverse transcription polymerase chain reaction for selected gene regions of the SARS-CoV-2 virus nucleocapsid and the housekeeping gene human RNase P as an internal control. RESULTS: The units sampled varied in the number of laboratory-confirmed COVID-19 patients present on the days of sampling. Some of the units included patient rooms under negative pressure, while most were maintained at a neutral pressure. Of 528 aerosol samples collected, none were positive for SARS-CoV-2 RNA by the estimated limit of detection of 8 viral copies/m 3 of air. CONCLUSION: Aerosolized SARS-CoV-2 outside of patient rooms was undetectable. While healthcare personnel should avoid unmasked close contact with each other, these findings may provide reassurance for the use of alternatives to tight-fitting respirators in areas outside of patient rooms during the current pandemic. |
Point-of-care molecular testing and antiviral treatment of influenza in residents of homeless shelters in Seattle, WA: study protocol for a stepped-wedge cluster-randomized controlled trial.
Newman KL , Rogers JH , McCulloch D , Wilcox N , Englund JA , Boeckh M , Uyeki TM , Jackson ML , Starita L , Hughes JP , Chu HY . Trials 2020 21 (1) 956 ![]() INTRODUCTION: Influenza is an important public health problem, but data on the impact of influenza among homeless shelter residents are limited. The primary aim of this study is to evaluate whether on-site testing and antiviral treatment of influenza in residents of homeless shelters reduces influenza spread in these settings. METHODS AND ANALYSIS: This study is a stepped-wedge cluster-randomized trial of on-site testing and antiviral treatment for influenza in nine homeless shelter sites within the Seattle metropolitan area. Participants with acute respiratory illness (ARI), defined as two or more respiratory symptoms or new or worsening cough with onset in the prior 7 days, are eligible to enroll. Approximately 3200 individuals are estimated to participate from October to May across two influenza seasons. All sites will start enrollment in the control arm at the beginning of each season, with routine surveillance for ARI. Sites will be randomized at different timepoints to enter the intervention arm, with implementation of a test-and-treat strategy for individuals with two or fewer days of symptoms. Eligible individuals will be tested on-site with a point-of-care influenza test. If the influenza test is positive and symptom onset is within 48 h, participants will be administered antiviral treatment with baloxavir or oseltamivir depending upon age and comorbidities. Participants will complete a questionnaire on demographics and symptom duration and severity. The primary endpoint is the incidence of influenza in the intervention period compared to the control period, after adjusting for time trends. TRIAL REGISTRATION: ClinicalTrials.gov NCT04141917 . Registered 28 October 2019. Trial sponsor: University of Washington. |
Remote Household Observation for Non-influenza Respiratory Viral Illness.
Emanuels A , Heimonen J , O'Hanlon J , Kim AE , Wilcox N , McCulloch DJ , Brandstetter E , Wolf CR , Logue JK , Han PD , Pfau B , Newman KL , Hughes JP , Jackson ML , Uyeki TM , Boeckh M , Starita LM , Nickerson DA , Bedford T , Englund JA , Chu HY . Clin Infect Dis 2020 73 (11) e4411-e4418 ![]() BACKGROUND: Non-influenza respiratory viruses are responsible for a substantial burden of disease in the United States. Household transmission is thought to contribute significantly to subsequent transmission through the broader community. In the context of the COVID-19 pandemic, contactless surveillance methods are of particular importance. METHODS: From November 2019 to April 2020, 303 households in the Seattle area were remotely monitored in a prospective longitudinal study for symptoms of respiratory viral illness. Enrolled participants reported weekly symptoms and submitted respiratory samples by mail in the event of an acute respiratory illness (ARI). Specimens were tested for fourteen viruses, including SARS-CoV-2, using RT-PCR. Participants completed all study procedures at home without physical contact with research staff. RESULTS: In total, 1171 unique participants in 303 households were monitored for ARI. Of participating households, 128 (42%) included a child aged <5 years and 202 (67%) included a child aged 5-12 years. Of the 678 swabs collected during the surveillance period, 237 (35%) tested positive for one or more non-influenza respiratory viruses. Rhinovirus, common human coronaviruses, and respiratory syncytial virus were the most common. Four cases of SARS-CoV-2 were detected in three households. CONCLUSIONS: This study highlights the circulation of respiratory viruses within households during the winter months during the emergence of the SARS-CoV-2 pandemic. Contactless methods of recruitment, enrollment and sample collection were utilized throughout this study, and demonstrate the feasibility of home-based, remote monitoring for respiratory infections. |
Preparing for the 2020-2021 Influenza Season.
Uyeki TM , Santoli J , Jernigan DB . JAMA 2020 324 (22) 2318-2319 As health care systems across the US are experiencing or preparing for surges in individuals with coronavirus disease 2019 (COVID-19) this fall and winter, the potential for cocirculation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses poses added challenges for clinicians and public health. Recent reports suggest that influenza activity can be influenced substantially by nonpharmaceutical measures implemented to control the spread of SARS-CoV-2 (eg, use of face masks, social distancing, restrictions on public gatherings, travel restrictions) and other factors influenced by the COVID-19 pandemic (eg, reduced domestic and international travel). In early spring of 2020, sharp declines in influenza activity coincided with implementation of SARS-CoV-2 control measures in the US.1 |
Predictors at admission of mechanical ventilation and death in an observational cohort of adults hospitalized with COVID-19.
Jackson BR , Gold JAW , Natarajan P , Rossow J , Neblett Fanfair R , da Silva J , Wong KK , Browning SD , Bamrah Morris S , Rogers-Brown J , Hernandez-Romieu AC , Szablewski CM , Oosmanally N , Tobin-D'Angelo M , Drenzek C , Murphy DJ , Hollberg J , Blum JM , Jansen R , Wright DW , SeweSll WM , Owens JD , Lefkove B , Brown FW , Burton DC , Uyeki TM , Bialek SR , Patel PR , Bruce BB . Clin Infect Dis 2020 73 (11) e4141-e4151 ![]() ![]() BACKGROUND: Coronavirus disease (COVID-19) can cause severe illness and death. Predictors of poor outcome collected on hospital admission may inform clinical and public health decisions. METHODS: We conducted a retrospective observational cohort investigation of 297 adults admitted to eight academic and community hospitals in Georgia, United States, during March 2020. Using standardized medical record abstraction, we collected data on predictors including admission demographics, underlying medical conditions, outpatient antihypertensive medications, recorded symptoms, vital signs, radiographic findings, and laboratory values. We used random forest models to calculate adjusted odds ratios (aORs) and 95% confidence intervals (CI) for predictors of invasive mechanical ventilation (IMV) and death. RESULTS: Compared with age <45 years, ages 65-74 years and ≥75 years were predictors of IMV (aOR 3.12, CI 1.47-6.60; aOR 2.79, CI 1.23-6.33) and the strongest predictors for death (aOR 12.92, CI 3.26-51.25; aOR 18.06, CI 4.43-73.63). Comorbidities associated with death (aORs from 2.4 to 3.8, p <0.05) included end-stage renal disease, coronary artery disease, and neurologic disorders, but not pulmonary disease, immunocompromise, or hypertension. Pre-hospital use vs. non-use of angiotensin receptor blockers (aOR 2.02, CI 1.03-3.96) and dihydropyridine calcium channel blockers (aOR 1.91, CI 1.03-3.55) were associated with death. CONCLUSIONS: After adjustment for patient and clinical characteristics, older age was the strongest predictor of death, exceeding comorbidities, abnormal vital signs, and laboratory test abnormalities. That coronary artery disease, but not chronic lung disease, was associated with death among hospitalized patients warrants further investigation, as do associations between certain antihypertensive medications and death. |
Clinical Characteristics of Patients Hospitalized with Coronavirus Disease, Thailand.
Pongpirul WA , Mott JA , Woodring JV , Uyeki TM , MacArthur JR , Vachiraphan A , Suwanvattana P , Uttayamakul S , Chunsuttiwat S , Chotpitayasunondh T , Pongpirul K , Prasithsirikul W . Emerg Infect Dis 2020 26 (7) 1580-1585 Among 11 patients in Thailand infected with severe acute respiratory syndrome coronavirus 2, we detected viral RNA in upper respiratory specimens a median of 14 days after illness onset and 9 days after fever resolution. We identified viral co-infections and an asymptomatic person with detectable virus RNA in serial tests. We describe implications for surveillance. |
Pathology and Pathogenesis of SARS-CoV-2 Associated with Fatal Coronavirus Disease, United States.
Martines RB , Ritter JM , Matkovic E , Gary J , Bollweg BC , Bullock H , Goldsmith CS , Silva-Flannery L , Seixas JN , Reagan-Steiner S , Uyeki T , Denison A , Bhatnagar J , Shieh WJ , Zaki SR , Covid-Pathology Working Group . Emerg Infect Dis 2020 26 (9) 2005-2015 An ongoing pandemic of coronavirus disease (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Characterization of the histopathology and cellular localization of SARS-CoV-2 in the tissues of patients with fatal COVID-19 is critical to further understand its pathogenesis and transmission and for public health prevention measures. We report clinicopathologic, immunohistochemical, and electron microscopic findings in tissues from 8 fatal laboratory-confirmed cases of SARS-CoV-2 infection in the United States. All cases except 1 were in residents of long-term care facilities. In these patients, SARS-CoV-2 infected epithelium of the upper and lower airways with diffuse alveolar damage as the predominant pulmonary pathology. SARS-CoV-2 was detectable by immunohistochemistry and electron microscopy in conducting airways, pneumocytes, alveolar macrophages, and a hilar lymph node but was not identified in other extrapulmonary tissues. Respiratory viral co-infections were identified in 3 cases; 3 cases had evidence of bacterial co-infection. |
Characteristics and Clinical Outcomes of Adult Patients Hospitalized with COVID-19 - Georgia, March 2020.
Gold JAW , Wong KK , Szablewski CM , Patel PR , Rossow J , da Silva J , Natarajan P , Morris SB , Fanfair RN , Rogers-Brown J , Bruce BB , Browning SD , Hernandez-Romieu AC , Furukawa NW , Kang M , Evans ME , Oosmanally N , Tobin-D'Angelo M , Drenzek C , Murphy DJ , Hollberg J , Blum JM , Jansen R , Wright DW , Sewell WM3rd , Owens JD , Lefkove B , Brown FW , Burton DC , Uyeki TM , Bialek SR , Jackson BR . MMWR Morb Mortal Wkly Rep 2020 69 (18) 545-550 SARS-CoV-2, the novel coronavirus that causes coronavirus disease 2019 (COVID-19), was first detected in the United States during January 2020 (1). Since then, >980,000 cases have been reported in the United States, including >55,000 associated deaths as of April 28, 2020 (2). Detailed data on demographic characteristics, underlying medical conditions, and clinical outcomes for persons hospitalized with COVID-19 are needed to inform prevention strategies and community-specific intervention messages. For this report, CDC, the Georgia Department of Public Health, and eight Georgia hospitals (seven in metropolitan Atlanta and one in southern Georgia) summarized medical record-abstracted data for hospitalized adult patients with laboratory-confirmed* COVID-19 who were admitted during March 2020. Among 305 hospitalized patients with COVID-19, 61.6% were aged <65 years, 50.5% were female, and 83.2% with known race/ethnicity were non-Hispanic black (black). Over a quarter of patients (26.2%) did not have conditions thought to put them at higher risk for severe disease, including being aged >/=65 years. The proportion of hospitalized patients who were black was higher than expected based on overall hospital admissions. In an adjusted time-to-event analysis, black patients were not more likely than were nonblack patients to receive invasive mechanical ventilation(dagger) (IMV) or to die during hospitalization (hazard ratio [HR] = 0.63; 95% confidence interval [CI] = 0.35-1.13). Given the overrepresentation of black patients within this hospitalized cohort, it is important for public health officials to ensure that prevention activities prioritize communities and racial/ethnic groups most affected by COVID-19. Clinicians and public officials should be aware that all adults, regardless of underlying conditions or age, are at risk for serious illness from COVID-19. |
First Case of 2019 Novel Coronavirus in the United States.
Holshue ML , DeBolt C , Lindquist S , Lofy KH , Wiesman J , Bruce H , Spitters C , Ericson K , Wilkerson S , Tural A , Diaz G , Cohn A , Fox L , Patel A , Gerber SI , Kim L , Tong S , Lu X , Lindstrom S , Pallansch MA , Weldon WC , Biggs HM , Uyeki TM , Pillai SK . N Engl J Med 2020 382 (10) 929-936 An outbreak of novel coronavirus (2019-nCoV) that began in Wuhan, China, has spread rapidly, with cases now confirmed in multiple countries. We report the first case of 2019-nCoV infection confirmed in the United States and describe the identification, diagnosis, clinical course, and management of the case, including the patient's initial mild symptoms at presentation with progression to pneumonia on day 9 of illness. This case highlights the importance of close coordination between clinicians and public health authorities at the local, state, and federal levels, as well as the need for rapid dissemination of clinical information related to the care of patients with this emerging infection. |
New filovirus disease classification and nomenclature.
Kuhn JH , Adachi T , Adhikari NKJ , Arribas JR , Bah IE , Bausch DG , Bhadelia N , Borchert M , Brantsaeter AB , Brett-Major DM , Burgess TH , Chertow DS , Chute CG , Cieslak TJ , Colebunders R , Crozier I , Davey RT , de Clerck H , Delgado R , Evans L , Fallah M , Fischer WA 2nd , Fletcher TE , Fowler RA , Grunewald T , Hall A , Hewlett A , Hoepelman AIM , Houlihan CF , Ippolito G , Jacob ST , Jacobs M , Jakob R , Jacquerioz FA , Kaiser L , Kalil AC , Kamara RF , Kapetshi J , Klenk HD , Kobinger G , Kortepeter MG , Kraft CS , Kratz T , Bosa HSK , Lado M , Lamontagne F , Lane HC , Lobel L , Lutwama J , Lyon GM 3rd , Massaquoi MBF , Massaquoi TA , Mehta AK , Makuma VM , Murthy S , Musoke TS , Muyembe-Tamfum JJ , Nakyeyune P , Nanclares C , Nanyunja M , Nsio-Mbeta J , O'Dempsey T , Paweska JT , Peters CJ , Piot P , Rapp C , Renaud B , Ribner B , Sabeti PC , Schieffelin JS , Slenczka W , Soka MJ , Sprecher A , Strong J , Swanepoel R , Uyeki TM , van Herp M , Vetter P , Wohl DA , Wolf T , Wolz A , Wurie AH , Yoti Z . Nat Rev Microbiol 2019 17 (5) 261-263 ![]() ![]() The recent large outbreak of Ebola virus disease (EVD) in Western Africa resulted in greatly increased accumulation of human genotypic, phenotypic and clinical data, and improved our understanding of the spectrum of clinical manifestations. As a result, the WHO disease classification of EVD underwent major revision. |
Influence of Molecular Testing on Influenza Diagnosis.
Yarbrough ML , Burnham CD , Anderson NW , Banerjee R , Ginocchio CC , Hanson KE , Uyeki TM . Clin Chem 2018 64 (11) 1560-1566 ![]() Influenza viruses infect millions of people each year, leading to several hundred thousand hospitalizations and thousands of deaths annually in the US. Early antiviral therapy reduces illness duration, complications, and mortality associated with influenza. Yet, antivirals are consistently used at a suboptimal rate. Patients with positive influenza diagnostic testing results are more likely to receive antiviral therapy and less likely to be prescribed unnecessary antibiotics. Thus, access to reliable influenza testing in both ambulatory and inpatient settings is critical to facilitate both optimal patient outcomes and antimicrobial stewardship. Recently, the first point-of-care (POC)7 molecular diagnostic test was cleared by the US Food and Drug Administration (FDA) for the detection of influenza. At the same time, concerns about the performance of commonly used rapid antigen tests, particularly the test sensitivity, led to modified regulatory requirements for these devices. The landscape of influenza diagnostics is rapidly evolving, and clinical laboratorians are certain to face pressure regarding new testing modalities. In this article, 5 experts that span the continuum of influenza diagnosis from the clinical laboratory to industry to public health and regulatory agencies discuss recent advances and ongoing challenges in influenza diagnostics. |
Influenza-Associated Acute Necrotizing Encephalopathy in Siblings.
Howard A , Uyeki TM , Fergie J . J Pediatric Infect Dis Soc 2018 7 (3) e172-e177 ![]() ![]() Encephalopathy is an important complication associated with influenza, most frequently observed in young children, with a wide range of severity. The most severe category of influenza-associated encephalopathy (IAE) is acute necrotizing encephalopathy (ANE), characterized by high frequency of neurologic sequelae and fatal outcomes. We report two young siblings who developed fever and seizures with altered mental status. Influenza A(H1N1)pdm09 virus infection was identified in upper respiratory tract specimens from both patients, and neuroimaging revealed bilateral inflammatory lesions, consistent with acute necrotizing encephalopathy. Neither child had received influenza vaccination. Both children progressed to critical illness and required invasive mechanical ventilation. In addition to critical care management, both patients received high-dose corticosteroids, mannitol, anticonvulsants, and antiviral treatment of influenza. The older child recovered fully and was discharged 2 weeks after illness onset, but the younger sibling developed severe brainstem edema and cerebellar tonsillar herniation, and died on illness day 11. Both children tested positive for Ran Binding Protein 2 (RANBP2) gene mutations. RANBP2 is a genetic polymorphism associated with recurrent episodes of necrotizing encephalitis with respiratory viral infections. Annual influenza vaccination is especially important for ANE survivors, with or without RANBP2 mutations, their household contacts, and caregivers. During influenza season, close monitoring of any child with a history of neurological complications associated with respiratory illness is indicated, with prompt initiation of antiviral treatment with onset of acute respiratory illness, and influenza testing performed by molecular assay. |
Preliminary Evaluation of the Effect of Investigational Ebola Virus Disease Treatments on Viral Genome Sequences.
Whitmer SL , Albarino C , Shepard SS , Dudas G , Sheth M , Brown SC , Cannon D , Erickson BR , Gibbons A , Schuh A , Sealy T , Ervin E , Frace M , Uyeki TM , Nichol ST , Stroher U . J Infect Dis 2016 214 S333-S341 ![]() BACKGROUND: Several patients with Ebola virus disease (EVD) managed in the United States have received ZMapp monoclonal antibodies, TKM-Ebola small interfering RNA, brincidofovir, and/or convalescent plasma as investigational therapeutics. METHODS: To investigate whether treatment selected for Ebola virus (EBOV) mutations conferring resistance, viral sequencing was performed on RNA extracted from clinical blood specimens from patients with EVD following treatment, and putative viral targets were analyzed. RESULTS: We observed no major or minor EBOV mutations within regions targeted by therapeutics. CONCLUSIONS: This small subset of patients and clinical specimens suggests that evolution of resistance is not a direct consequence of antiviral treatment. As EVD antiviral treatments are introduced into wider use, it is essential that continuous viral full-genome surveillance is performed, to monitor for the emergence of escape mutations. |
Live animal markets in Minnesota: a potential source for emergence of novel influenza A viruses and interspecies transmission.
Choi MJ , Torremorell M , Bender JB , Smith K , Boxrud D , Ertl JR , Yang M , Suwannakarn K , Her D , Nguyen J , Uyeki TM , Levine M , Lindstrom S , Katz JM , Jhung M , Vetter S , Wong KK , Sreevatsan S , Lynfield R . Clin Infect Dis 2015 61 (9) 1355-62 ![]() ![]() BACKGROUND: Live animal markets have been implicated in transmission of influenza A viruses (IAVs) from animals to people. We sought to characterize IAVs at two live animal markets in Minnesota to assess potential routes of occupational exposure and risk for interspecies transmission. METHODS: We implemented surveillance for IAVs among employees, swine, and environment (air and surfaces) during a 12-week period (October 2012-January 2013) at two markets epidemiologically associated with persons with swine-origin IAV (variant) infections. Real-time reverse transcription polymerase chain reaction (rRT-PCR), viral culture, and whole genome sequencing were performed on respiratory and environmental specimens, and serology on sera from employees at beginning and end of surveillance. RESULTS: Nasal swabs from 11 (65%) of 17 employees tested positive for IAVs by rRT-PCR; seven employees tested positive on multiple occasions and one employee reported influenza-like illness. Eleven (73%) of 15 employees had baseline hemagglutination-inhibition antibody titers ≥40 to swine-origin IAVs, but only one demonstrated a 4-fold titer increase to both swine-origin, and pandemic A/Mexico/4108/2009 IAVs. IAVs were isolated from swine (72/84), air (30/45) and pen railings (5/21). Whole genome sequencing of 122 IAVs isolated from swine and environmental specimens revealed multiple strains and subtype codetections. Multiple gene segment exchanges among and within subtypes were observed, resulting in new genetic constellations and reassortant viruses. Genetic sequence similarities of 99%-100% among IAVs of one market customer and swine indicated interspecies transmission. CONCLUSIONS: At markets where swine and persons are in close contact, swine-origin IAVs are prevalent and potentially provide conditions for novel IAV emergence. |
Emergency postexposure vaccination with vesicular stomatitis virus-vectored Ebola vaccine after needlestick.
Lai L , Davey R , Beck A , Xu Y , Suffredini AF , Palmore T , Kabbani S , Rogers S , Kobinger G , Alimonti J , Link CJ Jr , Rubinson L , Stroher U , Wolcott M , Dorman W , Uyeki TM , Feldmann H , Lane HC , Mulligan MJ . JAMA 2015 313 (12) 1249-55 ![]() IMPORTANCE: Safe and effective vaccines and drugs are needed for the prevention and treatment of Ebola virus disease, including following a potentially high-risk exposure such as a needlestick. OBJECTIVE: To assess response to postexposure vaccination in a health care worker who was exposed to the Ebola virus. DESIGN AND SETTING: Case report of a physician who experienced a needlestick while working in an Ebola treatment unit in Sierra Leone on September 26, 2014. Medical evacuation to the United States was rapidly initiated. Given the concern about potentially lethal Ebola virus disease, the patient was offered, and provided his consent for, postexposure vaccination with an experimental vaccine available through an emergency Investigational New Drug application. He was vaccinated on September 28, 2014. INTERVENTIONS: The vaccine used was VSVDeltaG-ZEBOV, a replicating, attenuated, recombinant vesicular stomatitis virus (serotype Indiana) whose surface glycoprotein gene was replaced by the Zaire Ebola virus glycoprotein gene. This vaccine has entered a clinical trial for the prevention of Ebola in West Africa. RESULTS: The vaccine was administered 43 hours after the needlestick occurred. Fever and moderate to severe symptoms developed 12 hours after vaccination and diminished over 3 to 4 days. The real-time reverse transcription polymerase chain reaction results were transiently positive for vesicular stomatitis virus nucleoprotein gene and Ebola virus glycoprotein gene (both included in the vaccine) but consistently negative for Ebola virus nucleoprotein gene (not in the vaccine). Early postvaccination cytokine secretion and T lymphocyte and plasmablast activation were detected. Subsequently, Ebola virus glycoprotein-specific antibodies and T cells became detectable, but antibodies against Ebola viral matrix protein 40 (not in the vaccine) were not detected. CONCLUSIONS AND RELEVANCE: It is unknown if VSVDeltaG-ZEBOV is safe or effective for postexposure vaccination in humans who have experienced a high-risk occupational exposure to the Ebola virus, such as a needlestick. In this patient, postexposure vaccination with VSVDeltaG-ZEBOV induced a self-limited febrile syndrome that was associated with transient detection of the recombinant vesicular stomatitis vaccine virus in blood. Strong innate and Ebola-specific adaptive immune responses were detected after vaccination. The clinical syndrome and laboratory evidence were consistent with vaccination response, and no evidence of Ebola virus infection was detected. |
Neuraminidase H275Y and hemagglutinin D222G mutations in a fatal case of 2009 pandemic influenza A (H1N1) virus infection.
Devries A , Wotton J , Lees C , Boxrud D , Uyeki T , Lynfield R . Influenza Other Respir Viruses 2012 6 (6) e85-8 ![]() Oseltamivir-resistant 2009 H1N1 influenza virus infections associated with neuraminidase (NA) H275Y have been identified sporadically. Strains possessing the hemagglutinin (HA) D222G mutation have been detected in small numbers of fatal 2009 H1N1 cases. We report the first clinical description of 2009 H1N1 virus infection with both NA-H275Y and HA-D222G mutations detected by pyrosequencing of bronchioalveolar lavage fluid obtained on symptom day 19. The 59-year-old immunosuppressed patient had multiple conditions conferring higher risk of prolonged viral replication and severe illness and died on symptom day 34. Further investigations are needed to determine the significance of infection with strains possessing NA-H275Y and HA-D222G. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure