Last data update: Mar 17, 2025. (Total: 48910 publications since 2009)
Records 1-30 (of 32 Records) |
Query Trace: Uehara A[original query] |
---|
Epidemiologic and genomic evidence for zoonotic transmission of SARS-CoV-2 among people and animals on a Michigan mink farm, United States, 2020
Ghai RR , Straily A , Wineland N , Calogero J , Stobierski MG , Signs K , Blievernicht M , Torres-Mendoza Y , Waltenburg MA , Condrey JA , Blankenship HM , Riner D , Barr N , Schalow M , Goodrich J , Collins C , Ahmad A , Metz JM , Herzegh O , Straka K , Arsnoe DM , Duffiney AG , Shriner SA , Kainulainen MH , Carpenter A , Whitehill F , Wendling NM , Stoddard RA , Retchless AC , Uehara A , Tao Y , Li Y , Zhang J , Tong S , Barton Behravesh C . Viruses 2023 15 (12) ![]() ![]() Farmed mink are one of few animals in which infection with SARS-CoV-2 has resulted in sustained transmission among a population and spillback from mink to people. In September 2020, mink on a Michigan farm exhibited increased morbidity and mortality rates due to confirmed SARS-CoV-2 infection. We conducted an epidemiologic investigation to identify the source of initial mink exposure, assess the degree of spread within the facility's overall mink population, and evaluate the risk of further viral spread on the farm and in surrounding wildlife habitats. Three farm employees reported symptoms consistent with COVID-19 the same day that increased mortality rates were observed among the mink herd. One of these individuals, and another asymptomatic employee, tested positive for SARS-CoV-2 by real-time reverse transcription PCR (RT-qPCR) 9 days later. All but one mink sampled on the farm were positive for SARS-CoV-2 based on nucleic acid detection from at least one oral, nasal, or rectal swab tested by RT-qPCR (99%). Sequence analysis showed high degrees of similarity between sequences from mink and the two positive farm employees. Epidemiologic and genomic data, including the presence of F486L and N501T mutations believed to arise through mink adaptation, support the hypothesis that the two employees with SARS-CoV-2 nucleic acid detection contracted COVID-19 from mink. However, the specific source of virus introduction onto the farm was not identified. Three companion animals living with mink farm employees and 31 wild animals of six species sampled in the surrounding area were negative for SARS-CoV-2 by RT-qPCR. Results from this investigation support the necessity of a One Health approach to manage the zoonotic spread of SARS-CoV-2 and underscores the critical need for multifaceted public health approaches to prevent the introduction and spread of respiratory viruses on mink farms. |
One Health Investigation of SARS-CoV-2 Infection and Seropositivity among Pets in Households with Confirmed Human COVID-19 Cases — Utah and Wisconsin, 2020 (preprint)
Goryoka GW , Cossaboom CM , Gharpure R , Dawson P , Tansey C , Rossow J , Mrotz V , Rooney J , Torchetti M , Loiacono CM , Killian ML , Jenkins-Moore M , Lim A , Poulsen K , Christensen D , Sweet E , Peterson D , Sangster AL , Young EL , Oakeson KF , Taylor D , Price A , Kiphibane T , Klos R , Konkle D , Bhattacharyya S , Dasu T , Chu VT , Lewis NM , Queen K , Zhang J , Uehara A , Dietrich EA , Tong S , Kirking HL , Doty JB , Murrell LS , Spengler JR , Straily A , Wallace R , Barton Behravesh C . bioRxiv 2021 2021.04.11.439379 Background Approximately 67% of U.S. households have pets. Limited data are available on SARS-CoV-2 in pets. We assessed SARS-CoV-2 infection in pet cohabitants as a sub-study of an ongoing COVID-19 household transmission investigation.Methods Mammalian pets from households with ≥1 person with laboratory-confirmed COVID-19 were eligible for inclusion from April–May 2020. Demographic/exposure information, oropharyngeal, nasal, rectal, and fur swabs, feces, and blood were collected from enrolled pets and tested by rRT-PCR and virus neutralization assays.Findings We enrolled 37 dogs and 19 cats from 34 of 41 eligible households. All oropharyngeal, nasal, and rectal swabs tested negative by rRT-PCR; one dog’s fur swabs (2%) tested positive by rRT-PCR at the first animal sampling. Among 47 pets with serological results from 30 households, eight (17%) pets (4 dogs, 4 cats) from 6 (20%) households had detectable SARS-CoV-2 neutralizing antibodies. In households with a seropositive pet, the proportion of people with laboratory-confirmed COVID-19 was greater (median 79%; range: 40–100%) compared to households with no seropositive pet (median 37%; range: 13–100%) (p=0.01). Thirty-three pets with serologic results had frequent daily contact (≥1 hour) with the human index patient before the person’s COVID-19 diagnosis. Of these 33 pets, 14 (42%) had decreased contact with the human index patient after diagnosis and none (0%) were seropositive; of the 19 (58%) pets with continued contact, 4 (21%) were seropositive.Interpretations Seropositive pets likely acquired infection from humans, which may occur more frequently than previously recognized. People with COVID-19 should restrict contact with animals.Funding Centers for Disease Control and Prevention, U.S. Department of AgricultureCompeting Interest StatementThe authors have declared no competing interest. |
Rapid, sensitive, full genome sequencing of Severe Acute Respiratory Syndrome Virus Coronavirus 2 (SARS-CoV-2) (preprint)
Paden CR , Tao Y , Queen K , Zhang J , Li Y , Uehara A , Tong S . bioRxiv 2020 2020.04.22.055897 SARS-CoV-2 recently emerged, resulting a global pandemic. Rapid genomic information is critical to understanding transmission and pathogenesis. Here, we describe validated protocols for generating high-quality full-length genomes from primary samples. The first employs multiplex RT-PCR followed by MinION or MiSeq sequencing. The second uses singleplex, nested RT-PCR and Sanger sequencing.Competing Interest StatementThe authors have declared no competing interest. |
Transmission of SARS-CoV-2 in free-ranging white-tailed deer in the United States
Feng A , Bevins S , Chandler J , DeLiberto TJ , Ghai R , Lantz K , Lenoch J , Retchless A , Shriner S , Tang CY , Tong SS , Torchetti M , Uehara A , Wan XF . Nat Commun 2023 14 (1) 4078 ![]() SARS-CoV-2 is a zoonotic virus with documented bi-directional transmission between people and animals. Transmission of SARS-CoV-2 from humans to free-ranging white-tailed deer (Odocoileus virginianus) poses a unique public health risk due to the potential for reservoir establishment where variants may persist and evolve. We collected 8,830 respiratory samples from free-ranging white-tailed deer across Washington, D.C. and 26 states in the United States between November 2021 and April 2022. We obtained 391 sequences and identified 34 Pango lineages including the Alpha, Gamma, Delta, and Omicron variants. Evolutionary analyses showed these white-tailed deer viruses originated from at least 109 independent spillovers from humans, which resulted in 39 cases of subsequent local deer-to-deer transmission and three cases of potential spillover from white-tailed deer back to humans. Viruses repeatedly adapted to white-tailed deer with recurring amino acid substitutions across spike and other proteins. Overall, our findings suggest that multiple SARS-CoV-2 lineages were introduced, became enzootic, and co-circulated in white-tailed deer. |
Erratum: Vol. 71, No. 6.
Lambrou AS , Shirk P , Steele MK , Paul P , Paden CR , Cadwell B , Reese HE , Aoki Y , Hassell N , Caravas J , Kovacs NA , Gerhart JG , Ng HJ , Zheng XY , Beck A , Chau R , Cintron R , Cook PW , Gulvik CA , Howard D , Jang Y , Knipe K , Lacek KA , Moser KA , Paskey AC , Rambo-Martin BL , Nagilla RR , Rethchless AC , Schmerer MW , Seby S , Shephard SS , Stanton RA , Stark TJ , Uehara A , Unoarumhi Y , Bentz ML , Burhgin A , Burroughs M , Davis ML , Keller MW , Keong LM , Le SS , Lee JS , Madden Jr JC , Nobles S , Owouor DC , Padilla J , Sheth M , Wilson MM , Talarico S , Chen JC , Oberste MS , Batra D , McMullan LK , Halpin AL , Galloway SE , MacCannell DR , Kondor R , Barnes J , MacNeil A , Silk BJ , Dugan VG , Scobie HM , Wentworth DE . MMWR Morb Mortal Wkly Rep 2022 71 (14) 528 The report “Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants — United States, June 2021–January 2022” contained several errors. |
Cryptic transmission of SARS-CoV-2 in Washington State.
Bedford T , Greninger AL , Roychoudhury P , Starita LM , Famulare M , Huang ML , Nalla A , Pepper G , Reinhardt A , Xie H , Shrestha L , Nguyen TN , Adler A , Brandstetter E , Cho S , Giroux D , Han PD , Fay K , Frazar CD , Ilcisin M , Lacombe K , Lee J , Kiavand A , Richardson M , Sibley TR , Truong M , Wolf CR , Nickerson DA , Rieder MJ , Englund JA , Hadfield J , Hodcroft EB , Huddleston J , Moncla LH , Müller NF , Neher RA , Deng X , Gu W , Federman S , Chiu C , Duchin J , Gautom R , Melly G , Hiatt B , Dykema P , Lindquist S , Queen K , Tao Y , Uehara A , Tong S , MacCannell D , Armstrong GL , Baird GS , Chu HY , Shendure J , Jerome KR . medRxiv 2020 ![]() ![]() Following its emergence in Wuhan, China, in late November or early December 2019, the SARS-CoV-2 virus has rapidly spread throughout the world. On March 11, 2020, the World Health Organization declared Coronavirus Disease 2019 (COVID-19) a pandemic. Genome sequencing of SARS-CoV-2 strains allows for the reconstruction of transmission history connecting these infections. Here, we analyze 346 SARS-CoV-2 genomes from samples collected between 20 February and 15 March 2020 from infected patients in Washington State, USA. We found that the large majority of SARS-CoV-2 infections sampled during this time frame appeared to have derived from a single introduction event into the state in late January or early February 2020 and subsequent local spread, strongly suggesting cryptic spread of COVID-19 during the months of January and February 2020, before active community surveillance was implemented. We estimate a common ancestor of this outbreak clade as occurring between 18 January and 9 February 2020. From genomic data, we estimate an exponential doubling between 2.4 and 5.1 days. These results highlight the need for large-scale community surveillance for SARS-CoV-2 introductions and spread and the power of pathogen genomics to inform epidemiological understanding. |
One Health Investigation of SARS-CoV-2 in People and Animals on Multiple Mink Farms in Utah.
Cossaboom CM , Wendling NM , Lewis NM , Rettler H , Harvey RR , Amman BR , Towner JS , Spengler JR , Erickson R , Burnett C , Young EL , Oakeson K , Carpenter A , Kainulainen MH , Chatterjee P , Flint M , Uehara A , Li Y , Zhang J , Kelleher A , Lynch B , Retchless AC , Tong S , Ahmad A , Bunkley P , Godino C , Herzegh O , Drobeniuc J , Rooney J , Taylor D , Barton Behravesh C . Viruses 2022 15 (1) ![]() ![]() From July-November 2020, mink (Neogale vison) on 12 Utah farms experienced an increase in mortality rates due to confirmed SARS-CoV-2 infection. We conducted epidemiologic investigations on six farms to identify the source of virus introduction, track cross-species transmission, and assess viral evolution. Interviews were conducted and specimens were collected from persons living or working on participating farms and from multiple animal species. Swabs and sera were tested by SARS-CoV-2 real-time reverse transcription polymerase chain reaction (rRT-PCR) and serological assays, respectively. Whole genome sequencing was attempted for specimens with cycle threshold values <30. Evidence of SARS-CoV-2 infection was detected by rRT-PCR or serology in ≥1 person, farmed mink, dog, and/or feral cat on each farm. Sequence analysis showed high similarity between mink and human sequences on corresponding farms. On farms sampled at multiple time points, mink tested rRT-PCR positive up to 16 weeks post-onset of increased mortality. Workers likely introduced SARS-CoV-2 to mink, and mink transmitted SARS-CoV-2 to other animal species; mink-to-human transmission was not identified. Our findings provide critical evidence to support interventions to prevent and manage SARS-CoV-2 in people and animals on mink farms and emphasizes the importance of a One Health approach to address emerging zoonoses. |
COVID-19 on the Nile: a cross-sectional investigation of COVID-19 among Nile River cruise travellers returning to the United States, February-march 2020.
Guagliardo SAJ , Quilter LAS , Uehara A , White SB , Talarico S , Tong S , Paden CR , Zhang J , Li Y , Pray I , Novak RT , Fukunaga R , Rodriguez A , Medley AM , Wagner R , Weinberg M , Brown CM , Friedman CR . J Travel Med 2022 ![]() ![]() BACKGROUND: Early in the pandemic, cruise travel exacerbated the global spread of SARS-CoV-2. We report epidemiologic and molecular findings from an investigation of a cluster of travelers with confirmed COVID-19 returning to the U.S. from Nile River cruises in Egypt. METHODS: State health departments reported data on real-time reverse transcription-polymerase chain reaction-confirmed COVID-19 cases with a history of Nile River cruise travel during February-March 2020 to the Centers for Disease Control and Prevention (CDC). Demographic and epidemiologic data were collected through routine surveillance channels. Sequences were obtained from either state health departments or from the Global Initiative on Sharing Avian Flu Data (GISAID). We conducted descriptive analyses of epidemiologic data and explored phylogenetic relationships between sequences. RESULTS: We identified 149 Nile River cruise travelers with confirmed COVID-19 who returned to 67 different U.S. counties in 27 states: among those with complete data, 4.7% (6/128) died and 28.1% (38/135) were hospitalized. These individuals traveled on 20 different Nile River cruise voyages (12 unique vessels). Fifteen community transmission events were identified in four states, with 73.3% (11/15) of these occurring in Wisconsin (as the result of a more detailed contact investigation in that state). Phylogenetic analyses supported the hypothesis that travelers were most likely infected in Egypt, with most sequences in Nextstrain clade 20A 93% (87/94). We observed genetic clustering by Nile River cruise voyage and vessel. CONCLUSIONS: Nile River cruise travelers with COVID-19 introduced SARS-CoV-2 over a very large geographic range, facilitating transmission across the United States early in the pandemic. Travelers who participate in cruises, even on small river vessels as investigated in this study, are at increased risk of SARS-CoV-2 exposure. Therefore, history of river cruise travel should be considered in contact tracing and outbreak investigations. |
GPS Tracking of Free-Roaming Cats (Felis catus) on SARS-CoV-2-Infected Mink Farms in Utah.
Amman BR , Cossaboom CM , Wendling NM , Harvey RR , Rettler H , Taylor D , Kainulainen MH , Ahmad A , Bunkley P , Godino C , Tong S , Li Y , Uehara A , Kelleher A , Zhang J , Lynch B , Behravesh CB , Towner JS . Viruses 2022 14 (10) Zoonotic transmission of SARS-CoV-2 from infected humans to other animals has been documented around the world, most notably in mink farming operations in Europe and the United States. Outbreaks of SARS-CoV-2 on Utah mink farms began in late July 2020 and resulted in high mink mortality. An investigation of these outbreaks revealed active and past SARS-CoV-2 infections in free-roaming and in feral cats living on or near several mink farms. Cats were captured using live traps, were sampled, fitted with GPS collars, and released on the farms. GPS tracking of these cats show they made frequent visits to mink sheds, moved freely around the affected farms, and visited surrounding residential properties and neighborhoods on multiple occasions, making them potential low risk vectors of additional SARS-CoV-2 spread in local communities. |
Household Transmission and Symptomology of SARS-CoV-2 Alpha Variant Among Children-California and Colorado, 2021.
Waltenburg MA , Whaley MJ , Chancey RJ , Donnelly MAP , Chuey MR , Soto R , Schwartz NG , Chu VT , Sleweon S , McCormick DW , Uehara A , Retchless AC , Tong S , Folster JM , Petway M , Thornburg NJ , Drobeniuc J , Austin B , Hudziec MM , Stringer G , Albanese BA , Totten SE , Matzinger SR , Staples JE , Killerby ME , Hughes LJ , Matanock A , Beatty M , Tate JE , Kirking HL , Hsu CH . J Pediatr 2022 247 29-37 e7 ![]() OBJECTIVE: To assess the household secondary infection risk (SIR) of B.1.1.7 (Alpha) and non-Alpha lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among children. STUDY DESIGN: During January-April 2021, we prospectively followed households with a SARS-CoV-2 infection. We collected questionnaires, serial nasopharyngeal swabs for RT-PCR testing and whole genome sequencing, and serial blood samples for serology testing. We calculated SIRs by primary case age (pediatric vs. adult), household contact age, and viral lineage. We evaluated risk factors associated with transmission and described symptom profiles among children. RESULTS: Among 36 households with pediatric primary cases, 21 (58%) had secondary infections. Among 91 households with adult primary cases, 51 (56%) had secondary infections. SIRs among pediatric and adult primary cases were 45% and 54%, respectively (OR: 0.79 [95% CI 0.41-1.54]). SIRs among pediatric primary cases with Alpha and non-Alpha lineage were 55% and 46%, respectively (OR: 1.52 [CI 0.51-4.53]). SIRs among pediatric and adult household contacts were 55% and 49%, respectively (OR: 1.01 [CI 0.68-1.50]). Among pediatric contacts, no significant differences in odds of acquiring infection by demographic or household characteristics were observed. CONCLUSIONS: Household transmission of SARS-CoV-2 from children and adult primary cases to household members was frequent. Risk of secondary infection was similar among child and adult household contacts. Among children, household transmission of SARS-CoV-2 and risk of secondary infection was not influenced by lineage. Continued mitigation strategies (e.g., masking, physical distancing, vaccination) are needed to protect at-risk groups regardless of virus lineage circulating in communities. |
SARS-CoV-2 Outbreak among Malayan Tigers and Humans, Tennessee, USA, 2020.
Grome HN , Meyer B , Read E , Buchanan M , Cushing A , Sawatzki K , Levinson KJ , Thomas LS , Perry Z , Uehara A , Tao Y , Queen K , Tong S , Ghai R , Fill MM , Jones TF , Schaffner W , Dunn J . Emerg Infect Dis 2022 28 (4) 833-836 We report an outbreak of severe acute respiratory syndrome coronavirus 2 involving 3 Malayan tigers (Panthera tigris jacksoni) at a zoo in Tennessee, USA. Investigation identified naturally occurring tiger-to-tiger transmission; genetic sequence change occurred with viral passage. We provide epidemiologic, environmental, and genomic sequencing data for animal and human infections. |
Investigation of SARS-CoV-2 Transmission Associated With a Large Indoor Convention - New York City, November-December 2021.
Sami S , Horter L , Valencia D , Thomas I , Pomeroy M , Walker B , Smith-Jeffcoat SE , Tate JE , Kirking HL , Kyaw NTT , Burns R , Blaney K , Dorabawila V , Hoen R , Zirnhelt Z , Schardin C , Uehara A , Retchless AC , Brown VR , Gebru Y , Powell C , Bart SM , Vostok J , Lund H , Kaess J , Gumke M , Propper R , Thomas D , Ojo M , Green A , Wieck M , Wilson E , Hollingshead RJ , Nunez SV , Saady DM , Porse CC , Gardner K , Drociuk D , Scott J , Perez T , Collins J , Shaffner J , Pray I , Rust LT , Brady S , Kerins JL , Teran RA , Hughes V , Sepcic V , Low EW , Kemble SK , Berkley A , Cleavinger K , Safi H , Webb LM , Hutton S , Dewart C , Dickerson K , Hawkins E , Zafar J , Krueger A , Bushman D , Ethridge B , Hansen K , Tant J , Reed C , Boutwell C , Hanson J , Gillespie M , Donahue M , Lane P , Serrano R , Hernandez L , Dethloff MA , Lynfield R , Como-Sabetti K , Lutterloh E , Ackelsberg J , Ricaldi JN . MMWR Morb Mortal Wkly Rep 2022 71 (7) 243-248 During November 19-21, 2021, an indoor convention (event) in New York City (NYC), was attended by approximately 53,000 persons from 52 U.S. jurisdictions and 30 foreign countries. In-person registration for the event began on November 18, 2021. The venue was equipped with high efficiency particulate air (HEPA) filtration, and attendees were required to wear a mask indoors and have documented receipt of at least 1 dose of a COVID-19 vaccine.* On December 2, 2021, the Minnesota Department of Health reported the first case of community-acquired COVID-19 in the United States caused by the SARS-CoV-2 B.1.1.529 (Omicron) variant in a person who had attended the event (1). CDC collaborated with state and local health departments to assess event-associated COVID-19 cases and potential exposures among U.S.-based attendees using data from COVID-19 surveillance systems and an anonymous online attendee survey. Among 34,541 attendees with available contact information, surveillance data identified test results for 4,560, including 119 (2.6%) persons from 16 jurisdictions with positive SARS-CoV-2 test results. Most (4,041 [95.2%]), survey respondents reported always wearing a mask while indoors at the event. Compared with test-negative respondents, test-positive respondents were more likely to report attending bars, karaoke, or nightclubs, and eating or drinking indoors near others for at least 15 minutes. Among 4,560 attendees who received testing, evidence of widespread transmission during the event was not identified. Genomic sequencing of 20 specimens identified the SARS-CoV-2 B.1.617.2 (Delta) variant (AY.25 and AY.103 sublineages) in 15 (75%) cases, and the Omicron variant (BA.1 sublineage) in five (25%) cases. These findings reinforce the importance of implementing multiple, simultaneous prevention measures, such as ensuring up-to-date vaccination, mask use, physical distancing, and improved ventilation in limiting SARS-CoV-2 transmission, during large, indoor events.(†). |
Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants - United States, June 2021-January 2022.
Lambrou AS , Shirk P , Steele MK , Paul P , Paden CR , Cadwell B , Reese HE , Aoki Y , Hassell N , Caravas J , Kovacs NA , Gerhart JG , Ng HJ , Zheng XY , Beck A , Chau R , Cintron R , Cook PW , Gulvik CA , Howard D , Jang Y , Knipe K , Lacek KA , Moser KA , Paskey AC , Rambo-Martin BL , Nagilla RR , Rethchless AC , Schmerer MW , Seby S , Shephard SS , Stanton RA , Stark TJ , Uehara A , Unoarumhi Y , Bentz ML , Burhgin A , Burroughs M , Davis ML , Keller MW , Keong LM , Le SS , Lee JS , Madden Jr JC , Nobles S , Owouor DC , Padilla J , Sheth M , Wilson MM , Talarico S , Chen JC , Oberste MS , Batra D , McMullan LK , Halpin AL , Galloway SE , MacCannell DR , Kondor R , Barnes J , MacNeil A , Silk BJ , Dugan VG , Scobie HM , Wentworth DE . MMWR Morb Mortal Wkly Rep 2022 71 (6) 206-211 ![]() ![]() Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.(†) The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice. |
Household transmission of SARS-CoV-2 Alpha variant - United States, 2021.
Donnelly MAP , Chuey MR , Soto R , Schwartz NG , Chu VT , Konkle SL , Sleweon S , Ruffin J , Haberling DL , Guagliardo SAJ , Stoddard RA , Anderson RD , Morgan CN , Rossetti R , McCormick DW , Magleby R , Sheldon SW , Dietrich EA , Uehara A , Retchless AC , Tong S , Folster JM , Drobeniuc J , Petway ME , Austin B , Stous S , McDonald E , Jain S , Hudziec MM , Stringer G , Albanese BA , Totten SE , Staples JE , Killerby ME , Hughes L , Matanock A , Beatty M , Tate JE , Kirking HL , Hsu CH . Clin Infect Dis 2022 75 (1) e122-e132 ![]() ![]() BACKGROUND: In Spring 2021, SARS-CoV-2 B.1.1.7 (Alpha) became the predominant variant in the U.S. Research suggests that Alpha has increased transmissibility compared to non-Alpha lineages. We estimated household secondary infection risk (SIR), assessed characteristics associated with transmission, and compared symptoms of persons with Alpha and non-Alpha infections. METHODS: We followed households with SARS-CoV-2 infection for two weeks in San Diego County and metropolitan Denver, January to April 2021. We collected epidemiologic information and biospecimens for serology, RT-PCR, and whole genome sequencing. We stratified SIR and symptoms by lineage, and identified characteristics associated with transmission using Generalized Estimating Equations. RESULTS: We investigated 127 households with 322 household contacts; 72 households (56.7%) had member(s) with secondary infections. SIRs were not significantly higher for Alpha (61.0% [95% confidence interval (CI) 52.4-69.0%]) than non-Alpha (55.6% [CI 44.7-65.9%], P = 0.49). In households with Alpha, persons who identified as Asian or Hispanic/Latino had significantly higher SIRs than those who identified as White (P = 0.01 and 0.03, respectively). Close contact (e.g., kissing, hugging) with primary cases was associated with increased transmission for all lineages. Persons with Alpha infection were more likely to report constitutional symptoms than persons with non-Alpha (86.9% vs. 76.8%, P = 0.05). CONCLUSIONS: Household SIRs were similar for Alpha and non-Alpha. Comparable SIRs may be due to saturation of transmission risk in households owing to extensive close contact, or true lack of difference in transmission rates. Avoiding close contact within households may reduce SARS-CoV-2 transmission for all lineages among household members. |
One Health Investigation of SARS-CoV-2 Infection and Seropositivity among Pets in Households with Confirmed Human COVID-19 Cases-Utah and Wisconsin, 2020.
Goryoka GW , Cossaboom CM , Gharpure R , Dawson P , Tansey C , Rossow J , Mrotz V , Rooney J , Torchetti M , Loiacono CM , Killian ML , Jenkins-Moore M , Lim A , Poulsen K , Christensen D , Sweet E , Peterson D , Sangster AL , Young EL , Oakeson KF , Taylor D , Price A , Kiphibane T , Klos R , Konkle D , Bhattacharyya S , Dasu T , Chu VT , Lewis NM , Queen K , Zhang J , Uehara A , Dietrich EA , Tong S , Kirking HL , Doty JB , Murrell LS , Spengler JR , Straily A , Wallace R , Barton Behravesh C . Viruses 2021 13 (9) Approximately 67% of U.S. households have pets. Limited data are available on SARS-CoV-2 in pets. We assessed SARS-CoV-2 infection in pets during a COVID-19 household transmission investigation. Pets from households with ≥1 person with laboratory-confirmed COVID-19 were eligible for inclusion from April-May 2020. We enrolled 37 dogs and 19 cats from 34 households. All oropharyngeal, nasal, and rectal swabs tested negative by rRT-PCR; one dog's fur swabs (2%) tested positive by rRT-PCR at the first sampling. Among 47 pets with serological results, eight (17%) pets (four dogs, four cats) from 6/30 (20%) households had detectable SARS-CoV-2 neutralizing antibodies. In households with a seropositive pet, the proportion of people with laboratory-confirmed COVID-19 was greater (median 79%; range: 40-100%) compared to households with no seropositive pet (median 37%; range: 13-100%) (p = 0.01). Thirty-three pets with serologic results had frequent daily contact (≥1 h) with the index patient before the person's COVID-19 diagnosis. Of these 33 pets, 14 (42%) had decreased contact with the index patient after diagnosis and none were seropositive; of the 19 (58%) pets with continued contact, four (21%) were seropositive. Seropositive pets likely acquired infection after contact with people with COVID-19. People with COVID-19 should restrict contact with pets and other animals. |
SARS-CoV-2 transmission in a Georgia school district - United States, December 2020-January 2021.
Gettings JR , Gold JAW , Kimball A , Forsberg K , Scott C , Uehara A , Tong S , Hast M , Swanson MR , Morris E , Oraka E , Almendares O , Thomas ES , Mehari L , McCloud J , Roberts G , Crosby D , Balajee A , Burnett E , Chancey RJ , Cook P , Donadel M , Espinosa C , Evans ME , Fleming-Dutra KE , Forero C , Kukielka EA , Li Y , Marcet PL , Mitruka K , Nakayama JY , Nakazawa Y , O'Hegarty M , Pratt C , Rice ME , Rodriguez Stewart RM , Sabogal R , Sanchez E , Velasco-Villa A , Weng MK , Zhang J , Rivera G , Parrott T , Franklin R , Memark J , Drenzek C , Hall AJ , Kirking HL , Tate JE , Vallabhaneni S . Clin Infect Dis 2021 74 (2) 319-326 ![]() ![]() BACKGROUND: To inform prevention strategies, we assessed the extent of SARS-CoV-2 transmission and settings in which transmission occurred in a Georgia public school district. METHODS: During December 1, 2020-January 22, 2021, SARS-CoV-2-infected index cases and their close contacts in schools were identified by school and public health officials. For in-school contacts, we assessed symptoms and offered SARS-CoV-2 RT-PCR testing; performed epidemiologic investigations and whole-genome sequencing to identify in-school transmission; and calculated secondary attack rate (SAR) by school setting (e.g., sports, elementary school classroom), index case role (i.e., staff, student), and index case symptomatic status. RESULTS: We identified 86 index cases and 1,119 contacts, 688 (63.1%) of whom received testing. Fifty-nine (8.7%) of 679 contacts tested positive; 15 (17.4%) of 86 index cases resulted in ≥2 positive contacts. Among 55 persons testing positive with available symptom data, 31 (56.4%) were asymptomatic. Highest SAR were in indoor, high-contact sports settings (23.8%, 95% confidence interval [CI] 12.7, 33.3), staff meetings/lunches (18.2%, CI 4.5-31.8), and elementary school classrooms (9.5%, CI 6.5-12.5). SAR was higher for staff (13.1%, CI 9.0-17.2) versus student index cases (5.8%, CI 3.6-8.0) and for symptomatic (10.9%, CI 8.1-13.9) versus asymptomatic index cases (3.0%, CI 1.0-5.5). CONCLUSIONS: Indoor sports may pose a risk to the safe operation of in-person learning. Preventing infection in staff members, through measures that include COVID-19 vaccination, is critical to reducing in-school transmission. Because many positive contacts were asymptomatic, contact tracing should be paired with testing, regardless of symptoms. |
Rapid Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 in Detention Facility, Louisiana, USA, May-June, 2020.
Wallace M , James AE , Silver R , Koh M , Tobolowsky FA , Simonson S , Gold JAW , Fukunaga R , Njuguna H , Bordelon K , Wortham J , Coughlin M , Harcourt JL , Tamin A , Whitaker B , Thornburg NJ , Tao Y , Queen K , Uehara A , Paden CR , Zhang J , Tong S , Haydel D , Tran H , Kim K , Fisher KA , Marlow M , Tate JE , Doshi RH , Sokol T , Curran KG . Emerg Infect Dis 2021 27 (2) 421-429 To assess transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a detention facility experiencing a coronavirus disease outbreak and evaluate testing strategies, we conducted a prospective cohort investigation in a facility in Louisiana, USA. We conducted SARS-CoV-2 testing for detained persons in 6 quarantined dormitories at various time points. Of 143 persons, 53 were positive at the initial test, and an additional 58 persons were positive at later time points (cumulative incidence 78%). In 1 dormitory, all 45 detained persons initially were negative; 18 days later, 40 (89%) were positive. Among persons who were SARS-CoV-2 positive, 47% (52/111) were asymptomatic at the time of specimen collection; 14 had replication-competent virus isolated. Serial SARS-CoV-2 testing might help interrupt transmission through medical isolation and quarantine. Testing in correctional and detention facilities will be most effective when initiated early in an outbreak, inclusive of all exposed persons, and paired with infection prevention and control. |
SARS-CoV-2 Transmission Dynamics in a Sleep-Away Camp.
Szablewski CM , Chang KT , McDaniel CJ , Chu VT , Yousaf AR , Schwartz NG , Brown M , Winglee K , Paul P , Cui Z , Slayton RB , Tong S , Li Y , Uehara A , Zhang J , Sharkey SM , Kirking HL , Tate JE , Dirlikov E , Fry AM , Hall AJ , Rose DA , Villanueva J , Drenzek C , Stewart RJ , Lanzieri TM . Pediatrics 2021 147 (4) OBJECTIVES: In late June 2020, a large outbreak of coronavirus disease 2019 (COVID-19) occurred at a sleep-away youth camp in Georgia, affecting primarily persons </=21 years. We conducted a retrospective cohort study among campers and staff (attendees) to determine the extent of the outbreak and assess factors contributing to transmission. METHODS: Attendees were interviewed to ascertain demographic characteristics, known exposures to COVID-19 and community exposures, and mitigation measures before, during, and after attending camp. COVID-19 case status was determined for all camp attendees on the basis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test results and reported symptoms. We calculated attack rates and instantaneous reproduction numbers and sequenced SARS-CoV-2 viral genomes from the outbreak. RESULTS: Among 627 attendees, the median age was 15 years (interquartile range: 12-16 years); 56% (351 of 627) of attendees were female. The attack rate was 56% (351 of 627) among all attendees. On the basis of date of illness onset or first positive test result on a specimen collected, 12 case patients were infected before arriving at camp and 339 case patients were camp associated. Among 288 case patients with available symptom information, 45 (16%) were asymptomatic. Despite cohorting, 50% of attendees reported direct contact with people outside their cabin cohort. On the first day of camp session, the instantaneous reproduction number was 10. Viral genomic diversity was low. CONCLUSIONS: Few introductions of SARS-CoV-2 into a youth congregate setting resulted in a large outbreak. Testing strategies should be combined with prearrival quarantine, routine symptom monitoring with appropriate isolation and quarantine, cohorting, social distancing, mask wearing, and enhanced disinfection and hand hygiene. Promotion of mitigation measures among younger populations is needed. |
Evidence of SARS-CoV-2 Replication and Tropism in the Lungs, Airways and Vascular Endothelium of Patients with Fatal COVID-19: An Autopsy Case-Series.
Bhatnagar J , Gary J , Reagan-Steiner S , Estetter LB , Tong S , Tao Y , Denison AM , Lee E , DeLeon-Carnes M , Li Y , Uehara A , Paden CR , Leitgeb B , Uyeki TM , Martines RB , Ritter JM , Paddock CD , Shieh WJ , Zaki SR . J Infect Dis 2021 223 (5) 752-764 ![]() ![]() BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic continues to produce substantial morbidity and mortality. To understand the reasons for the wide-spectrum complications and severe outcomes of COVID-19, we aimed to identify cellular targets of SARS-CoV-2 tropism and replication in various tissues. METHODS: We evaluated RNA extracted from formalin-fixed, paraffin-embedded autopsy tissues from 64 case-patients (age range: 1 month to 84 years; COVID-19 confirmed n=21, suspected n=43) by SARS-CoV-2 RT-PCR. For cellular localization of SARS-CoV-2 RNA and viral characterization, we performed in-situ hybridization (ISH), subgenomic RNA RT-PCR, and whole genome sequencing. RESULTS: SARS-CoV-2 was identified by RT-PCR in 32 case-patients (confirmed n=21 and suspected n=11). ISH was positive in 20 and subgenomic RNA RT-PCR was positive in 17 of 32 RT-PCR-positive case-patients. SARS-CoV-2 RNA was localized by ISH in hyaline membranes, pneumocytes and macrophages of lungs, epithelial cells of airways, and in endothelial cells and vessels wall of brain stem, leptomeninges, lung, heart, liver, kidney, and pancreas. D614G variant was detected in 9 RT-PCR-positive case-patients. CONCLUSIONS: We identified cellular targets of SARS-CoV-2 tropism and replication in the lungs and airways and demonstrated its direct infection in vascular endothelium. This work provides important insights into COVID-19 pathogenesis and mechanisms of severe outcomes. |
Identification of a novel lineage of Crimean-Congo haemorrhagic fever virus in dromedary camels, United Arab Emirates.
Khalafalla AI , Li Y , Uehara A , Hussein NA , Zhang J , Tao Y , Bergeron E , Ibrahim IH , Al Hosani MA , Yusof MF , Alhammadi ZM , Alyammahi SM , Gasim EF , Ishag HZA , Hosani FAL , Gerber SI , Almuhairi SS , Tong S . J Gen Virol 2020 102 (2) ![]() Crimean-Congo haemorrhagic fever virus (CCHFV) is a tick-borne virus causing Crimean-Congo haemorrhagic fever (CCHF), a disease reported to have a high fatality rate in numerous countries. The virus is geographically widespread due to its vector, and numerous wild and domestic animals can develop asymptomatic infection. Serological and limited molecular evidence of CCHFV has previously been reported in Camelus dromedarius (the dromedary, or one-humped camel) in the United Arab Emirates (UAE). In this study, 238 camel samples were screened for CCHFV RNA where 16 camel samples were positive for CCHFV by RT-PCR. Analysis of full-length CCHFV genome sequences revealed a novel lineage in camels from the UAE, and potential reassortment of the M segment of the genome. |
Cryptic transmission of SARS-CoV-2 in Washington state.
Bedford T , Greninger AL , Roychoudhury P , Starita LM , Famulare M , Huang ML , Nalla A , Pepper G , Reinhardt A , Xie H , Shrestha L , Nguyen TN , Adler A , Brandstetter E , Cho S , Giroux D , Han PD , Fay K , Frazar CD , Ilcisin M , Lacombe K , Lee J , Kiavand A , Richardson M , Sibley TR , Truong M , Wolf CR , Nickerson DA , Rieder MJ , Englund JA , Hadfield J , Hodcroft EB , Huddleston J , Moncla LH , Müller NF , Neher RA , Deng X , Gu W , Federman S , Chiu C , Duchin JS , Gautom R , Melly G , Hiatt B , Dykema P , Lindquist S , Queen K , Tao Y , Uehara A , Tong S , MacCannell D , Armstrong GL , Baird GS , Chu HY , Shendure J , Jerome KR . Science 2020 370 (6516) 571-575 ![]() ![]() Following its emergence in Wuhan, China, in late November or early December 2019, the SARS-CoV-2 virus has rapidly spread globally. Genome sequencing of SARS-CoV-2 allows reconstruction of its transmission history, although this is contingent on sampling. We have analyzed 453 SARS-CoV-2 genomes collected between 20 February and 15 March 2020 from infected patients in Washington State, USA. We find that most SARS-CoV-2 infections sampled during this time derive from a single introduction in late January or early February 2020 which subsequently spread locally before active community surveillance was implemented. |
Rapid, Sensitive, Full-Genome Sequencing of Severe Acute Respiratory Syndrome Coronavirus 2.
Paden CR , Tao Y , Queen K , Zhang J , Li Y , Uehara A , Tong S . Emerg Infect Dis 2020 26 (10) 2401-2405 ![]() We describe validated protocols for generating high-quality, full-length severe acute respiratory syndrome coronavirus 2 genomes from primary samples. One protocol uses multiplex reverse transcription PCR, followed by MinION or MiSeq sequencing; the other uses singleplex, nested reverse transcription PCR and Sanger sequencing. These protocols enable sensitive virus sequencing in different laboratory environments. |
COVID-19 in Americans aboard the Diamond Princess cruise ship.
Plucinski MM , Wallace M , Uehara A , Kurbatova EV , Tobolowsky FA , Schneider ZD , Ishizumi A , Bozio CH , Kobayashi M , Toda M , Stewart A , Wagner RL , Moriarty LF , Murray R , Queen K , Tao Y , Paden C , Mauldin MR , Zhang J , Li Y , Elkins CA , Lu X , Herzig CTA , Novak R , Bower W , Medley AM , Acosta AM , Knust B , Cantey PT , Pesik NT , Halsey ES , Cetron MS , Tong S , Marston BJ , Friedman CR . Clin Infect Dis 2020 72 (10) e448-e457 ![]() ![]() BACKGROUND: The Diamond Princess cruise ship was the site of a large outbreak of coronavirus disease 2019 (COVID-19). Of 437 Americans and their travel companions on the ship, 114 (26%) tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We interviewed 229 American passengers and crew after disembarkation following a ship-based quarantine to identify risk factors for infection and characterize transmission onboard the ship. RESULTS: The attack rate for passengers in single-person cabins or without infected cabinmates was 18% (58/329), compared with 63% (27/43) for those sharing a cabin with an asymptomatic infected cabinmate, and 81% (25/31) for those with a symptomatic infected cabinmate. Whole genome sequences from specimens from passengers who shared cabins clustered together. Of 66 SARS-CoV-2-positive American travelers with complete symptom information, 14 (21%) were asymptomatic while on the ship. Among SARS-CoV-2-positive Americans, 10 (9%) required intensive care, of whom 7 were ≥70 years. CONCLUSION: Our findings highlight the high risk of SARS-CoV-2 transmission on cruise ships. High rates of SARS-CoV-2 positivity in cabinmates of individuals with asymptomatic infections suggest that triage by symptom status in shared quarters is insufficient to halt transmission. A high rate of intensive care unit admission among older individuals complicates the prospect of future cruise travel during the pandemic, given typical cruise passenger demographics. The magnitude and severe outcomes of this outbreak were major factors contributing to the Centers for Disease Control and Prevention's decision to halt cruise ship travel in U.S. waters in March 2020. |
Detection and Genetic Characterization of Community-Based SARS-CoV-2 Infections - New York City, March 2020.
Greene SK , Keating P , Wahnich A , Weiss D , Pathela P , Harrison C , Rakeman J , Langley G , Tong S , Tao Y , Uehara A , Queen K , Paden CR , Szymczak W , Orner EP , Nori P , Lai PA , Jacobson JL , Singh HK , Calfee DP , Westblade LF , Vasovic LV , Rand JH , Liu D , Singh V , Burns J , Prasad N , Sell J , CDC COVID-19 Surge Laboratory Group , Abernathy Emily , Anderson Raydel , Bankamp Bettina , Bell Melissa , Galloway Renee , Graziano James , Kim Gimin , Kondas Ashley , Lee Christopher , Radford Kay , Rogers Shannon , Smith Peyton , Tiller Rebekah , Weiner Zachary , Wharton Adam , Whitaker Brett . MMWR Morb Mortal Wkly Rep 2020 69 (28) 918-922 ![]() To limit introduction of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), the United States restricted travel from China on February 2, 2020, and from Europe on March 13. To determine whether local transmission of SARS-CoV-2 could be detected, the New York City (NYC) Department of Health and Mental Hygiene (DOHMH) conducted deidentified sentinel surveillance at six NYC hospital emergency departments (EDs) during March 1-20. On March 8, while testing availability for SARS-CoV-2 was still limited, DOHMH announced sustained community transmission of SARS-CoV-2 (1). At this time, twenty-six NYC residents had confirmed COVID-19, and ED visits for influenza-like illness* increased, despite decreased influenza virus circulation.(†) The following week, on March 15, when only seven of the 56 (13%) patients with known exposure histories had exposure outside of NYC, the level of community SARS-CoV-2 transmission status was elevated from sustained community transmission to widespread community transmission (2). Through sentinel surveillance during March 1-20, DOHMH collected 544 specimens from patients with influenza-like symptoms (ILS)(§) who had negative test results for influenza and, in some instances, other respiratory pathogens.(¶) All 544 specimens were tested for SARS-CoV-2 at CDC; 36 (6.6%) tested positive. Using genetic sequencing, CDC determined that the sequences of most SARS-CoV-2-positive specimens resembled those circulating in Europe, suggesting probable introductions of SARS-CoV-2 from Europe, from other U.S. locations, and local introductions from within New York. These findings demonstrate that partnering with health care facilities and developing the systems needed for rapid implementation of sentinel surveillance, coupled with capacity for genetic sequencing before an outbreak, can help inform timely containment and mitigation strategies. |
Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient.
Harcourt J , Tamin A , Lu X , Kamili S , Sakthivel SK , Murray J , Queen K , Tao Y , Paden CR , Zhang J , Li Y , Uehara A , Wang H , Goldsmith C , Bullock HA , Wang L , Whitaker B , Lynch B , Gautam R , Schindewolf C , Lokugamage KG , Scharton D , Plante JA , Mirchandani D , Widen SG , Narayanan K , Makino S , Ksiazek TG , Plante KS , Weaver SC , Lindstrom S , Tong S , Menachery VD , Thornburg NJ . bioRxiv 2020 ![]() The etiologic agent of the outbreak of pneumonia in Wuhan China was identified as severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) in January, 2020. The first US patient was diagnosed by the State of Washington and the US Centers for Disease Control and Prevention on January 20, 2020. We isolated virus from nasopharyngeal and oropharyngeal specimens, and characterized the viral sequence, replication properties, and cell culture tropism. We found that the virus replicates to high titer in Vero-CCL81 cells and Vero E6 cells in the absence of trypsin. We also deposited the virus into two virus repositories, making it broadly available to the public health and research communities. We hope that open access to this important reagent will expedite development of medical countermeasures. |
Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States.
Harcourt J , Tamin A , Lu X , Kamili S , Sakthivel SK , Murray J , Queen K , Tao Y , Paden CR , Zhang J , Li Y , Uehara A , Wang H , Goldsmith C , Bullock HA , Wang L , Whitaker B , Lynch B , Gautam R , Schindewolf C , Lokugamage KG , Scharton D , Plante JA , Mirchandani D , Widen SG , Narayanan K , Makino S , Ksiazek TG , Plante KS , Weaver SC , Lindstrom S , Tong S , Menachery VD , Thornburg NJ . Emerg Infect Dis 2020 26 (6) 1266-1273 The etiologic agent of an outbreak of pneumonia in Wuhan, China, was identified as severe acute respiratory syndrome coronavirus 2 in January 2020. A patient in the United States was given a diagnosis of infection with this virus by the state of Washington and the US Centers for Disease Control and Prevention on January 20, 2020. We isolated virus from nasopharyngeal and oropharyngeal specimens from this patient and characterized the viral sequence, replication properties, and cell culture tropism. We found that the virus replicates to high titer in Vero-CCL81 cells and Vero E6 cells in the absence of trypsin. We also deposited the virus into 2 virus repositories, making it broadly available to the public health and research communities. We hope that open access to this reagent will expedite development of medical countermeasures. |
Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States.
Kujawski SA , Wong KK , Collins JP , Epstein L , Killerby ME , Midgley CM , Abedi GR , Ahmed NS , Almendares O , Alvarez FN , Anderson KN , Balter S , Barry V , Bartlett K , Beer K , Ben-Aderet MA , Benowitz I , Biggs HM , Binder AM , Black SR , Bonin B , Bozio CH , Brown CM , Bruce H , Bryant-Genevier J , Budd A , Buell D , Bystritsky R , Cates J , Charles EM , Chatham-Stephens K , Chea N , Chiou H , Christiansen D , Chu V , Cody S , Cohen M , Conners EE , Curns AT , Dasari V , Dawson P , DeSalvo T , Diaz G , Donahue M , Donovan S , Duca LM , Erickson K , Esona MD , Evans S , Falk J , Feldstein LR , Fenstersheib M , Fischer M , Fisher R , Foo C , Fricchione MJ , Friedman O , Fry A , Galang RR , Garcia MM , Gerber SI , Gerrard G , Ghinai I , Gounder P , Grein J , Grigg C , Gunzenhauser JD , Gutkin GI , Haddix M , Hall AJ , Han GS , Harcourt J , Harriman K , Haupt T , Haynes AK , Holshue M , Hoover C , Hunter JC , Jacobs MW , Jarashow C , Joshi K , Kamali T , Kamili S , Kim L , Kim M , King J , Kirking HL , Kita-Yarbro A , Klos R , Kobayashi M , Kocharian A , Komatsu KK , Koppaka R , Layden JE , Li Y , Lindquist S , Lindstrom S , Link-Gelles R , Lively J , Livingston M , Lo K , Lo J , Lu X , Lynch B , Madoff L , Malapati L , Marks G , Marlow M , Mathisen GE , McClung N , McGovern O , McPherson TD , Mehta M , Meier A , Mello L , Moon SS , Morgan M , Moro RN , Murray J , Murthy R , Novosad S , Oliver SE , O’Shea J , Pacilli M , Paden CR , Pallansch MA , Patel M , Patel S , Pedraza I , Pillai SK , Pindyck T , Pray I , Queen K , Quick N , Reese H , Reporter R , Rha B , Rhodes H , Robinson S , Robinson P , Rolfes MA , Routh JA , Rubin R , Rudman SL , Sakthivel SK , Scott S , Shepherd C , Shetty V , Smith EA , Smith S , Stierman B , Stoecker W , Sunenshine R , Sy-Santos R , Tamin A , Tao Y , Terashita D , Thornburg NJ , Tong S , Traub E , Tural A , Uehara A , Uyeki TM , Vahey G , Verani JR , Villarino E , Wallace M , Wang L , Watson JT , Westercamp M , Whitaker B , Wilkerson S , Woodruff RC , Wortham JM , Wu T , Xie A , Yousaf A , Zahn M , Zhang J . Nat Med 2020 26 (6) 861-868 Data on the detailed clinical progression of COVID-19 in conjunction with epidemiological and virological characteristics are limited. In this case series, we describe the first 12 US patients confirmed to have COVID-19 from 20 January to 5 February 2020, including 4 patients described previously(1-3). Respiratory, stool, serum and urine specimens were submitted for SARS-CoV-2 real-time reverse-transcription polymerase chain reaction (rRT-PCR) testing, viral culture and whole genome sequencing. Median age was 53 years (range: 21-68); 8 patients were male. Common symptoms at illness onset were cough (n = 8) and fever (n = 7). Patients had mild to moderately severe illness; seven were hospitalized and demonstrated clinical or laboratory signs of worsening during the second week of illness. No patients required mechanical ventilation and all recovered. All had SARS-CoV-2 RNA detected in respiratory specimens, typically for 2-3 weeks after illness onset. Lowest real-time PCR with reverse transcription cycle threshold values in the upper respiratory tract were often detected in the first week and SARS-CoV-2 was cultured from early respiratory specimens. These data provide insight into the natural history of SARS-CoV-2. Although infectiousness is unclear, highest viral RNA levels were identified in the first week of illness. Clinicians should anticipate that some patients may worsen in the second week of illness. |
Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility.
Arons MM , Hatfield KM , Reddy SC , Kimball A , James A , Jacobs JR , Taylor J , Spicer K , Bardossy AC , Oakley LP , Tanwar S , Dyal JW , Harney J , Chisty Z , Bell JM , Methner M , Paul P , Carlson CM , McLaughlin HP , Thornburg N , Tong S , Tamin A , Tao Y , Uehara A , Harcourt J , Clark S , Brostrom-Smith C , Page LC , Kay M , Lewis J , Montgomery P , Stone ND , Clark TA , Honein MA , Duchin JS , Jernigan JA . N Engl J Med 2020 382 (22) 2081-2090 ![]() ![]() BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can spread rapidly within skilled nursing facilities. After identification of a case of Covid-19 in a skilled nursing facility, we assessed transmission and evaluated the adequacy of symptom-based screening to identify infections in residents. METHODS: We conducted two serial point-prevalence surveys, 1 week apart, in which assenting residents of the facility underwent nasopharyngeal and oropharyngeal testing for SARS-CoV-2, including real-time reverse-transcriptase polymerase chain reaction (rRT-PCR), viral culture, and sequencing. Symptoms that had been present during the preceding 14 days were recorded. Asymptomatic residents who tested positive were reassessed 7 days later. Residents with SARS-CoV-2 infection were categorized as symptomatic with typical symptoms (fever, cough, or shortness of breath), symptomatic with only atypical symptoms, presymptomatic, or asymptomatic. RESULTS: Twenty-three days after the first positive test result in a resident at this skilled nursing facility, 57 of 89 residents (64%) tested positive for SARS-CoV-2. Among 76 residents who participated in point-prevalence surveys, 48 (63%) tested positive. Of these 48 residents, 27 (56%) were asymptomatic at the time of testing; 24 subsequently developed symptoms (median time to onset, 4 days). Samples from these 24 presymptomatic residents had a median rRT-PCR cycle threshold value of 23.1, and viable virus was recovered from 17 residents. As of April 3, of the 57 residents with SARS-CoV-2 infection, 11 had been hospitalized (3 in the intensive care unit) and 15 had died (mortality, 26%). Of the 34 residents whose specimens were sequenced, 27 (79%) had sequences that fit into two clusters with a difference of one nucleotide. CONCLUSIONS: Rapid and widespread transmission of SARS-CoV-2 was demonstrated in this skilled nursing facility. More than half of residents with positive test results were asymptomatic at the time of testing and most likely contributed to transmission. Infection-control strategies focused solely on symptomatic residents were not sufficient to prevent transmission after SARS-CoV-2 introduction into this facility. |
The association between risk behaviors and race/ethnicity on dental visiting among high school students in Hawai'i: Hawai'i Youth Risk Behavior Survey, 2013, 2015
Espinoza A , Hayes DK , Uehara S , Mattheus D , Domagalski J . Hawaii J Med Public Health 2019 78 (2) 44-51 Risk behaviors are known to adversely affect health outcomes, but the relationship between youth risk behaviors and oral health remains unclear. The objective of this study is to examine the likelihood of dental visiting among Hawai'i public high school students by demographic factors and number of adverse risk behaviors. Aggregated 2013 and 2015 Hawai'i public high school Youth Risk and Behavior Survey (YRBS) data was analyzed from 10,720 students. Results showed that, overall, 77.1% of students reported a dental visit in the past 12 months. Students who were ages 15, 16, 17, and >/= 18 years old were less likely than students who were </= 14 years old to visit a dentist. Those who identified as Hispanic, Native Hawaiian, Filipino, Other Pacific Islander, and students who identified as more than one race/ethnicity were less likely to visit the dentist than their white counterparts. In addition, students having either 4 risk behaviors or >/= 5 risk behaviors were less likely to report a dental visit than those with no risk behaviors. These findings support the presence of disparities in oral health care utilization among high school students in Hawai'i and reveal a significant association between age, number of risk behaviors, and race/ethnicity with the likelihood of utilizing dental services. Oral health programs should consider screening for risk factors and multiple risk behaviors, integrating with other health programs that share similar risk behaviors, and account for cultural differences in their development, implementation, and evaluation. |
Increased Kawasaki disease incidence associated with higher precipitation and lower temperatures, Japan, 1991-2004
Abrams JY , Blase JL , Belay EB , Uehara R , Maddox RA , Schonberger LB , Nakamura Y . Pediatr Infect Dis J 2017 37 (6) 526-530 BACKGROUND: Kawasaki disease (KD) is an acute febrile vasculitis which primarily affects children. The etiology of KD is unknown: while certain characteristics of the disease suggest an infectious origin, genetic or environmental factors may also be important. Seasonal patterns of KD incidence are well-documented, but it is unclear whether these patterns are caused by changes in climate or by other unknown seasonal effects. METHODS: The relationship between KD incidence and deviations from expected temperature and precipitation were analyzed using KD incidence data from Japanese nationwide epidemiological surveys (1991-2004) and climate data from 136 weather stations of the Japan Meteorological Agency. Seven separate Poisson-distributed generalized linear regression models were run to examine the effects of temperature and precipitation on KD incidence in the same month as KD onset and the previous 1, 2, 3, 4, 5, and 6 months, controlling for geography as well as seasonal and long-term trends in KD incidence. RESULTS: KD incidence was negatively associated with temperature in the previous 2, 3, 4, and 5 months and positively associated with precipitation in the previous 1 and 2 months. The model that best predicted variations in KD incidence used climate data from the previous 2 months. An increase in total monthly precipitation by 100mm was associated with increased KD incidence (rate ratio=1.012, 95% confidence interval=1.005-1.019) and an increase of monthly mean temperature by 1 degrees C was associated with decreased KD incidence (RR=0.984, 95% CI=0.978-0.990). CONCLUSIONS: KD incidence was significantly affected by temperature and precipitation in previous months independent of other unknown seasonal factors. Climate data from the previous 2 months best predicted variations in KD incidence. Although fairly minor, the effect of temperature and precipitation independent of season may provide additional clues to the etiology of KD. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 17, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure