Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-6 (of 6 Records) |
Query Trace: Tufa AJ[original query] |
---|
Identification of risk factors and mosquito vectors associated with dengue virus infection in American Samoa, 2017
Sharp TM , Tufa AJ , Cotter CJ , Lozier MJ , Santiago GA , Johnson SS , Mataia'a M , Waterman SH , Muñoz-Jordán JL , Paz-Bailey G , Hemme RR , Schmaedick MA , Anesi S . PLOS Glob Public Health 2023 3 (7) e0001604 INTRODUCTION: The first outbreak of dengue in American Samoa was reported in 1911. Sporadic outbreaks have been reported since, as were outbreaks of other pathogens transmitted by Aedes species mosquitoes including Ross River, chikungunya, and Zika viruses. During an outbreak of dengue virus-type 2 (DENV-2) in 2016-2018, we conducted household-based cluster investigations to identify population-specific risk factors associated with infection and performed entomologic surveillance to determine the relative abundance of Ae. aegypti and Ae. polynesiensis. METHODS AND FINDINGS: We contacted dengue patients who had tested positive for DENV infection and offered them as well as their household members participation in household-based cluster investigations. For those that accepted participation, we also offered participation to residents of households within a 50-meter radius of each case-patient's home. Questionnaires were administered and serum specimens collected for testing by RT-PCR and anti-DENV IgM ELISA. Adult female mosquitoes were aspirated from inside and outside participating households and tested by RT-PCR. We analyzed characteristics associated with DENV infection in bivariate analyses. A total of 226 participants was enrolled from 91 households in 20 clusters. Median age of participants was 34 years (range: <1-94), and 56.2% were female. In total, 7 (3.2%) participants had evidence of DENV infection by IgM ELISA (n = 5) or RT-PCR (n = 2). Factors significantly associated with DENV infection were reporting a febrile illness in the past three months (prevalence ratio: 7.5 [95% confidence interval: 1.9-29.8]) and having a household septic tank (Fisher's Exact Test, p = 0.004). Of 93 Ae. aegypti and 90 Ae. polynesiensis females collected, 90% of Ae. aegypti were collected inside homes whereas 83% of Ae. polynesiensis were collected outside homes. DENV nucleic acid was not detected in any mosquito pools. Sequencing of the DENV-2 from patient specimens identified the Cosmopolitan genotype of DENV-2 and was most closely related to virus detected in the Solomon Islands during 2016. CONCLUSIONS: This investigation demonstrated that dengue is a continuing risk in American Samoa. Increased frequency of infection among residents with a septic tank suggests a need to investigate whether septic tanks serve as larval habitats for mosquito vectors of DENV in American Samoa. Future efforts should also evaluate the role of Ae. polynesiensis in DENV transmission in the wild. |
Reverse Transcription-Polymerase Chain Reaction Testing on Filter Paper-Dried Serum for Laboratory-Based Dengue Surveillance-American Samoa, 2018.
Curren EJ , Tufa AJ , Hancock WT , Biggerstaff BJ , Vaifanua-Leo JS , Montalbo CA , Sharp TM , Fischer M , Hills SL , Gould CV . Am J Trop Med Hyg 2020 102 (3) 622-624 Laboratory-based surveillance for arboviral diseases is challenging in resource-limited settings. We evaluated the use of filter paper-dried sera for detection of dengue virus (DENV) RNA during an outbreak in American Samoa. Matched liquid and filter paper-dried sera were collected from patients with suspected dengue and shipped to a reference laboratory for diagnostic testing. RNA was extracted from each sample and tested for DENV RNA by real-time reverse transcription-polymerase chain reaction (RT-PCR). Of 18 RT-PCR-positive liquid specimens, 14 matched filter paper-dried specimens were positive for a sensitivity of 78% (95% CI, 55-91%). Of 82 RT-PCR-negative liquid specimens, all filter paper-dried specimens were negative for a specificity of 100% (95% CI, 96-100%). Shipping of filter paper-dried specimens was similarly timely but less expensive than shipping liquid sera. Using filter paper-dried serum or blood can be a cost-effective and sustainable approach to surveillance of dengue and other arboviral diseases in resource-limited settings. |
Outbreak of dengue virus type 2 - American Samoa, November 2016-October 2018
Cotter CJ , Tufa AJ , Johnson S , Matai'a M , Sciulli R , Ryff KR , Hancock WT , Whelen C , Sharp TM , Anesi MS . MMWR Morb Mortal Wkly Rep 2018 67 (47) 1319-1322 The U.S. territory of American Samoa has experienced recent outbreaks of illnesses caused by viruses transmitted by Aedes species mosquitoes, including dengue, chikungunya, and Zika virus. In November 2016, a traveler from the Solomon Islands tested positive for infection with dengue virus type 2 (DENV-2). Additional dengue cases were identified in the subsequent weeks through passive and active surveillance. Suspected dengue cases were tested locally with a dengue rapid diagnostic test (RDT) for DENV nonstructural protein 1 (NS1). Specimens from RDT-positive cases and patients meeting the dengue case definition were tested by real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) at Hawaii State Laboratories. During November 2016-October 2018, a total of 3,240 patients were tested for evidence of DENV infection (118 by RDT-NS1 alone, 1,089 by real-time RT-PCR alone, and 2,033 by both methods), 1,081 (33.4%) of whom tested positive for dengue (19.5 per 1,000 population). All 941 real-time RT-PCR-positive specimens were positive for DENV-2. The monthly number of laboratory-confirmed cases peaked at 120 during December 2017. Among laboratory-confirmed dengue cases, 380 (35.2%) patients were hospitalized; one patient, who was transferred to American Samoa for care late in his illness, died. The public health response to this outbreak included disposal of solid waste to remove mosquito breeding sites, indoor residual spraying of pesticides in schools, reinforcement of dengue patient management education, and public education on mosquito avoidance and seeking medical care for symptoms of dengue. |
Vital signs: Zika-associated birth defects and neurodevelopmental abnormalities possibly associated with congenital Zika virus infection - U.S. Territories and freely associated states, 2018
Rice ME , Galang RR , Roth NM , Ellington SR , Moore CA , Valencia-Prado M , Ellis EM , Tufa AJ , Taulung LA , Alfred JM , Perez-Padilla J , Delgado-Lopez CA , Zaki SR , Reagan-Steiner S , Bhatnagar J , Nahabedian JF 3rd , Reynolds MR , Yeargin-Allsopp M , Viens LJ , Olson SM , Jones AM , Baez-Santiago MA , Oppong-Twene P , VanMaldeghem K , Simon EL , Moore JT , Polen KD , Hillman B , Ropeti R , Nieves-Ferrer L , Marcano-Huertas M , Masao CA , Anzures EJ , Hansen RL Jr , Perez-Gonzalez SI , Espinet-Crespo CP , Luciano-Roman M , Shapiro-Mendoza CK , Gilboa SM , Honein MA . MMWR Morb Mortal Wkly Rep 2018 67 (31) 858-867 INTRODUCTION: Zika virus infection during pregnancy causes serious birth defects and might be associated with neurodevelopmental abnormalities in children. Early identification of and intervention for neurodevelopmental problems can improve cognitive, social, and behavioral functioning. METHODS: Pregnancies with laboratory evidence of confirmed or possible Zika virus infection and infants resulting from these pregnancies are included in the U.S. Zika Pregnancy and Infant Registry (USZPIR) and followed through active surveillance methods. This report includes data on children aged >/=1 year born in U.S. territories and freely associated states. Receipt of reported follow-up care was assessed, and data were reviewed to identify Zika-associated birth defects and neurodevelopmental abnormalities possibly associated with congenital Zika virus infection. RESULTS: Among 1,450 children of mothers with laboratory evidence of confirmed or possible Zika virus infection during pregnancy and with reported follow-up care, 76% had developmental screening or evaluation, 60% had postnatal neuroimaging, 48% had automated auditory brainstem response-based hearing screen or evaluation, and 36% had an ophthalmologic evaluation. Among evaluated children, 6% had at least one Zika-associated birth defect identified, 9% had at least one neurodevelopmental abnormality possibly associated with congenital Zika virus infection identified, and 1% had both. CONCLUSION: One in seven evaluated children had a Zika-associated birth defect, a neurodevelopmental abnormality possibly associated with congenital Zika virus infection, or both reported to the USZPIR. Given that most children did not have evidence of all recommended evaluations, additional anomalies might not have been identified. Careful monitoring and evaluation of children born to mothers with evidence of Zika virus infection during pregnancy is essential for ensuring early detection of possible disabilities and early referral to intervention services. |
Pregnancy outcomes after maternal Zika virus infection during pregnancy - U.S. territories, January 1, 2016-April 25, 2017
Shapiro-Mendoza CK , Rice ME , Galang RR , Fulton AC , VanMaldeghem K , Prado MV , Ellis E , Anesi MS , Simeone RM , Petersen EE , Ellington SR , Jones AM , Williams T , Reagan-Steiner S , Perez-Padilla J , Deseda CC , Beron A , Tufa AJ , Rosinger A , Roth NM , Green C , Martin S , Lopez CD , deWilde L , Goodwin M , Pagano HP , Mai CT , Gould C , Zaki S , Ferrer LN , Davis MS , Lathrop E , Polen K , Cragan JD , Reynolds M , Newsome KB , Huertas MM , Bhatangar J , Quinones AM , Nahabedian JF , Adams L , Sharp TM , Hancock WT , Rasmussen SA , Moore CA , Jamieson DJ , Munoz-Jordan JL , Garstang H , Kambui A , Masao C , Honein MA , Meaney-Delman D . MMWR Morb Mortal Wkly Rep 2017 66 (23) 615-621 Pregnant women living in or traveling to areas with local mosquito-borne Zika virus transmission are at risk for Zika virus infection, which can lead to severe fetal and infant brain abnormalities and microcephaly (1). In February 2016, CDC recommended 1) routine testing for Zika virus infection of asymptomatic pregnant women living in areas with ongoing local Zika virus transmission at the first prenatal care visit, 2) retesting during the second trimester for women who initially test negative, and 3) testing of pregnant women with signs or symptoms consistent with Zika virus disease (e.g., fever, rash, arthralgia, or conjunctivitis) at any time during pregnancy (2). To collect information about pregnant women with laboratory evidence of recent possible Zika virus infection* and outcomes in their fetuses and infants, CDC established pregnancy and infant registries (3). During January 1, 2016-April 25, 2017, U.S. territoriesdagger with local transmission of Zika virus reported 2,549 completed pregnancies section sign (live births and pregnancy losses at any gestational age) with laboratory evidence of recent possible Zika virus infection; 5% of fetuses or infants resulting from these pregnancies had birth defects potentially associated with Zika virus infection paragraph sign (4,5). Among completed pregnancies with positive nucleic acid tests confirming Zika infection identified in the first, second, and third trimesters, the percentage of fetuses or infants with possible Zika-associated birth defects was 8%, 5%, and 4%, respectively. Among liveborn infants, 59% had Zika laboratory testing results reported to the pregnancy and infant registries. Identification and follow-up of infants born to women with laboratory evidence of recent possible Zika virus infection during pregnancy permits timely and appropriate clinical intervention services (6). |
Establishing a timeline to discontinue routine testing of asymptomatic pregnant women for Zika virus infection - American Samoa, 2016-2017
Hancock WT , Soeters HM , Hills SL , Link-Gelles R , Evans ME , Daley WR , Piercefield E , Anesi MS , Mataia MA , Uso AM , Sili B , Tufa AJ , Solaita J , Irvin-Barnwell E , Meaney-Delman D , Wilken J , Weidle P , Toews KE , Walker W , Talboy PM , Gallo WK , Krishna N , Laws RL , Reynolds MR , Koneru A , Gould CV . MMWR Morb Mortal Wkly Rep 2017 66 (11) 299-301 The first patients with laboratory-confirmed cases of Zika virus disease in American Samoa had symptom onset in January 2016. In response, the American Samoa Department of Health (ASDoH) implemented mosquito control measures, strategies to protect pregnant women, syndromic surveillance based on electronic health record (EHR) reports, Zika virus testing of persons with one or more signs or symptoms of Zika virus disease (fever, rash, arthralgia, or conjunctivitis), and routine testing of all asymptomatic pregnant women in accordance with CDC guidance. All collected blood and urine specimens were shipped to the Hawaii Department of Health Laboratory for Zika virus testing and to CDC for confirmatory testing. Early in the response, collection and testing of specimens from pregnant women was prioritized over the collection from symptomatic nonpregnant patients because of limited testing and shipping capacity. The weekly numbers of suspected Zika virus disease cases declined from an average of six per week in January-February 2016 to one per week in May 2016. By August, the EHR-based syndromic surveillance indicated a return to pre-outbreak levels. The last Zika virus disease case detected by real-time, reverse transcription-polymerase chain reaction (rRT-PCR) occurred in a patient who had symptom onset on June 19, 2016. In August 2016, ASDoH requested CDC support in assessing whether local transmission had been reduced or interrupted and in proposing a timeline for discontinuation of routine testing of asymptomatic pregnant women. An end date (October 15, 2016) was determined for active mosquito-borne transmission of Zika virus and a timeline was developed for discontinuation of routine screening of asymptomatic pregnant women in American Samoa (conception after December 10, 2016, with permissive testing for asymptomatic women who conceive through April 15, 2017). |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure