Last data update: Mar 17, 2025. (Total: 48910 publications since 2009)
Records 1-27 (of 27 Records) |
Query Trace: Townsend MB[original query] |
---|
A label-free optical biosensor-based point-of-care test for the rapid detection of Monkeypox virus
Aslan M , Seymour E , Brickner H , Clark AE , Celebi I , Townsend MB , Satheshkumar PS , Riley M , Carlin AF , Ünlü MS , Ray P . Biosens Bioelectron 2024 269 116932 ![]() ![]() Diagnostic approaches that combine the high sensitivity and specificity of laboratory-based digital detection with the ease of use and affordability of point-of-care (POC) technologies could revolutionize disease diagnostics. This is especially true in infectious disease diagnostics, where rapid and accurate pathogen detection is critical to curbing the spread of disease. We have pioneered an innovative label-free digital detection platform that utilizes Interferometric Reflectance Imaging Sensor (IRIS) technology. IRIS leverages light interference from an optically transparent thin film, eliminating the need for complex optical resonances to enhance the signal by harnessing light interference and the power of signal averaging in shot-noise-limited operation In our latest work, we have further improved our previous 'Single-Particle' IRIS (SP-IRIS) technology by allowing the construction of the optical signature of target nanoparticles (whole virus) from a single image. This new platform, 'Pixel-Diversity' IRIS (PD-IRIS), eliminated the need for z-scan acquisition, required in SP-IRIS, a time-consuming and expensive process, and made our technology more applicable to POC settings. Using PD-IRIS, we quantitatively detected the Monkeypox virus (MPXV), the etiological agent for Monkeypox (Mpox) infection. MPXV was captured by anti-A29 monoclonal antibody (mAb 69-126-3) on Protein G spots on the sensor chips and were detected at a limit-of-detection (LOD) - of 200 PFU/mL (∼3.3 aM). PD-IRIS was superior to the laboratory-based ELISA (LOD - 1800 PFU/mL) used as a comparator. The specificity of PD-IRIS in MPXV detection was demonstrated using Herpes simplex virus, type 1 (HSV-1), and Cowpox virus (CPXV). This work establishes the effectiveness of PD-IRIS and opens possibilities for its advancement in clinical diagnostics of Mpox at POC. Moreover, PD-IRIS is a modular technology that can be adapted for the multiplex detection of pathogens for which high-affinity ligands are available that can bind their surface antigens to capture them on the sensor surface. |
Fatal borealpox in an immunosuppressed patient treated with antivirals and vaccinia immunoglobulin - Alaska, 2023
Rogers JH , Westley B , Mego T , Newell KG , Laurance J , Smith L , Parker J , Park SY , Venkatasubrahmanyam S , Noll N , Bercovici S , Rao AK , McCollum AM , Davidson W , Carson WC , Townsend MB , Doty JB , Hutson C , Li Y , Wilkins K , Deng J , Gigante CM , Satheshkumar PS , Tuttle A , Villalba JA , Bhatnagar J , Reagan-Steiner S , Castrodale LJ , McLaughlin JB . Clin Infect Dis 2024 BACKGROUND: Borealpox virus (BRPV, formerly known as Alaskapox virus) is a zoonotic member of the Orthopoxvirus genus first identified in a person in 2015. In the six patients with infection previously observed BRPV involved mild, self-limiting illness. We report the first fatal BRPV infection in an immunosuppressed patient. METHODS: A man aged 69 years from Alaska's Kenai Peninsula was receiving anti-CD20 therapy for chronic lymphocytic leukemia. He presented to care for a tender, red papule in his right axilla with increasing induration and pain. The patient failed to respond to multiple prescribed antibiotic regimens and was hospitalized 65 days postsymptom onset for progression of presumed infectious cellulitis. BRPV was eventually detected through orthopoxvirus real-time polymerase chain reaction testing of mucosal swabs. He received combination antiviral therapy, including 21 days of intravenous tecovirimat, intravenous vaccinia immunoglobulin, and oral brincidofovir. Serial serology was conducted on specimens obtained posttreatment initiation. FINDINGS: The patient's condition initially improved with plaque recession, reduced erythema, and epithelization around the axillary lesion beginning one-week post-therapy. He later exhibited delayed wound healing, malnutrition, acute renal failure, and respiratory failure. He died 138 days postsymptom onset. Serologic testing revealed no evidence the patient generated a humoral immune response. No secondary cases were detected. CONCLUSION: This report demonstrates that BRPV can cause overwhelming disseminated infection in certain immunocompromised patients. Based on the patient's initial response, early BRPV identification and antiviral therapies might have been beneficial. These therapies, in combination with optimized immune function, should be considered for patients at risk for manifestations of BRPV. |
Investigation of an mpox outbreak affecting many vaccinated persons in Chicago, IL-March 2023-June 2023
Faherty EAG , Holly T , Ogale YP , Spencer H , Becht AM , Crisler G , Wasz M , Stonehouse P , Barbian HJ , Zelinski C , Kittner A , Foulkes D , Anderson KW , Evans T , Nicolae L , Staton A , Hardnett C , Townsend MB , Carson WC , Satheshkumar PS , Hutson CL , Gigante CM , Quilter LAS , Gorman S , Borah B , Black SR , Pacilli M , Kern D , Kerins J , McCollum AM , Rao AK , Tabidze I . Clin Infect Dis 2024 79 (1) 122-129 ![]() ![]() BACKGROUND: After months of few mpox cases, an increase in cases was reported in Chicago during May 2023, predominantly among fully vaccinated (FV) patients. We investigated the outbreak scope, differences between vaccinated and unvaccinated patients, and hypotheses for monkeypox virus (MPXV) infection after vaccination. METHODS: We interviewed patients and reviewed medical records to assess demographic, behavioral, and clinical characteristics; mpox vaccine status; and vaccine administration routes. We evaluated serum antibody levels after infection and compared patient viral genomes with MPXV sequences in available databases. We discussed potential vaccine compromise with partners who manufactured, handled, and administered the vaccine associated with breakthrough infections. RESULTS: During 18 March-27 June 2023, we identified 49 mpox cases; 57% of these mpox patients were FV. FV patients received both JYNNEOS doses subcutaneously (57%), intradermally (7%), or via heterologous administration (36%). FV patients had more median sex partners (3; interquartile range [IQR] = 1-4) versus not fully vaccinated patients (1; IQR = 1-2). Thirty-six of 37 sequenced specimens belonged to lineage B.1.20 of clade IIb MPXV, which did not demonstrate any amino acid changes relative to B.1, the predominant lineage from May 2022. Vaccinated patients demonstrated expected humoral antibody responses; none were hospitalized. No vaccine storage excursions were identified. Approximately 63% of people at risk for mpox in Chicago were FV during this period. CONCLUSIONS: Our investigation indicated that cases were likely due to frequent behaviors associated with mpox transmission, even with relatively high vaccine effectiveness and vaccine coverage. Cases after vaccination might occur in similar populations. |
Ocular mpox in a breastfeeding healthcare provider
Lovett S , Griffith J , Lehnertz N , Fox T , Siwek G , Barnes AMT , Kofman AD , Hufstetler K , Greninger AL , Townsend MB , Carson WC , Lynfield R , Cash-Goldwasser S . Open Forum Infect Dis 2024 11 (6) ofae290 A healthcare provider unknowingly treated a patient with mpox and subsequently developed ocular mpox without rash. She breastfed during illness; her infant was not infected. This report addresses 3 challenges in mpox management and control: diagnosis in the absence of rash, exposures in healthcare settings, and management of lactating patients. |
Minimally invasive blood collection for an mpox serosurvey among people experiencing homelessness
Waddell CJ , Pellegrini Gj Jr , Persad N , Filardo TD , Prasad N , Carson WC , Navarra T , Townsend MB , Satheshkumar PS , Lowe D , Borne D , Okoye N , Janssen J , Bejarano A , Mosites E , Marx GE . J Appl Lab Med 2024 BACKGROUND: People experiencing homelessness (PEH) are underrepresented in public health and clinical research. Study methods that can improve participation by this group are needed. METHODS: In late 2022, the Centers for Disease Control and Prevention conducted an mpox serological survey using venipuncture among PEH in San Francisco, California. Blood collection by a minimally invasive device was offered if venipuncture was not possible or preferred. Participants who had a successful blood draw using the device were asked about device acceptability. RESULTS: Of the 209 successful blood collections, 137 (66%) were among participants who underwent venipuncture and 72 (34%) were among participants who used the device. Use of the device increased overall blood collection participation by 53%. Participants reported high acceptability and preference for the device over venipuncture. CONCLUSIONS: Minimally invasive blood collection devices may increase participation and representation of PEH in serosurveys. |
Serologic responses to the MVA-based JYNNEOS mpox vaccine in a cohort of participants from the District of Columbia (D.C.)
Griffin I , Berry I , Navarra T , Priyamvada L , Carson WC , Noiman A , Jackson DA , Waltenburg MA , Still W , Lujan L , Beverly J , Willut C , Lee M , Mangla A , Shelus V , Hutson CL , Townsend MB , Satheshkumar PS . Vaccine 2024 We assessed early antibody responses after two doses of JYNNEOS (IMVANEX) mpox vaccine in the District of Columbia (D.C.) in persons at high risk for mpox without characteristic lesions or rash. Participants with PCR mpox negative specimens (oral swab, blood, and/or rectal swab) on the day of receipt of the first vaccine dose and who provided a baseline (day 0) serum sample and at least one serum sample at ∼28, ∼42-56 days, or 180 days post vaccination were included in this analysis. Orthopoxvirus (OPXV)-specific IgG and IgM ELISAs and neutralizing antibody titers were performed, and longitudinal serologic responses were examined. Based on participants' IgG and IgM antibody levels at baseline, they were categorized as naïve or non-naïve. Linear mixed effects regression models were conducted to determine if IgG antibody response over time varied by age, sex, HIV status, and route of administration for both naïve and non-naïve participants. Among both naïve and non-naïve participants IgG seropositivity rates increased until day 42-56, with 89.4 % of naïve and 92.1 % of non-naïve participants having detectable IgG antibodies. The proportion of naive participants with detectable IgG antibodies declined by day 180 (67.7 %) but remained high among non-naïve participants (94.4 %). Neutralizing antibody titers displayed a similar pattern, increasing initially post vaccination but declining by day 180 among naïve participants. There were no significant serologic response differences by age, sex, or HIV status. Serologic response did vary by route of vaccine administration, with those receiving a combination of intradermal and subcutaneous doses displaying significantly higher IgG values than those receiving both doses intradermally. These analyses provide initial insights into the immunogenicity of a two-dose JYNNEOS PEP regimen in individuals at high risk of mpox exposure in the United States. |
Serological evidence of Mpox virus infection during peak Mpox transmission in New York City, July to August 2022
Pathela P , Townsend MB , Kopping EJ , Tang J , Navarra T , Priyamvada L , Carson WC , Panayampalli SS , Fowler RC , Kyaw N , Hughes S , Jamison K . J Infect Dis 2024 BACKGROUND: The extent to which infections may have been undetected in an epicenter of the 2022 mpox outbreak is unknown. METHODS: A serosurvey (July and August 2022) assessed the seroprevalence and correlates of mpox infection among a diverse sample of asymptomatic patients with no prior mpox diagnoses and no known histories of smallpox or mpox vaccination. We present seropositivity stratified by participant characteristics collected via survey. RESULTS: Two-thirds of 419 participants were cismen (281 of 419), of whom 59.1% (166 of 281) reported sex with men (MSM). The sample also included 109 ciswomen and 28 transgender/gender nonconforming/nonbinary individuals. Overall seroprevalence was 6.4% (95% confidence interval [CI], 4.1%-8.8%); 3.7% among ciswomen (95% CI, 1.0%-9.1%), 7.0% among cismen with only ciswomen partners (95% CI, 2.0%-11.9%), and 7.8% among MSM (95% CI, 3.7%-11.9%). There was little variation in seroprevalence by race/ethnicity, age group, HIV status, or number of recent sex partners. No participants who reported close contact with mpox cases were seropositive. Among participants without recent mpox-like symptoms, 6.3% were seropositive (95% CI, 3.6%-9.0%). CONCLUSIONS: Approximately 1 in 15 vaccine-naive people in our study had antibodies to mpox during the height of the NYC outbreak, indicating the presence of asymptomatic infections that could contribute to ongoing transmission. |
Identification of CP77 as the third orthopoxvirus SAMD9L inhibitor with a unique specificity for a rodent SAMD9L (preprint)
Zhang F , Meng X , Townsend MB , Satheshkumar PS , Xiang Y . bioRxiv 2019 551556 Orthopoxviruses (OPXVs) have a broad host range in mammalian cells, but Chinese hamster ovary (CHO) cells are non-permissive for vaccinia virus (VACV). Here, we revealed a species-specific difference in host restriction factor SAMD9L as the cause for the restriction and identified orthopoxvirus CP77 as a unique inhibitor capable of antagonizing Chinese hamster SAMD9L (chSAMD9L). Two known VACV inhibitors of SAMD9 and SAMD9L (SAMD9&L), K1 and C7, can bind human and mouse SAMD9&L, but neither can bind chSAMD9L. CRISPR-Cas9 knockout of chSAMD9L from CHO cells removed the restriction for VACV, while ectopic expression of chSAMD9L imposed the restriction for VACV in a human cell line, demonstrating that chSAMD9L is a potent restriction factor for VACV. Contrary to K1 and C7, cowpox virus CP77 can bind chSAMD9L and rescue VACV replication in cells expressing chSAMD9L, indicating that CP77 is yet another SAMD9L inhibitor but has a unique specificity for chSAMD9L. Binding studies showed that the N-terminal 382 amino acids of CP77 were sufficient for binding chSAMD9L and that both K1 and CP77 target a common internal region of SAMD9L. Growth studies with nearly all OPXV species showed that the ability of OPXVs in antagonizing chSAMD9L correlates with CP77 gene status and that a functional CP77 ortholog was maintained in many OPXVs, including monkeypox virus. Our data suggest that species-specific difference in rodent SAMD9L poses a barrier for cross-species OPXV infection and that OPXVs have evolved three SAMD9L inhibitors with different specificities to overcome this barrier.IMPORTANCE Several OPXV species, including monkeypox virus and cowpox virus, cause zoonotic infection in humans. They are believed to use wild rodents as the reservoir or intermediate hosts, but the host or viral factors that are important for OPXV host range in rodents are unknown. Here, we showed that the abortive replication of several OPXV species in a Chinese hamster cell line was caused by a species-specific difference in the host antiviral factor SAMD9L, indicating that SAMD9L divergence in different rodent species poses a barrier for cross-species OPXV infection. While the Chinese hamster SAMD9L could not be inhibited by two previously identified OPXV inhibitors of human and mouse SAMD9L, it can be inhibited by cowpox virus CP77, indicating that OPXVs encode three SAMD9L inhibitors with different specificity. Our data suggest that OPXV host range in broad rodent species depends on three SAMD9L inhibitors with different specificities. |
Clinical characterization and placental pathology of mpox infection in hospitalized patients in the Democratic Republic of the Congo
Pittman PR , Martin JW , Kingebeni PM , Tamfum JM , Mwema G , Wan Q , Ewala P , Alonga J , Bilulu G , Reynolds MG , Quinn X , Norris S , Townsend MB , Satheshkumar PS , Wadding J , Soltis B , Honko A , Güereña FB , Korman L , Patterson K , Schwartz DA , Huggins JW . PLoS Negl Trop Dis 2023 17 (4) e0010384 We describe the results of a prospective observational study of the clinical natural history of human monkeypox (mpox) virus (MPXV) infections at the remote L'Hopital General de Reference de Kole (Kole hospital), the rainforest of the Congo River basin of the Democratic Republic of the Congo (DRC) from March 2007 until August 2011. The research was conducted jointly by the Institute National de Recherche Biomedical (INRB) and the US Army Medical Research Institute of Infectious Diseases (USAMRIID). The Kole hospital was one of the two previous WHO Mpox study sites (1981-1986). The hospital is staffed by a Spanish Order of Catholic Nuns from La Congregation Des Seours Missionnaires Du Christ Jesus including two Spanish physicians, who were members of the Order as well, were part of the WHO study on human mpox. Of 244 patients admitted with a clinical diagnosis of MPXV infection, 216 were positive in both the Pan-Orthopox and MPXV specific PCR. The cardinal observations of these 216 patients are summarized in this report. There were three deaths (3/216) among these hospitalized patients; fetal death occurred in 3 of 4 patients who were pregnant at admission, with the placenta of one fetus demonstrating prominent MPXV infection of the chorionic villi. The most common complaints were rash (96.8%), malaise (85.2%), sore throat (78.2%), and lymphadenopathy/adenopathy (57.4%). The most common physical exam findings were mpox rash (99.5%) and lymphadenopathy (98.6%). The single patient without the classic mpox rash had been previously vaccinated against smallpox. Age group of less than 5 years had the highest lesion count. Primary household cases tended to have higher lesion counts than secondary or later same household cases. Of the 216 patients, 200 were tested for IgM & IgG antibodies (Abs) to Orthopoxviruses. All 200 patients had anti-orthopoxvirus IgG Abs; whereas 189/200 were positive for IgM. Patients with hypoalbuminemia had a high risk of severe disease. Patients with fatal disease had higher maximum geometric mean values than survivors for the following variables, respectively: viral DNA in blood (DNAemia); maximum lesion count; day of admission mean AST and ALT. |
Design and optimization of a monkeypox virus specific serological assay
Taha TY , Townsend MB , Pohl J , Karem KL , Damon IK , Mbala Kingebeni P , Muyembe Tamfum JJ , Martin JW , Pittman PR , Huggins JW , Satheshkumar PS , Bagarozzi DA Jr , Reynolds MG , Hughes LJ . Pathogens 2023 12 (3) Monkeypox virus (MPXV), a member of the Orthopoxvirus (OPXV) genus, is a zoonotic virus, endemic to central and western Africa that can cause smallpox-like symptoms in humans with fatal outcomes in up to 15% of patients. The incidence of MPXV infections in the Democratic Republic of the Congo, where the majority of cases have occurred historically, has been estimated to have increased as much as 20-fold since the end of smallpox vaccination in 1980. Considering the risk global travel carries for future disease outbreaks, accurate epidemiological surveillance of MPXV is warranted as demonstrated by the recent Mpox outbreak, where the majority of cases were occurring in non-endemic areas. Serological differentiation between childhood vaccination and recent infection with MPXV or other OPXVs is difficult due to the high level of conservation within OPXV proteins. Here, a peptide-based serological assay was developed to specifically detect exposure to MPXV. A comparative analysis of immunogenic proteins across human OPXVs identified a large subset of proteins that could potentially be specifically recognized in response to a MPXV infection. Peptides were chosen based upon MPXV sequence specificity and predicted immunogenicity. Peptides individually and combined were screened in an ELISA against serum from well-characterized Mpox outbreaks, vaccinee sera, and smallpox sera collected prior to eradication. One peptide combination was successful with ~86% sensitivity and ~90% specificity. The performance of the assay was assessed against the OPXV IgG ELISA in the context of a serosurvey by retrospectively screening a set of serum specimens from the region in Ghana believed to have harbored the MPXV-infected rodents involved in the 2003 United States outbreak. |
Evidence of mpox virus infection among persons without characteristic lesions or rash presenting for first dose of JYNNEOS vaccine-District of Columbia, August 2022
Ogale YP , Baird N , Townsend MB , Berry I , Griffin I , Lee M , Ashley P , Rhodes T , Notigan T , Wynn N , Kling C , Smith T , Priyamvada L , Carson WC , Navarra T , Dawson P , Weidle PJ , Willut C , Mangla AT , Satheshkumar PS , Hutson CL , Jackson DA , Waltenburg MA . Clin Infect Dis 2023 77 (2) 298-302 We assessed mpox virus prevalence in blood, pharyngeal, and rectal specimens among persons without characteristic rash presenting for JYNNEOS vaccine. Our data indicate that the utility of risk-based screening for mpox in persons without skin lesions or rash via pharyngeal swabs, rectal swabs, and/or blood is likely limited. |
Possible undetected Mpox infection among persons accessing homeless services and staying in encampments - San Francisco, California, October-November 2022
Waddell CJ , Filardo TD , Prasad N , Pellegrini GJ Jr , Persad N , Carson WC , Navarra T , Townsend MB , Satheshkumar PS , Lowe D , Borne D , Janssen J , Okoye N , Bejarano A , Marx GE , Mosites E . MMWR Morb Mortal Wkly Rep 2023 72 (9) 227-231 Monkeypox (mpox) is a disease caused by an Orthopoxvirus. The 2022 multinational outbreak, which began in May 2022, has spread primarily by close skin-to-skin contact, including through sexual contact. Persons experiencing homelessness have been disproportionately affected by severe mpox (1). However, mpox prevalence and transmission pathways among persons experiencing homelessness are not known, and persons experiencing homelessness have not been specifically recommended to receive mpox vaccine during the 2022 outbreak (2,3). During October 25-November 3, 2022, a CDC field team conducted an orthopoxvirus seroprevalence survey among persons accessing homeless services or staying in encampments, shelters, or permanent supportive housing in San Francisco, California that had noted at least one case of mpox or served populations at risk. During field team visits to 16 unique sites, 209 participants completed a 15-minute survey and provided a blood specimen. Among 80 participants aged <50 years who did not report smallpox or mpox vaccination or previous mpox infection, two (2.5%) had detectable antiorthopoxvirus immunoglobulin (Ig) G antibody. Among 73 participants who did not report mpox vaccination or previous mpox infection and who were tested for IgM, one (1.4%) had detectable antiorthopoxvirus IgM. Together, these results suggest that three possible undetected mpox infections occurred among a sample of persons experiencing homelessness, highlighting the need to ensure that community outreach and prevention interventions, such as vaccination, are accessible to this population. |
Serological responses to the MVA-based JYNNEOS monkeypox vaccine in a cohort of participants from the Democratic Republic of Congo
Priyamvada L , Carson WC , Ortega E , Navarra T , Tran S , Smith TG , Pukuta E , Muyamuna E , Kabamba J , Nguete BU , Likafi T , Kokola G , Lushima RS , Tamfum JM , Okitolonda EW , Kaba DK , Monroe BP , McCollum AM , Petersen BW , Satheshkumar PS , Townsend MB . Vaccine 2022 40 (50) 7321-7327 The current worldwide monkepox outbreak has reaffirmed the continued threat monkeypox virus (MPXV) poses to public health. JYNNEOS, a Modified Vaccinia Ankara (MVA)-based live, non-replicating vaccine, was recently approved for monkeypox prevention for adults at high risk of MPXV infection in the United States. Although the safety and immunogenicity of JYNNEOS have been examined previously, the clinical cohorts studied largely derive from regions where MPXV does not typically circulate. In this study, we assess the quality and longevity of serological responses to two doses of JYNNEOS vaccine in a large cohort of healthcare workers from the Democratic Republic of Congo (DRC). We show that JYNNEOS elicits a strong orthopoxvirus (OPXV)-specific antibody response in participants that peaks around day 42, or 2 weeks after the second vaccine dose. Participants with no prior history of smallpox vaccination or exposure have lower baseline antibody levels, but experience a similar fold-rise in antibody titers by day 42 as those with a prior history of vaccination. Both previously naïve and vaccinated participants generate vaccinia virus and MPXV-neutralizing antibody in response to JYNNEOS vaccination. Finally, even though total OPXV-specific IgG titers and neutralizing antibody titers declined from their peak and returned close to baseline levels by the 2-year mark, most participants remain IgG seropositive at the 2-year timepoint. Taken together, our data demonstrates that JYNNEOS vaccination triggers potent OPXV neutralizing antibody responses in a cohort of healthcare workers in DRC, a monkeypox-endemic region. MPXV vaccination with JYNNEOS may help ameliorate the disease and economic burden associated with monkeypox and combat potential outbreaks in areas with active virus circulation. |
Monkeypox case investigation - Cook County Jail, Chicago, Illinois, July-August 2022
Hagan LM , Beeson A , Hughes S , Hassan R , Tietje L , Meehan AA , Spencer H , Turner J , Richardson M , Howard J , Schultz A , Ali S , Butler MM , Arce Garza D , Morgan CN , Kling C , Baird N , Townsend MB , Carson WC , Lowe D , Wynn NT , Black SR , Kerins JL , Rafinski J , Defuniak A , Auguston P , Mosites E , Ghinai I , Zawitz C . MMWR Morb Mortal Wkly Rep 2022 71 (40) 1271-1277 Knowledge about monkeypox transmission risk in congregate settings is limited. In July 2022, the Chicago Department of Public Health (CDPH) confirmed a case of monkeypox in a person detained in Cook County Jail (CCJ) in Chicago, Illinois. This case was the first identified in a correctional setting in the United States and reported to CDC during the 2022 multinational monkeypox outbreak. CDPH collaborated with CCJ, the Illinois Department of Public Health (IDPH), and CDC to evaluate transmission risk within the facility. Fifty-seven residents were classified as having intermediate-risk exposures to the patient with monkeypox during the 7-day interval between the patient's symptom onset and his isolation. (Intermediate-risk exposure was defined as potentially being within 6 ft of the patient with monkeypox for a total of ≥3 hours cumulatively, without wearing a surgical mask or respirator, or potentially having contact between their own intact skin or clothing and the skin lesions or body fluids from the patient or with materials that were in contact with the patient's skin lesions or body fluids.) No secondary cases were identified among a subset of 62% of these potentially exposed residents who received symptom monitoring, serologic testing, or both. Thirteen residents accepted postexposure prophylaxis (PEP), with higher acceptance among those who were offered counseling individually or in small groups than among those who were offered PEP together in a large group. Monkeypox virus (MPXV) DNA, but no viable virus, was detected on one surface in a dormitory where the patient had been housed with other residents before he was isolated. Although monkeypox transmission might be limited in similar congregate settings in the absence of higher-risk exposures, congregate facilities should maintain recommended infection control practices in response to monkeypox cases, including placing the person with monkeypox in medical isolation and promptly and thoroughly cleaning and disinfecting spaces where the person has spent time. In addition, officials should provide information to residents and staff members about monkeypox symptoms and transmission modes, facilitate confidential monkeypox risk and symptom disclosure and prompt medical evaluation for symptoms that are reported, and provide PEP counseling in a private setting. |
Orthopoxvirus Testing Challenges for Persons in Populations at Low Risk or Without Known Epidemiologic Link to Monkeypox - United States, 2022.
Minhaj FS , Petras JK , Brown JA , Mangla AT , Russo K , Willut C , Lee M , Beverley J , Harold R , Milroy L , Pope B , Gould E , Beeler C , Schneider J , Mostafa HH , Godfred-Cato S , Click ES , Borah BF , Galang RR , Cash-Goldwasser S , Wong JM , McCormick DW , Yu PA , Shelus V , Carpenter A , Schatzman S , Lowe D , Townsend MB , Davidson W , Wynn NT , Satheshkumar PS , O'Connor SM , O'Laughlin K , Rao AK , McCollum AM , Negrón ME , Hutson CL , Salzer JS . MMWR Morb Mortal Wkly Rep 2022 71 (36) 1155-1158 ![]() Since May 2022, approximately 20,000 cases of monkeypox have been identified in the United States, part of a global outbreak occurring in approximately 90 countries and currently affecting primarily gay, bisexual, and other men who have sex with men (MSM) (1). Monkeypox virus (MPXV) spreads from person to person through close, prolonged contact; a small number of cases have occurred in populations who are not MSM (e.g., women and children), and testing is recommended for persons who meet the suspected case definition* (1). CDC previously developed five real-time polymerase chain reaction (PCR) assays for detection of orthopoxviruses from lesion specimens (2,3). CDC was granted 510(k) clearance for the nonvariola-orthopoxvirus (NVO)-specific PCR assay by the Food and Drug Administration. This assay was implemented within the Laboratory Response Network (LRN) in the early 2000s and became critical for early detection of MPXV and implementation of public health action in previous travel-associated cases as well as during the current outbreak (4-7). PCR assays (NVO and other Orthopoxvirus laboratory developed tests [LDT]) represent the primary tool for monkeypox diagnosis. These tests are highly sensitive, and cross-contamination from other MPXV specimens being processed, tested, or both alongside negative specimens can occasionally lead to false-positive results. This report describes three patients who had atypical rashes and no epidemiologic link to a monkeypox case or known risk factors; these persons received diagnoses of monkeypox based on late cycle threshold (Ct) values ≥34, which were false-positive test results. The initial diagnoses were followed by administration of antiviral treatment (i.e., tecovirimat) and JYNNEOS vaccine postexposure prophylaxis (PEP) to patients' close contacts. After receiving subsequent testing, none of the three patients was confirmed to have monkeypox. Knowledge gained from these and other cases resulted in changes to CDC guidance. When testing for monkeypox in specimens from patients without an epidemiologic link or risk factors or who do not meet clinical criteria (or where these are unknown), laboratory scientists should reextract and retest specimens with late Ct values (based on this report, Ct ≥34 is recommended) (8). CDC can be consulted for complex cases including those that appear atypical or questionable cases and can perform additional viral species- and clade-specific PCR testing and antiorthopoxvirus serologic testing. |
Educational Approach to Prevent the Burden of Vaccinia Virus Infections in a Bovine Vaccinia Endemic Area in Brazil
Barbosa Costa G , Silva de Oliveira J , Townsend MB , Carson WC , Borges IA , McCollum AM , Kroon EG , Satheshkumar PS , Reynolds MG , Nakazawa YJ , de Souza Trindade G . Pathogens 2021 10 (5) Bovine vaccinia (BV), caused by Vaccinia virus (VACV), is a zoonotic disease characterized by exanthematous lesions on the teats of dairy cows and the hands of milkers, and is an important public health issue in Brazil and South America. BV also results in economic losses to the dairy industry, being a burden to the regions involved in milk production. In the past 20 years, much effort has been made to increase the knowledge regarding BV epidemiology, etiologic agents, and interactions with the hosts and the environment. In the present study, we evaluated milking practices that could be associated with VACV infections in an endemic area in Brazil and proposed an educational tool to help prevent VACV infections. In our survey, 124 individuals (51.7%) from a total of 240 had previously heard of BV, 94 of which knew about it through BV outbreaks. Although most individuals involved in dairy activities (n = 85/91) reported having good hygiene practices, only 29.7% used adequate disinfecting products to clean their hands and 39.5% disinfected cows' teats before and after milking. Furthermore, 46.7% of individuals reported having contact with other farm and domestic animals besides dairy cattle. We also evaluated the presence of IgG and IgM antibodies in the surveyed population. Overall, 6.1% of likely unvaccinated individuals were positive for anti-Orthopoxvirus IgG antibodies, and 1.7% of all individuals were positive for IgM antibodies. Based on our findings, we proposed educational materials which target individuals with permanent residence in rural areas (mainly farmers and milkers), providing an overview and basic information about preventive measures against VACV infections that could enhance BV control and prevention efforts, especially for vulnerable populations located in endemic areas. |
IMVAMUNE and ACAM2000 provide different protection against disease when administered postexposure in an intranasal monkeypox challenge prairie dog model
Keckler MS , Salzer JS , Patel N , Townsend MB , Nakazawa YJ , Doty JB , Gallardo-Romero NF , Satheshkumar PS , Carroll DS , Karem KL , Damon IK . Vaccines (Basel) 2020 8 (3) The protection provided by smallpox vaccines when used after exposure to Orthopoxviruses is poorly understood. Postexposu re administration of 1st generation smallpox vaccines was effective during eradication. However, historical epidemiological reports and animal studies on postexposure vaccination are difficult to extrapolate to today's populations, and 2nd and 3rd generation vaccines, developed after eradication, have not been widely tested in postexposure vaccination scenarios. In addition to concerns about preparedness for a potential malevolent reintroduction of variola virus, humans are becoming increasingly exposed to naturally occurring zoonotic orthopoxviruses and, following these exposures, disease severity is worse in individuals who never received smallpox vaccination. This study investigated whether postexposure vaccination of prairie dogs with 2nd and 3rd generation smallpox vaccines was protective against monkeypox disease in four exposure scenarios. We infected animals with monkeypox virus at doses of 10(4) pfu (2× LD(50)) or 10(6) pfu (170× LD(50)) and vaccinated the animals with IMVAMUNE(®) or ACAM2000(®) either 1 or 3 days after challenge. Our results indicated that postexposure vaccination protected the animals to some degree from the 2× LD(50), but not the 170× LD(5) challenge. In the 2× LD(50) challenge, we also observed that administration of vaccine at 1 day was more effective than administration at 3 days postexposure for IMVAMUNE(®), but ACAM2000(®) was similarly effective at either postexposure vaccination time-point. The effects of postexposure vaccination and correlations with survival of total and neutralizing antibody responses, protein targets, take formation, weight loss, rash burden, and viral DNA are also presented. |
Magnitude and diversity of immune response to vaccinia virus is dependent on route of administration
Hughes LJ , Townsend MB , Gallardo-Romero N , Hutson CL , Patel N , Doty JB , Salzer JS , Damon IK , Carroll DS , Satheshkumar PS , Karem KL . Virology 2020 544 55-63 Historic observations suggest that survivors of smallpox maintained lifelong immunity and protection to subsequent infection compared to vaccinated individuals. Although protective immunity by vaccination using a related virus (vaccinia virus (VACV) strains) was the key for smallpox eradication, it does not uniformly provide long term, or lifelong protective immunity (Heiner et al., 1971). To determine differences in humoral immune responses, mice were inoculated with VACV either systemically, using intranasal inoculation (IN), or locally by an intradermal (ID) route. We hypothesized that sub-lethal IN infections may mimic systemic or naturally occurring infection and lead to an immunodominance reaction, in contrast to localized ID immunization. The results demonstrated systemic immunization through an IN route led to enhanced adaptive immunity to VACV-expressed protein targets both in magnitude and in diversity when compared to an ID route using a VACV protein microarray. In addition, cytokine responses, assessed using a Luminex(R) mouse cytokine multiplex kit, following IN infection was greater than that stemming from ID infection. Overall, the results suggest that the route of immunization (or infection) influences antibody responses. The greater magnitude and diversity of response in systemic infection provides indirect evidence for anecdotal observations made during the smallpox era that survivors maintain lifelong protection. These findings also suggest that systemic or disseminated host immune induction may result in a superior response, that may influence the magnitude of, as well as duration of protective responses. |
Asymptomatic orthopoxvirus circulation in humans in the wake of a monkeypox outbreak among chimpanzees in Cameroon
Guagliardo SAJ , Monroe B , Moundjoa C , Athanase A , Okpu G , Burgado J , Townsend MB , Satheshkumar PS , Epperson S , Doty JB , Reynolds MG , Dibongue EE , Etoundi GA , Mathieu E , McCollum AM . Am J Trop Med Hyg 2019 102 (1) 206-212 Monkeypox virus is a zoonotic Orthopoxvirus (OPXV) that causes smallpox-like illness in humans. In Cameroon, human monkeypox cases were confirmed in 2018, and outbreaks in captive chimpanzees occurred in 2014 and 2016. We investigated the OPXV serological status among staff at a primate sanctuary (where the 2016 chimpanzee outbreak occurred) and residents from nearby villages, and describe contact with possible monkeypox reservoirs. We focused specifically on Gambian rats (Cricetomys spp.) because it is a recognized possible reservoir and because contact with this species was common enough to render sufficient statistical power. We collected one 5-mL whole blood specimen from each participant to perform a generic anti-OPXV ELISA test for IgG and IgM antibodies and administered a questionnaire about prior symptoms of monkeypox-like illness and contact with possible reservoirs. Our results showed evidence of OPXV exposures (IgG positive, 6.3%; IgM positive, 1.6%) among some of those too young to have received smallpox vaccination (born after 1980, n = 63). No participants reported prior symptoms consistent with monkeypox. After adjusting for the education level, participants who frequently visited the forest were more likely to have recently eaten Gambian rats (OR: 3.36, 95% CI: 1.91-5.92, P < 0.001) and primate sanctuary staff were less likely to have touched or sold Gambian rats (OR: 0.23, 95% CI: 0.19-0.28, P < 0.001). The asymptomatic or undetected circulation of OPXVs in humans in Cameroon is likely, and contact with monkeypox reservoirs is common, raising the need for continued surveillance for human and animal disease. |
Novel treatment of a vaccinia virus infection from an occupational needlestick - San Diego, California, 2019
Whitehouse ER , Rao AK , Yu YC , Yu PA , Griffin M , Gorman S , Angel KA , McDonald EC , Manlutac AL , de Perio MA , McCollum AM , Davidson W , Wilkins K , Ortega E , Satheshkumar PS , Townsend MB , Isakari M , Petersen BW . MMWR Morb Mortal Wkly Rep 2019 68 (42) 943-946 Vaccinia virus (VACV) is an orthopoxvirus used in smallpox vaccines, as a vector for novel cancer treatments, and for experimental vaccine research (1). The Advisory Committee on Immunization Practices (ACIP) recommends smallpox vaccination for laboratory workers who handle replication-competent VACV (1). For bioterrorism preparedness, the U.S. government stockpiles tecovirimat, the first Food and Drug Administration-approved antiviral for treatment of smallpox (caused by variola virus and globally eradicated in 1980*(,dagger)) (2). Tecovirimat has activity against other orthopoxviruses and can be administered under a CDC investigational new drug protocol. CDC was notified about an unvaccinated laboratory worker with a needlestick exposure to VACV, who developed a lesion on her left index finger. CDC and partners performed laboratory confirmation, contacted the study sponsor to identify the VACV strain, and provided oversight for the first case of laboratory-acquired VACV treated with tecovirimat plus intravenous vaccinia immunoglobulin (VIGIV). This investigation highlights 1) the misconception among laboratory workers about the virulence of VACV strains; 2) the importance of providing laboratorians with pathogen information and postexposure procedures; and 3) that although tecovirimat can be used to treat VACV infections, its therapeutic benefit remains unclear. |
Identification of CP77 as the third orthopoxvirus SAMD9 and SAMD9L inhibitor with a unique specificity for a rodent SAMD9L
Zhang F , Meng X , Townsend MB , Satheshkumar PS , Xiang Y . J Virol 2019 93 (12) Orthopoxviruses (OPXVs) have a broad host range in mammalian cells, but Chinese hamster ovary (CHO) cells are non-permissive for vaccinia virus (VACV). Here, we revealed a species-specific difference in host restriction factor SAMD9L as the cause for the restriction and identified orthopoxvirus CP77 as a unique inhibitor capable of antagonizing Chinese hamster SAMD9L (chSAMD9L). Two known VACV inhibitors of SAMD9 and SAMD9L (SAMD9&L);, K1 and C7, can bind human and mouse SAMD9&L;, but neither can bind chSAMD9L. CRISPR-Cas9 knockout of chSAMD9L from CHO cells removed the restriction for VACV, while ectopic expression of chSAMD9L imposed the restriction for VACV in a human cell line, demonstrating that chSAMD9L is a potent restriction factor for VACV. Contrary to K1 and C7, cowpox virus CP77 can bind chSAMD9L and rescue VACV replication in cells expressing chSAMD9L, indicating that CP77 is yet another SAMD9L inhibitor but has a unique specificity for chSAMD9L. Binding studies showed that the N-terminal 382 amino acids of CP77 were sufficient for binding chSAMD9L and that both K1 and CP77 target a common internal region of SAMD9L. Growth studies with nearly all OPXV species showed that the ability of OPXVs in antagonizing chSAMD9L correlates with CP77 gene status and that a functional CP77 ortholog was maintained in many OPXVs, including monkeypox virus. Our data suggest that species-specific difference in rodent SAMD9L poses a barrier for cross-species OPXV infection and that OPXVs have evolved three SAMD9&L inhibitors with different specificities to overcome this barrier.IMPORTANCE: Several OPXV species, including monkeypox virus and cowpox virus, cause zoonotic infection in humans. They are believed to use wild rodents as the reservoir or intermediate hosts, but the host or viral factors that are important for OPXV host range in rodents are unknown. Here, we showed that the abortive replication of several OPXV species in a Chinese hamster cell line was caused by a species-specific difference in the host antiviral factor SAMD9L, suggesting that SAMD9L divergence in different rodent species poses a barrier for cross-species OPXV infection. While the Chinese hamster SAMD9L could not be inhibited by two previously identified OPXV inhibitors of human and mouse SAMD9&L;, it can be inhibited by cowpox virus CP77, indicating that OPXVs encode three SAMD9&L inhibitors with different specificity. Our data suggest that OPXV host range in broad rodent species depends on three SAMD9&L inhibitors with different specificities. |
Epidemiologic and ecologic investigations of monkeypox, Likouala Department, Republic of the Congo, 2017
Doshi RH , Guagliardo SAJ , Doty JB , Babeaux AD , Matheny A , Burgado J , Townsend MB , Morgan CN , Satheshkumar PS , Ndakala N , Kanjingankolo T , Kitembo L , Malekani J , Kalemba L , Pukuta E , N'Kaya T , Kangoula F , Moses C , McCollum AM , Reynolds MG , Mombouli JV , Nakazawa Y , Petersen BW . Emerg Infect Dis 2019 25 (2) 281-289 Monkeypox, caused by a zoonotic orthopoxvirus, is endemic in Central and West Africa. Monkeypox has been sporadically reported in the Republic of the Congo. During March 22-April 5, 2017, we investigated 43 suspected human monkeypox cases. We interviewed suspected case-patients and collected dried blood strips and vesicular and crust specimens (active lesions), which we tested for orthopoxvirus antibodies by ELISA and monkeypox virus and varicella zoster virus DNA by PCR. An ecologic investigation was conducted around Manfouete, and specimens from 105 small mammals were tested for anti-orthopoxvirus antibodies or DNA. Among the suspected human cases, 22 met the confirmed, probable, and possible case definitions. Only 18 patients had available dried blood strips; 100% were IgG positive, and 88.9% (16/18) were IgM positive. Among animals, only specimens from Cricetomys giant pouched rats showed presence of orthopoxvirus antibodies, adding evidence to this species' involvement in the transmission and maintenance of monkeypox virus in nature. |
Retrospective proteomic analysis of serum after Akhmeta virus infection: new suspect case identification and insights into poxvirus humoral immunity
Townsend MB , Gallardo-Romero NF , Khmaladze E , Vora NM , Maghlakelidze G , Geleishvili M , Carroll DS , Emerson GL , Reynolds MG , Satheshkumar PS . J Infect Dis 2017 216 (12) 1505-1512 Serologic cross-reactivity, a hallmark of orthopoxvirus (OPXV) infection, makes species-specific diagnosis of infection difficult. In this study, we used a Variola virus (VARV) proteome microarray to characterize and differentiate antibody responses to non-vaccinia OPXV infections from smallpox vaccination. The profile of two-case patients infected with newly discovered OPXV, Akhmeta virus (AKMV), exhibited antibody responses of greater intensity and broader recognition of viral proteins and includes the B21/22 family glycoproteins not encoded by vaccinia virus (VACV) strains used as vaccines. An additional case of AKMV, or non-vaccinia OPXV infection, was identified from community surveillance of individuals with no or uncertain history of vaccination and no recent infection. The results demonstrate the utility of microarrays for high resolution mapping of antibody response to determine nature of OPXV exposure. |
Cross-neutralizing and protective human antibody specificities to poxvirus infections
Gilchuk I , Gilchuk P , Sapparapu G , Lampley R , Singh V , Kose N , Blum DL , Hughes LJ , Satheshkumar PS , Townsend MB , Kondas AV , Reed Z , Weiner Z , Olson VA , Hammarlund E , Raue HP , Slifka MK , Slaughter JC , Graham BS , Edwards KM , Eisenberg RJ , Cohen GH , Joyce S , Crowe JE Jr . Cell 2016 167 (3) 684-694.e9 Monkeypox (MPXV) and cowpox (CPXV) are emerging agents that cause severe human infections on an intermittent basis, and variola virus (VARV) has potential for use as an agent of bioterror. Vaccinia immune globulin (VIG) has been used therapeutically to treat severe orthopoxvirus infections but is in short supply. We generated a large panel of orthopoxvirus-specific human monoclonal antibodies (Abs) from immune subjects to investigate the molecular basis of broadly neutralizing antibody responses for diverse orthopoxviruses. Detailed analysis revealed the principal neutralizing antibody specificities that are cross-reactive for VACV, CPXV, MPXV, and VARV and that are determinants of protection in murine challenge models. Optimal protection following respiratory or systemic infection required a mixture of Abs that targeted several membrane proteins, including proteins on enveloped and mature virion forms of virus. This work reveals orthopoxvirus targets for human Abs that mediate cross-protective immunity and identifies new candidate Ab therapeutic mixtures to replace VIG. |
A highly specific monoclonal antibody against monkeypox virus detects the heparin binding domain of A27
Hughes LJ , Goldstein J , Pohl J , Hooper JW , Lee Pitts R , Townsend MB , Bagarozzi D , Damon IK , Karem KL . Virology 2014 464-465c 264-273 The eradication of smallpox and the cessation of global vaccination led to the increased prevalence of human infections in Central Africa. Serologic and protein-based diagnostic assay for MPXV detection is difficult due to cross-reactive antibodies that do not differentiate between diverse orthopoxvirus (OPXV) species. A previously characterized monoclonal antibody (mAb 69-126-3-7) against MPXV [1] was retested for cross-reactivity with various OPXVs. The 14.5kDa band protein that reacted with mAb 69-126-3 was identified to be MPXV A29 protein (homolog of vaccinia virus Copenhagen A27). Amino acid sequence analysis of the MPXV A29 with other OPXV homologs identified four amino acid changes. Peptides corresponding to these regions were designed and evaluated for binding to mAb 69-126-3 by ELISA and BioLayer Interferometry (BLI). Further refinement and truncations mapped the specificity of this antibody to a single amino acid difference in a 30-mer peptide compared to other OPXV homologs. This particular residue is proposed to be essential for heparin binding by VACV A27 protein. Despite this substitution, MPXV A29 bound to heparin with similar affinity to that of VACV A27 protein, suggesting flexibility of this motif for heparin binding. Although binding of mAb 69-126-3-7 to MPXV A29 prevented interaction with heparin, it did not have any effect on the infectivity of MPXV. Characterization of 69-126-3-7 mAb antibody allows for the possibility of the generation of a serological based species-specific detection of OPXVs despite high proteomic homology. |
Humoral immunity to smallpox vaccines and monkeypox virus challenge; proteomic assessment and clinical correlations
Townsend MB , Keckler MS , Patel N , Davies DH , Felgner P , Damon IK , Karem KL . J Virol 2012 87 (2) 900-11 Despite the eradication of smallpox, Orthopoxviruses (OPV) remain public health concerns. Efforts to develop new therapeutics and vaccines for smallpox continue through their evaluation in animal models despite limited understanding of the specific correlates of protective immunity. Recent monkeypox virus challenge studies have established the Black-Tailed Prairie Dog (Cynomys ludovicianus) as a model of human systemic OPV infections. In this study, we assess the induction of humoral immunity in humans and prairie dogs receiving Dryvax(R), ACAM2000(R), or IMVAMUNE(R) vaccines and characterize the proteomic profile of immune recognition using ELISA, neutralization assays and protein microarrays. We confirm anticipated similarities of antigenic protein targets of smallpox vaccine-induced responses in humans and prairie dogs and identify several differences. Subsequent monkeypox intranasal infection of vaccinated prairie dogs results in a significant boost in humoral immunity characterized by a shift in reactivity of increased intensity to a broader range of OPV proteins. This work provides evidence of similarities between the vaccine response in prairie dogs and humans, which enhance the value of the prairie dog model system as an OPV vaccination model and offers novel findings that form a framework for examining humoral immune response induced by systemic infection of orthopoxviruses. |
Evaluation of the Tetracore Orthopox BioThreat(R) antigen detection assay using laboratory grown orthopoxviruses and rash illness clinical specimens
Townsend MB , Macneil A , Reynolds MG , Hughes CM , Olson VA , Damon IK , Karem KL . J Virol Methods 2012 187 (1) 37-42 The commercially available Orthopox BioThreat((R)) Alert assay for orthopoxvirus (OPV) detection is piloted. This antibody-based lateral-flow assay labels and captures OPV viral agents to detect their presence. Serial dilutions of cultured Vaccinia virus (VACV) and Monkeypox virus (MPXV) were used to evaluate the sensitivity of the Tetracore assay by visual and quantitative determinations; specificity was assessed using a small but diverse set of diagnostically relevant blinded samples from viral lesions submitted for routine OPV diagnostic testing. The BioThreat((R)) Alert assay reproducibly detected samples at concentrations of 10(7)pfu/ml for VACV and MPXV and positively identified samples containing 10(6)pfu/ml in 4 of 7 independent experiments. The assay correctly identified 9 of 11 OPV clinical samples and had only one false positive when testing 11 non-OPV samples. Results suggest applicability for use of the BioThreat((R)) Alert assay as a rapid screening assay and point of care diagnosis for suspect human monkeypox cases. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 17, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure