Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-30 (of 130 Records) |
Query Trace: Thompson MG[original query] |
---|
Molecular features of the serological IgG repertoire elicited by egg-based, cell-based, or recombinant haemagglutinin-based seasonal influenza vaccines: a comparative, prospective, observational cohort study
Park J , Bartzoka F , von Beck T , Li ZN , Mishina M , Hebert LS , Kain J , Liu F , Sharma S , Cao W , Eddins DJ , Kumar A , Kim JE , Lee JS , Wang Y , Schwartz EA , Brilot AF , Satterwhite E , Towers DM , McKnight E , Pohl J , Thompson MG , Gaglani M , Dawood FS , Naleway AL , Stevens J , Kennedy RB , Jacob J , Lavinder JJ , Levine MZ , Gangappa S , Ippolito GC , Sambhara S , Georgiou G . Lancet Microbe 2024 100935 BACKGROUND: Egg-based inactivated quadrivalent seasonal influenza vaccine (eIIV4), cell culture-based inactivated quadrivalent seasonal influenza vaccine (ccIIV4), and recombinant haemagglutinin (HA)-based quadrivalent seasonal influenza vaccine (RIV4) have been licensed for use in the USA. In this study, we used antigen-specific serum proteomics analysis to assess how the molecular composition and qualities of the serological antibody repertoires differ after seasonal influenza immunisation by each of the three vaccines and how different vaccination platforms affect the HA binding affinity and breadth of the serum antibodies that comprise the polyclonal response. METHODS: In this comparative, prospective, observational cohort study, we included female US health-care personnel (mean age 47·6 years [SD 8]) who received a single dose of RIV4, eIIV4, or ccIIV4 during the 2018-19 influenza season at Baylor Scott & White Health (Temple, TX, USA). Eligible individuals were selected based on comparable day 28 serum microneutralisation titres and similar vaccination history. Laboratory investigators were blinded to assignment until testing was completed. The preplanned exploratory endpoints were assessed by deconvoluting the serological repertoire specific to A/Singapore/INFIMH-16-0019/2016 (H3N2) HA before (day 0) and after (day 28) immunisation using bottom-up liquid chromatography-mass spectrometry proteomics (referred to as Ig-Seq) and natively paired variable heavy chain-variable light chain high-throughput B-cell receptor sequencing (referred to as BCR-Seq). Features of the antigen-specific serological repertoire at day 0 and day 28 for the three vaccine groups were compared. Antibodies identified with high confidence in sera were recombinantly expressed and characterised in depth to determine the binding affinity and breadth to time-ordered H3 HA proteins. FINDINGS: During September and October of the 2018-19 influenza season, 15 individuals were recruited and assigned to receive RIV4 (n=5), eIIV4 (n=5), or ccIIV4 (n=5). For all three cohorts, the serum antibody repertoire was dominated by back-boosted antibody lineages (median 98% [95% CI 88-99]) that were present in the serum before vaccination. Although vaccine platform-dependent differences were not evident in the repertoire diversity, somatic hypermutation, or heavy chain complementarity determining region 3 biochemical features, antibodies boosted by RIV4 showed substantially higher binding affinity to the vaccine H3/HA (median half-maximal effective concentration [EC50] to A/Singapore/INFIMH-16-0019/2016 HA: 0·037 μg/mL [95% CI 0·012-0·12] for RIV4; 4·43 μg/mL [0·030-100·0] for eIIV4; and 18·50 μg/mL [0·99-100·0] μg/mL for ccIIV4) and also the HAs from contemporary H3N2 strains than did those elicited by eIIV4 or ccIIV4 (median EC50 to A/Texas/50/2012 HA: 0·037 μg/mL [0·017-0·32] for RIV4; 1·10 μg/mL [0·045-100] for eIIV4; and 12·6 μg/mL [1·8-100] for ccIIV4). Comparison of B-cell receptor sequencing repertoires on day 7 showed that eIIV4 increased the median frequency of canonical egg glycan-targeting B cells (0·20% [95% CI 0·067-0·37] for eIIV4; 0·058% [0·050-0·11] for RIV4; and 0·035% [0-0·062] for ccIIV4), whereas RIV4 vaccination decreased the median frequency of B-cell receptors displaying stereotypical features associated with membrane proximal anchor-targeting antibodies (0·062% [95% CI 0-0·084] for RIV4; 0·12% [0·066-0·16] for eIIV4; and 0·18% [0·016-0·20] for ccIIV4). In exploratory analysis, we characterised the structure of a highly abundant monoclonal antibody that binds to both group 1 and 2 HAs and recognises the HA trimer interface, despite its sequence resembling the stereotypical sequence motif found in membrane-proximal anchor binding antibodies. INTERPRETATION: Although all three licensed seasonal influenza vaccines elicit serological antibody repertoires with indistinguishable features shaped by heavy imprinting, the RIV4 vaccine selectively boosts higher affinity monoclonal antibodies to contemporary strains and elicits greater serum binding potency and breadth, possibly as a consequence of the multivalent structural features of the HA immunogen in this vaccine formulation. Collectively, our findings show advantages of RIV4 vaccines and more generally highlight the benefits of multivalent HA immunogens in promoting higher affinity serum antibody responses. FUNDING: Centers for Disease Control and Prevention, National Institutes of Health, and Bill & Melinda Gates Foundation. |
Randomized immunogenicity trial comparing 2019-2020 recombinant and egg-based influenza vaccines among frequently vaccinated healthcare personnel in Israel
Fowlkes AL , Peretz A , Greenberg D , Hirsch A , Martin ET , Levine MZ , Edwards L , Radke S , Lauring AS , Ferdinands JM , Zhang C , Yoo YM , Dreiher J , Newes-Adeyi G , Azziz-Baumgartner E , Fry AM , Monto AS , Balicer R , Thompson MG , Katz MA . Int J Infect Dis 2024 149 107260 ![]() ![]() OBJECTIVES: Trivalent inactivated influenza vaccine effectiveness was low in a prospective cohort of healthcare personnel (HCP) in Israel from 2016 to 2019. We conducted a randomised immunogenicity trial of quadrivalent recombinant influenza vaccine (RIV4) and standard-dose inactivated influenza vaccine (IIV4) among frequently and infrequently vaccinated previous cohort participants. METHODS: From October 2019 to January 2020, we enrolled and randomly allocated HCP from two Israeli hospitals to receive IIV4 or RIV4. Hemagglutination inhibition (HAI) antibody titres against 2019-2020 vaccine reference influenza viruses were compared between vaccine groups using geometric mean titre (GMT) ratios from sera collected one-month post-vaccination and by frequency of vaccination in the past 5 years (>2 vs ≤2). RESULTS: Among 415 HCP, the GMT ratio comparing RIV4 to IIV4 was 2.0 (95% confidence interval [CI] 1.7-2.7) for A(H1N1)pdm09, 1.6 (95% CI: 1.3-1.9) for A(H3N2), 1.8 (95% CI: 1.4-2.2) for B(Yamagata), and 1.1 (95% CI: 0.9-1.4) for B(Victoria). Similarly, RIV4 elicited higher HAI titres than IIV4 against all 2019-2020 vaccine reference viruses except B(Victoria) among infrequently and frequently vaccinated HCP (lower bound of GMT ratio 95% CIs ≥1.0). CONCLUSION: RIV4 had improved immunogenicity for influenza vaccine strains among both infrequent and frequent vaccinees compared to standard-dose IIV4. CLINICAL TRIALS REGISTRATION: NCT04523324. |
Standard-dose versus MF59-adjuvanted, high-dose or recombinant-hemagglutinin influenza vaccine immunogenicity in older adults: comparison of A(H3N2) antibody response by prior season's vaccine status
Zhong S , Ng TWY , Skowronski DM , Iuliano AD , Leung NHL , Perera Rapm , Ho F , Fang VJ , Tam YH , Ip DKM , Havers FG , Fry AM , Aziz-Baumgartner E , Barr IG , Peiris M , Thompson MG , Cowling BJ . J Infect Dis 2024 229 (5) 1451-1459 ![]() ![]() BACKGROUND: Annual influenza vaccination is recommended for older adults but repeated vaccination with standard-dose influenza vaccine has been linked to reduced immunogenicity and effectiveness, especially against A(H3N2) viruses. METHODS: Community-dwelling Hong Kong adults aged 65-82 years were randomly allocated to receive 2017-2018 standard-dose quadrivalent, MF59-adjuvanted trivalent, high-dose trivalent, and recombinant-HA quadrivalent vaccination. Antibody response to unchanged A(H3N2) vaccine antigen was compared among participants with and without self-reported prior year (2016-2017) standard-dose vaccination. RESULTS: Mean fold rise (MFR) in antibody titers from day 0 to day 30 by hemagglutination inhibition and virus microneutralization assays were lower among 2017-2018 standard-dose and enhanced vaccine recipients with (range, 1.7-3.0) versus without (range, 4.3-14.3) prior 2016-2017 vaccination. MFR was significantly reduced by about one-half to four-fifths for previously vaccinated recipients of standard-dose and all 3 enhanced vaccines (β range, .21-.48). Among prior-year vaccinated older adults, enhanced vaccines induced higher 1.43 to 2.39-fold geometric mean titers and 1.28 to 1.74-fold MFR versus standard-dose vaccine by microneutralization assay. CONCLUSIONS: In the context of unchanged A(H3N2) vaccine strain, prior-year vaccination was associated with reduced antibody response among both standard-dose and enhanced influenza vaccine recipients. Enhanced vaccines improved antibody response among older adults with prior-year standard-dose vaccination. |
Redirecting antibody responses from egg-adapted epitopes following repeat vaccination with recombinant or cell culture-based versus egg-based influenza vaccines
Liu F , Gross FL , Joshi S , Gaglani M , Naleway AL , Murthy K , Groom HC , Wesley MG , Edwards LJ , Grant L , Kim SS , Sambhara S , Gangappa S , Tumpey T , Thompson MG , Fry AM , Flannery B , Dawood FS , Levine MZ . Nat Commun 2024 15 (1) 254 Repeat vaccination with egg-based influenza vaccines could preferentially boost antibodies targeting the egg-adapted epitopes and reduce immunogenicity to circulating viruses. In this randomized trial (Clinicaltrials.gov: NCT03722589), sera pre- and post-vaccination with quadrivalent inactivated egg-based (IIV4), cell culture-based (ccIIV4), and recombinant (RIV4) influenza vaccines were collected from healthcare personnel (18-64 years) in 2018-19 (N = 723) and 2019-20 (N = 684) influenza seasons. We performed an exploratory analysis. Vaccine egg-adapted changes had the most impact on A(H3N2) immunogenicity. In year 1, RIV4 induced higher neutralizing and total HA head binding antibodies to cell- A(H3N2) virus than ccIIV4 and IIV4. In year 2, among the 7 repeat vaccination arms (IIV4-IIV4, IIV4-ccIIV4, IIV4-RIV4, RIV4-ccIIV4, RIV4-RIV4, ccIIV4-ccIIV4 and ccIIV4-RIV4), repeat vaccination with either RIV4 or ccIIV4 further improved antibody responses to circulating viruses with decreased neutralizing antibody egg/cell ratio. RIV4 also had higher post-vaccination A(H1N1)pdm09 and A(H3N2) HA stalk antibodies in year 1, but there was no significant difference in HA stalk antibody fold rise among vaccine groups in either year 1 or year 2. Multiple seasons of non-egg-based vaccination may be needed to redirect antibody responses from immune memory to egg-adapted epitopes and re-focus the immune responses towards epitopes on the circulating viruses to improve vaccine effectiveness. |
Vaccine effectiveness against SARS-CoV-2 related hospitalizations in people who had experienced homelessness or incarceration - findings from the Minnesota EHR Consortium
DeSilva MB , Knowlton G , Rai NK , Bodurtha P , Essien I , Riddles J , Mehari L , Muscoplat M , Lynfield R , Rowley EA , Chamberlain AM , Patel P , Hughes A , Dickerson M , Thompson MG , Griggs EP , Tenforde M , Winkelman TN , Benitez GV , Drawz PE . J Community Health 2023 COVID-19 disproportionately affects people experiencing homelessness or incarceration. While homelessness or incarceration alone may not impact vaccine effectiveness, medical comorbidities along with social conditions associated with homelessness or incarceration may impact estimated vaccine effectiveness. COVID-19 vaccines reduce rates of hospitalization and death; vaccine effectiveness (VE) against severe outcomes in people experiencing homelessness or incarceration is unknown. We conducted a retrospective, observational cohort study evaluating COVID-19 vaccine VE against SARS-CoV-2 related hospitalization (positive SARS-CoV-2 molecular test same week or within 3 weeks prior to hospital admission) among patients who had experienced homelessness or incarceration. We utilized data from 8 health systems in the Minnesota Electronic Health Record Consortium linked to data from Minnesota's immunization information system, Homeless Management Information System, and Department of Corrections. We included patients 18 years and older with a history of experiencing homelessness or incarceration. VE and 95% Confidence Intervals (CI) against SARS-CoV-2 hospitalization were estimated for primary series and one booster dose from Cox proportional hazard models as 100*(1-Hazard Ratio) during August 26, 2021, through October 8, 2022 adjusting for patient age, sex, comorbid medical conditions, and race/ethnicity. We included 80,051 individuals who had experienced homelessness or incarceration. Adjusted VE was 52% (95% CI, 41-60%) among those 22 weeks or more since their primary series, 66% (95% CI, 53-75%) among those less than 22 weeks since their primary series, and 69% (95% CI: 60-76%) among those with one booster. VE estimates were consistently lower during the Omicron predominance period compared with the combined Omicron and Delta periods. Despite higher exposure risk, COVID-19 vaccines provided good effectiveness against SARS-CoV-2 related hospitalizations in persons who have experienced homelessness or incarceration. |
Healthcare personnel in 2016-2019 prospective cohort infrequently got vaccinated, worked while ill, and frequently used antibiotics rather than antivirals against viral influenza illnesses
Azziz-Baumgartner E , Neyra J , Yau TS , Soto G , Owusu D , Zhang C , Romero C , Yoo YM , Gonzales M , Tinoco Y , Silva M , Bravo E , Serrano NR , Matos E , Chavez-Perez V , Castro JC , Esther Castillo M , Porter R , Munayco C , Rodriguez A , Levine MZ , Prouty M , Thompson MG , Arriola CS . Influenza Other Respir Viruses 2023 17 (9) e13189 BACKGROUND: Uncertainty about risk of illness and the value of influenza vaccines negatively affects vaccine uptake among persons targeted for influenza vaccination. METHODS: During 2016-2019, we followed a cohort of healthcare personnel (HCP) targeted for free-of-charge influenza vaccination in five Lima hospitals to quantify risk of influenza, workplace presenteeism (coming to work despite illness), and absenteeism (taking time off from work because of illness). The HCP who developed acute respiratory illnesses (ARI) (≥1 of acute cough, runny nose, body aches, or feverishness) were tested for influenza using reverse-transcription polymerase chain reaction (rt-PCR). FINDINGS: The cohort (2968 HCP) contributed 950,888 person-days. Only 36 (6%) of 605 HCP who participated every year were vaccinated. The HCP had 5750 ARI and 147 rt-PCR-confirmed influenza illnesses. The weighted incidence of laboratory-confirmed influenza was 10.0/100 person-years; 37% used antibiotics, and 0.7% used antivirals to treat these illnesses. The HCP with laboratory-confirmed influenza were present at work while ill for a cumulative 1187 hours. INTERPRETATION: HCP were frequently ill and often worked rather than stayed at home while ill. Our findings suggest the need for continuing medical education about the risk of influenza and benefits of vaccination and stay-at-home-while-ill policies. |
Neutralizing Antibody Response to Pseudotype SARS-CoV-2 Differs between mRNA-1273 and BNT162b2 COVID-19 Vaccines and by History of SARS-CoV-2 Infection (preprint)
Tyner HL , Burgess JL , Grant L , Gaglani M , Kuntz JL , Naleway AL , Thornburg NJ , Caban-Martinez AJ , Yoon SK , Herring MK , Beitel SC , Blanton L , Nikolich-Zugich J , Thiese MS , Pleasants JF , Fowlkes AL , Lutrick K , Dunnigan K , Yoo YM , Rose S , Groom H , Meece J , Wesley MG , Schaefer-Solle N , Louzado-Feliciano P , Edwards LJ , Olsho LEW , Thompson MG . medRxiv 2021 2021.10.20.21265171 Background Data on the development of neutralizing antibodies against SARS-CoV-2 after SARS-CoV-2 infection and after vaccination with messenger RNA (mRNA) COVID-19 vaccines are limited.Methods From a prospective cohort of 3,975 adult essential and frontline workers tested weekly from August, 2020 to March, 2021 for SARS-CoV-2 infection by Reverse Transcription- Polymerase Chain Reaction (RT-PCR) assay irrespective of symptoms, 497 participants had sera drawn after infection (170), vaccination (327), and after both infection and vaccination (50 from the infection population). Serum was collected after infection and each vaccine dose. Serum- neutralizing antibody titers against USA-WA1/2020-spike pseudotype virus were determined by the 50% inhibitory dilution. Geometric mean titers (GMTs) and corresponding fold increases were calculated using t-tests and linear mixed effects models.Results Among 170 unvaccinated participants with SARS-CoV-2 infection, 158 (93%) developed neutralizing antibodies (nAb) with a GMT of 1,003 (95% CI=766-1,315). Among 139 previously uninfected participants, 138 (99%) developed nAb after mRNA vaccine dose-2 with a GMT of 3,257 (95% CI = 2,596-4,052). GMT was higher among those receiving mRNA-1273 vaccine (GMT =4,698, 95%CI= 3,186-6,926) compared to BNT162b2 vaccine (GMT=2,309, 95%CI=1,825-2,919). Among 32 participants with prior SARS-CoV-2 infection, GMT was 21,655 (95%CI=14,766-31,756) after mRNA vaccine dose-1, without further increase after dose- 2.Conclusions A single dose of mRNA vaccine after SARS-CoV-2 infection resulted in the highest observed nAb response. Two doses of mRNA vaccine in previously uninfected participants resulted in higher nAb to SARS-CoV-2 than after one dose of vaccine or SARS- CoV-2 infection alone. Neutralizing antibody response also differed by mRNA vaccine product.Main Point Summary One dose of mRNA COVID-19 vaccine after previous SARS-CoV-2 infection produced the highest neutralizing antibody titers; among those without history of infection, two doses of mRNA vaccine produced the most robust response.Competing Interest StatementAllison Naleway receives research funding from Pfizer and Vir Biotechnology and Jennifer Kuntz receives research funding from Pfizer, Novartis, and Vir Biotechnology for unrelated studies. All other authors: No conflicts. Funding StatementThis work was supported by the Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases [contracts 75D30120R68013 to Marshfield Clinic Research Institute, 75D30120C08379 to the University of Arizona, and 75D30120C08150 to Abt Associates].Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study is governed by Centers for Disease Control and Prevention IRB review board and gave ethical approval for this work.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data produced in the pres nt work are contained in the manuscript |
Prevention and Attenuation of COVID-19 by BNT162b2 and mRNA-1273 Vaccines (preprint)
Thompson MG , Burgess JL , Naleway AL , Tyner H , Yoon SK , Meece J , Olsho LEW , Caban-Martinez AJ , Fowlkes AL , Lutrick K , Groom HC , Dunnigan K , Odean MJ , Hegmann K , Stefanski E , Edwards LJ , Schaefer-Solle N , Grant L , Ellingson K , Kuntz JL , Zunie T , Thiese MS , Ivacic L , Wesley MG , Mayo Lamberte J , Sun X , Smith ME , Phillips AL , Groover KD , Yoo YM , Gerald J , Brown RT , Herring MK , Joseph G , Beitel S , Morrill TC , Mak J , Rivers P , Poe BP , Lynch B , Zhou Y , Zhang J , Kelleher A , Li Y , Dickerson M , Hanson E , Guenther K , Tong S , Bateman A , Reisdorf E , Barnes J , Azziz-Baumgartner E , Hunt DR , Arvay ML , Kutty P , Fry AM , Gaglani M . medRxiv 2021 2021.06.01.21257987 BACKGROUND Information is limited on messenger RNA (mRNA) BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccine effectiveness (VE) in preventing SARS-CoV-2 infection or attenuating disease when administered in real-world conditions.METHODS Prospective cohorts of 3,975 healthcare personnel, first responders, and other essential and frontline workers completed weekly SARS-CoV-2 testing during December 14 2020—April 10 2021. Self-collected mid-turbinate nasal swabs were tested by qualitative and quantitative reverse-transcription–polymerase-chain-reaction (RT-PCR). VE was calculated as 100%×(1−hazard ratio); adjusted VE was calculated using vaccination propensity weights and adjustments for site, occupation, and local virus circulation.RESULTS SARS-CoV-2 was detected in 204 (5.1%) participants; 16 were partially (≥14 days post-dose-1 to 13 days after dose-2) or fully (≥14 days post-dose-2) vaccinated, and 156 were unvaccinated; 32 with indeterminate status (<14 days after dose-1) were excluded. Adjusted mRNA VE of full vaccination was 91% (95% confidence interval [CI]=76%–97%) against symptomatic or asymptomatic SARS-CoV-2 infection; VE of partial vaccination was 81% (95% CI=64%-90%). Among partially or fully vaccinated participants with SARS-CoV-2 infection, mean viral RNA load (Log10 copies/mL) was 40% lower (95% CI=16%-57%), the risk of self-reported febrile COVID-19 was 58% lower (Risk Ratio=0.42, 95% CI=0.18-0.98), and 2.3 fewer days (95% CI=0.8-3.7) were spent sick in bed compared to unvaccinated infected participants.CONCLUSIONS Authorized mRNA vaccines were highly effective among working-age adults in preventing SARS-CoV-2 infections when administered in real-world conditions and attenuated viral RNA load, febrile symptoms, and illness duration among those with breakthrough infection despite vaccination.Competing Interest StatementAllison L. Naleway reported funding from Pfizer for a meningococcal B vaccine study unrelated to the submitted work. Kurt T. Hegmann serves at the Editor of the American College of Occupational and Environmental Medicine evidence-based practice guidelines. Matthew S. These reported grants and personal fees from Reed Group and the American College of Occupational and Environmental Medicine, outside the submitted work. Other authors have reported no conflicts of interest.Funding StatementFunding provided in whole or in part by federal funds from the National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention under contract numbers 75D30120R68013 awarded to Marshfield Clinic Research Laboratory, 75D30120C08379 to University of Arizona, and 75D30120C08150 awarded to Abt Associates, Inc.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study was reviewed and approved by the University of Arizona IRB as the single IRB for this studyAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesSummary data will be available once all study objectives are met. |
Impact of Diabetes Status on Immunogenicity of Trivalent Inactivated Influenza Vaccine in Older Adults (preprint)
Spencer S , Chung JR , Belongia EA , Sundaram M , Meece J , Coleman LA , Zimmerman RK , Nowalk MP , Moehling Geffel K , Ross T , Carter CE , Shay D , Levine M , Liepkalns J , Kim JH , Sambhara S , Thompson MG , Flannery B . medRxiv 2021 2021.10.04.21264429 Individuals with type 2 diabetes mellitus experience high rates of influenza virus infection and complications. We compared the magnitude and duration of serologic response to trivalent influenza vaccine in adults aged 50-80 with and without type 2 diabetes mellitus. Serologic response to influenza vaccination was similar in both groups: greater fold-increases in antibody titer occurred among individuals with lower pre-vaccination antibody titers. Waning of antibody titers was not influenced by diabetes status.Competing Interest StatementKKM, MPN and RZ have received research funds from Merck & Co., Inc and Pfizer, Inc. KKM and RZ have received research funds from Sanofi Pasteur, Inc. LC is currently employed by Novartis. The remaining authors report no conflicts of interest.Funding StatementThis study was supported by cooperative agreements U01 IP000471 and U01 IP000467 from the Centers for Disease Control and Prevention. The findings and conclusions in this report are those of those authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Institutional Review Boards at the University of Pittsburgh and Marshfield Clinic approved this study.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData are not publicly available at this time. |
High Burden of COVID-19 among Unvaccinated Law Enforcement Officers and Firefighters (preprint)
Caban-Martinez AJ , Gaglani M , Olsho LEW , Grant L , Schaefer-Solle N , Louzado-Feliciano P , Tyner HL , Yoon SK , Naleway AL , Smith M , Sokol BE , Lutrick K , Fowlkes AL , Meece J , Noriega R , Odean M , Phillips AL , Groom HC , Murthy K , Edwards LJ , Ellingson KD , Yoo YM , Cruz A , Respet K , Thiese MS , Kuntz JL , Rose S , Hadden LS , Gerald JK , Mak J , Gallimore-Wilson D , Lundgren J , Hegmann KT , Dunnigan K , Wesley MG , Bedrick EJ , Lamberte JM , Jones JM , Hunt A , Bruner MM , Groover K , Kutty PK , Testoff AC , LeClair LB , Etolue JM , Thompson MG , Burgess JL . medRxiv 2021 26 Law Enforcement Officers (LEOs), firefighters, and other first responders are at increased risk of SARS-CoV-2 infection compared to healthcare personnel but have relatively low COVID-19 vaccine uptake. Resistance to COVID-19 vaccine mandates among first responders has the potential to disrupt essential public services and threaten public health and safety. Using data from the HEROES-RECOVER prospective cohorts, we report on the increased illness burden of COVID-19 among unvaccinated first responders. From January to September 2021, first responders contributed to weekly active surveillance for COVID-19-like illness (CLI). Self-collected respiratory specimens collected weekly, irrespective of symptoms, and at the onset CLI were tested by Reverse Transcription Polymerase Chain Reaction (RT-PCR) assay for SARSCoV-2. Among 1415 first responders, 17% were LEOs, 68% firefighters, and 15% had other first responder occupations. Unvaccinated (41%) compared to fully vaccinated (59%) first responders were less likely to believe COVID-19 vaccines are very or extremely effective (17% versus 54%) or very or extremely safe (15% versus 54%). From January through September 2021, among unvaccinated LEOs, the incidence of COVID-19 was 11.9 per 1,000 person-weeks (95%CI=7.0-20.1) compared to only 0.6 (95%CI=0.2-2.5) among vaccinated LEOs. Incidence of COVID-19 was also higher among unvaccinated firefighters (9.0 per 1,000 person-weeks; 95%CI=6.4-12.7) compared to those vaccinated (1.8 per 1,000; 95%CI=1.1-2.8). Once they had laboratory-confirmed COVID-19, unvaccinated first responders were sick for a mean+/-SD of 14.7+/-21.7 days and missed a mean of 38.0+/-46.0 hours of work. These findings suggest that state and local governments with large numbers of unvaccinated first responders may face major disruptions in their workforce due to COVID-19 illness. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. |
Effectiveness of COVID-19 Vaccines at Preventing Emergency Department or Urgent Care Encounters and Hospitalizations Among Immunocompromised Adults: An Observational Study of Real-World Data Across 10 US States from August-December 2021 (preprint)
Embi PJ , Levy ME , Patel P , DeSilva MB , Gaglani M , Dascomb K , Dunne MM , Klein NP , Ong TC , Grannis SJ , Natarajan K , Yang DH , Stenehjem E , Zerbo O , McEvoy C , Rao S , Thompson MG , Konatham D , Irving SA , Dixon BE , Han J , Schrader KE , Grisel N , Lewis N , Kharbanda AB , Barron MA , Reynolds S , Liao IC , Fadel WF , Rowley EA , Arndorfer J , Goddard K , Murthy K , Valvi NR , Weber ZA , Fireman B , Reese SE , Ball SW , Naleway AL . medRxiv 2022 21 Background: Immunocompromised (IC) persons are at increased risk for severe COVID-19 outcomes and are less protected by 1-2 COVID-19 vaccine doses than are immunocompetent (non-IC) persons. We compared vaccine effectiveness (VE) against medically attended COVID-19 of 2-3 mRNA and 1-2 viral-vector vaccine doses between IC and non-IC adults. Method(s): Using a test-negative design among eight VISION Network sites, VE against laboratory-confirmed COVID-19-associated emergency department (ED) or urgent care (UC) events and hospitalizations from 26 August-25 December 2021 was estimated separately among IC and non-IC adults and among specific IC condition subgroups. Vaccination status was defined using number and timing of doses. VE for each status (versus unvaccinated) was adjusted for age, geography, time, prior positive test result, and local SARS-CoV-2 circulation. Result(s): We analyzed 8,848 ED/UC events and 18,843 hospitalizations among IC patients and 200,071 ED/UC events and 70,882 hospitalizations among non-IC patients. Among IC patients, 3-dose mRNA VE against ED/UC (73% [95% CI: 64-80]) and hospitalization (81% [95% CI: 76-86]) was lower than that among non-IC patients (ED/UC: 94% [95% CI: 93-94]; hospitalization: 96% [95% CI: 95-97]). Similar patterns were observed for viral-vector vaccines. Transplant recipients had lower VE than other IC subgroups. Conclusion(s): During B.1.617.2 (Delta) variant predominance, IC adults received moderate protection against COVID-19-associated medical events from three mRNA doses, or one viral-vector dose plus a second dose of any product. However, protection was lower in IC versus non-IC patients, especially among transplant recipients, underscoring the need for additional protection among IC adults. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Effectiveness of COVID-19 vaccines at preventing emergency department or urgent care encounters and hospitalizations among immunocompromised adults: An observational study of real-world data across 10 US states from August-December 2021
Embi PJ , Levy ME , Patel P , DeSilva MB , Gaglani M , Dascomb K , Dunne MM , Klein NP , Ong TC , Grannis SJ , Natarajan K , Yang DH , Stenehjem E , Zerbo O , McEvoy C , Rao S , Thompson MG , Konatham D , Irving SA , Dixon BE , Han J , Schrader KE , Grisel N , Lewis N , Kharbanda AB , Barron MA , Reynolds S , Liao IC , Fadel WF , Rowley EA , Arndorfer J , Goddard K , Murthy K , Valvi NR , Weber ZA , Fireman B , Reese SE , Ball SW , Naleway AL . Vaccine 2023 ![]() BACKGROUND: Immunocompromised (IC) persons are at increased risk for severe COVID-19 outcomes and are less protected by 1-2 COVID-19 vaccine doses than are immunocompetent (non-IC) persons. We compared vaccine effectiveness (VE) against medically attended COVID-19 of 2-3 mRNA and 1-2 viral-vector vaccine doses between IC and non-IC adults. METHODS: Using a test-negative design among eight VISION Network sites, VE against laboratory-confirmed COVID-19-associated emergency department (ED) or urgent care (UC) events and hospitalizations from 26 August-25 December 2021 was estimated separately among IC and non-IC adults and among specific IC condition subgroups. Vaccination status was defined using number and timing of doses. VE for each status (versus unvaccinated) was adjusted for age, geography, time, prior positive test result, and local SARS-CoV-2 circulation. RESULTS: We analyzed 8,848 ED/UC events and 18,843 hospitalizations among IC patients and 200,071 ED/UC events and 70,882 hospitalizations among non-IC patients. Among IC patients, 3-dose mRNA VE against ED/UC (73% [95% CI: 64-80]) and hospitalization (81% [95% CI: 76-86]) was lower than that among non-IC patients (ED/UC: 94% [95% CI: 93-94]; hospitalization: 96% [95% CI: 95-97]). Similar patterns were observed for viral-vector vaccines. Transplant recipients had lower VE than other IC subgroups. CONCLUSIONS: During B.1.617.2 (Delta) variant predominance, IC adults received moderate protection against COVID-19-associated medical events from three mRNA doses, or one viral-vector dose plus a second dose of any product. However, protection was lower in IC versus non-IC patients, especially among transplant recipients, underscoring the need for additional protection among IC adults. |
Number needed to vaccinate with a COVID-19 booster to prevent a COVID-19-associated hospitalization during SARS-CoV-2 Omicron BA.1 variant predominance, December 2021-February 2022, VISION Network: a retrospective cohort study
Adams K , Riddles JJ , Rowley EAK , Grannis SJ , Gaglani M , Fireman B , Hartmann E , Naleway AL , Stenehjem E , Hughes A , Dalton AF , Natarajan K , Dascomb K , Raiyani C , Irving SA , Sloan-Aagard C , Kharbanda AB , DeSilva MB , Dixon BE , Ong TC , Keller J , Dickerson M , Grisel N , Murthy K , Nanez J , Fadel WF , Ball SW , Patel P , Arndorfer J , Mamawala M , Valvi NR , Dunne MM , Griggs EP , Embi PJ , Thompson MG , Link-Gelles R , Tenforde MW . Lancet Reg Health Am 2023 23 100530 ![]() BACKGROUND: Understanding the usefulness of additional COVID-19 vaccine doses-particularly given varying disease incidence-is needed to support public health policy. We characterize the benefits of COVID-19 booster doses using number needed to vaccinate (NNV) to prevent one COVID-19-associated hospitalization or emergency department encounter. METHODS: We conducted a retrospective cohort study of immunocompetent adults at five health systems in four U.S. states during SARS-CoV-2 Omicron BA.1 predominance (December 2021-February 2022). Included patients completed a primary mRNA COVID-19 vaccine series and were either eligible to or received a booster dose. NNV were estimated using hazard ratios for each outcome (hospitalization and emergency department encounters), with results stratified by three 25-day periods and site. FINDINGS: 1,285,032 patients contributed 938 hospitalizations and 2076 emergency department encounters. 555,729 (43.2%) patients were aged 18-49 years, 363,299 (28.3%) 50-64 years, and 366,004 (28.5%) ≥65 years. Most patients were female (n = 765,728, 59.6%), White (n = 990,224, 77.1%), and non-Hispanic (n = 1,063,964, 82.8%). 37.2% of patients received a booster and 62.8% received only two doses. Median estimated NNV to prevent one hospitalization was 205 (range 44-615) and NNV was lower across study periods for adults aged ≥65 years (110, 46, and 88, respectively) and those with underlying medical conditions (163, 69, and 131, respectively). Median estimated NNV to prevent one emergency department encounter was 156 (range 75-592). INTERPRETATION: The number of patients needed to receive a booster dose was highly dependent on local disease incidence, outcome severity, and patient risk factors for moderate-to-severe disease. FUNDING: Funding was provided by the Centers for Disease Control and Prevention though contract 75D30120C07986 to Westat, Inc. and contract 75D30120C07765 to Kaiser Foundation Hospitals. |
Immunogenicity of high-dose egg-based, recombinant, and cell culture-based influenza vaccines compared with standard-dose egg-based influenza vaccine among health care personnel aged 18-65 years in 2019-2020
Naleway AL , Kim SS , Flannery B , Levine MZ , Murthy K , Sambhara S , Gangappa S , Edwards LJ , Ball S , Grant L , Zunie T , Cao W , Gross FL , Groom H , Fry AM , Hunt D , Jeddy Z , Mishina M , Wesley MG , Spencer S , Thompson MG , Gaglani M , Dawood FS . Open Forum Infect Dis 2023 10 (6) ofad223 BACKGROUND: Emerging data suggest that second-generation influenza vaccines with higher hemagglutinin (HA) antigen content and/or different production methods may induce stronger antibody responses to HA than standard-dose egg-based influenza vaccines in adults. We compared antibody responses to high-dose egg-based inactivated (HD-IIV3), recombinant (RIV4), and cell culture-based (ccIIV4) vs standard-dose egg-based inactivated influenza vaccine (SD-IIV4) among health care personnel (HCP) aged 18-65 years in 2 influenza seasons (2018-2019, 2019-2020). METHODS: In the second trial season, newly and re-enrolled HCPs who received SD-IIV4 in season 1 were randomized to receive RIV4, ccIIV4, or SD-IIV4 or were enrolled in an off-label, nonrandomized arm to receive HD-IIV3. Prevaccination and 1-month-postvaccination sera were tested by hemagglutination inhibition (HI) assay against 4 cell culture propagated vaccine reference viruses. Primary outcomes, adjusted for study site and baseline HI titer, were seroconversion rate (SCR), geometric mean titers (GMTs), mean fold rise (MFR), and GMT ratios that compared vaccine groups to SD-IIV4. RESULTS: Among 390 HCP in the per-protocol population, 79 received HD-IIV3, 103 RIV4, 106 ccIIV4, and 102 SD-IIV4. HD-IIV3 recipients had similar postvaccination antibody titers compared with SD-IIV4 recipients, whereas RIV4 recipients had significantly higher 1-month-postvaccination antibody titers against vaccine reference viruses for all outcomes. CONCLUSIONS: HD-IIV3 did not induce higher antibody responses than SD-IIV4, but, consistent with previous studies, RIV4 was associated with higher postvaccination antibody titers. These findings suggest that recombinant vaccines rather than vaccines with higher egg-based antigen doses may provide improved antibody responses in highly vaccinated populations. |
Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers - Eight U.S. Locations, December 2020-March 2021.
Thompson MG , Burgess JL , Naleway AL , Tyner HL , Yoon SK , Meece J , Olsho LEW , Caban-Martinez AJ , Fowlkes A , Lutrick K , Kuntz JL , Dunnigan K , Odean MJ , Hegmann KT , Stefanski E , Edwards LJ , Schaefer-Solle N , Grant L , Ellingson K , Groom HC , Zunie T , Thiese MS , Ivacic L , Wesley MG , Lamberte JM , Sun X , Smith ME , Phillips AL , Groover KD , Yoo YM , Gerald J , Brown RT , Herring MK , Joseph G , Beitel S , Morrill TC , Mak J , Rivers P , Harris KM , Hunt DR , Arvay ML , Kutty P , Fry AM , Gaglani M . MMWR Morb Mortal Wkly Rep 2021 70 (13) 495-500 Messenger RNA (mRNA) BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccines have been shown to be effective in preventing symptomatic COVID-19 in randomized placebo-controlled Phase III trials (1,2); however, the benefits of these vaccines for preventing asymptomatic and symptomatic SARS-CoV-2 (the virus that causes COVID-19) infection, particularly when administered in real-world conditions, is less well understood. Using prospective cohorts of health care personnel, first responders, and other essential and frontline workers* in eight U.S. locations during December 14, 2020-March 13, 2021, CDC routinely tested for SARS-CoV-2 infections every week regardless of symptom status and at the onset of symptoms consistent with COVID-19-associated illness. Among 3,950 participants with no previous laboratory documentation of SARS-CoV-2 infection, 2,479 (62.8%) received both recommended mRNA doses and 477 (12.1%) received only one dose of mRNA vaccine.(†) Among unvaccinated participants, 1.38 SARS-CoV-2 infections were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) per 1,000 person-days.(§) In contrast, among fully immunized (≥14 days after second dose) persons, 0.04 infections per 1,000 person-days were reported, and among partially immunized (≥14 days after first dose and before second dose) persons, 0.19 infections per 1,000 person-days were reported. Estimated mRNA vaccine effectiveness for prevention of infection, adjusted for study site, was 90% for full immunization and 80% for partial immunization. These findings indicate that authorized mRNA COVID-19 vaccines are effective for preventing SARS-CoV-2 infection, regardless of symptom status, among working-age adults in real-world conditions. COVID-19 vaccination is recommended for all eligible persons. |
Effectiveness of BNT162b2 COVID-19 Vaccination in Children and Adolescents.
Klein NP , Demarco M , Fleming-Dutra KE , Stockwell MS , Kharbanda AB , Gaglani M , Rao S , Lewis N , Irving SA , Hartmann E , Natarajan K , Dalton AF , Zerbo O , DeSilva MB , Konatham D , Stenehjem E , Rowley EAK , Ong TC , Grannis SJ , Sloan-Aagard C , Han J , Verani JR , Raiyani C , Dascomb K , Reese SE , Barron MA , Fadel WF , Naleway AL , Nanez J , Dickerson M , Goddard K , Murthy K , Grisel N , Weber ZA , Dixon BE , Patel P , Fireman B , Arndorfer J , Valvi NR , Griggs EP , Hallowell C , Embi PJ , Ball SW , Thompson MG , Tenforde MW , Link-Gelles R . Pediatrics 2023 151 (5) ![]() ![]() OBJECTIVES: We assessed BNT162b2 vaccine effectiveness (VE) against mild to moderate and severe coronavirus disease 2019 (COVID-19) in children and adolescents through the Omicron BA.4/BA.5 period. METHODS: Using VISION Network records from April 2021 to September 2022, we conducted a test-negative, case-control study assessing VE against COVID-19-associated emergency department/urgent care (ED/UC) encounters and hospitalizations using logistic regression, conditioned on month and site, adjusted for covariates. RESULTS: We compared 9800 ED/UC cases with 70 232 controls, and 305 hospitalized cases with 2612 controls. During Delta, 2-dose VE against ED/UC encounters at 12 to 15 years was initially 93% (95% confidence interval 89 to 95), waning to 77% (69% to 84%) after ≥150 days. At ages 16 to 17, VE was initially 93% (86% to 97%), waning to 72% (63% to 79%) after ≥150 days. During Omicron, VE at ages 12 to 15 was initially 64% (44% to 77%), waning to 13% (3% to 23%) after ≥150 days; at ages 16 to 17 VE was 31% (10% to 47%) during days 60 to 149, waning to 7% (-8 to 20%) after 150 days. A monovalent booster increased VE to 54% (40% to 65%) at ages 12 to 15 and 46% (30% to 58%) at ages 16 to 17. At ages 5 to 11, 2-dose VE was 49% (33% to 61%) initially and 41% (29% to 51%) after 150 days. During Delta, VE against hospitalizations at ages 12 to 17 was high (>97%), and at ages 16 to 17 remained 98% (73% to 100%) beyond 150 days; during Omicron, hospitalizations were too infrequent to precisely estimate VE. CONCLUSIONS: BNT162b2 protected children and adolescents against mild to moderate and severe COVID-19. VE was lower during Omicron predominance including BA.4/BA.5, waned after dose 2 but increased after a monovalent booster. Children and adolescents should receive all recommended COVID-19 vaccinations. |
Risk factors for reinfection with SARS-CoV-2 Omicron variant among previously infected frontline workers
Ellingson KD , Hollister J , Porter CJ , Khan SM , Feldstein LR , Naleway AL , Gaglani M , Caban-Martinez AJ , Tyner HL , Lowe AA , Olsho LEW , Meece J , Yoon SK , Mak J , Kuntz JL , Solle NS , Respet K , Baccam Z , Wesley MG , Thiese MS , Yoo YM , Odean MJ , Miiro FN , Pickett SL , Phillips AL , Grant L , Romine JK , Herring MK , Hegmann KT , Lamberte JM , Sokol B , Jovel KS , Thompson MG , Rivers P , Pilishvili T , Lutrick K , Burgess JL , Midgley CM , Fowlkes AL . Emerg Infect Dis 2023 29 (3) 599-604 In a cohort of essential workers in the United States previously infected with SARS-CoV-2, risk factors for reinfection included being unvaccinated, infrequent mask use, time since first infection, and being non-Hispanic Black. Protecting workers from reinfection requires a multipronged approach including up-to-date vaccination, mask use as recommended, and reduction in underlying health disparities. |
Protection from COVID-19 mRNA vaccination and prior SARS-CoV-2 infection against COVID-19-associated encounters in adults during Delta and Omicron predominance.
Bozio CH , Butterfield KA , Briggs Hagen M , Grannis S , Drawz P , Hartmann E , Ong TC , Fireman B , Natarajan K , Dascomb K , Gaglani M , DeSilva MB , Yang DH , Midgley CM , Dixon BE , Naleway AL , Grisel N , Liao IC , Reese SE , Fadel WF , Irving SA , Lewis N , Arndorfer J , Murthy K , Riddles J , Valvi NR , Mamawala M , Embi PJ , Thompson MG , Stenehjem E . J Infect Dis 2023 227 (12) 1348-1363 ![]() BACKGROUND: Data assessing protection conferred from COVID-19 mRNA vaccination and/or prior SARS-CoV-2 infection during Delta and Omicron predominance periods in the U.S. are limited. METHODS: This cohort study included persons ≥18 years who had ≥1 healthcare encounter across four health systems and had been tested for SARS-CoV-2 before August 26, 2021. COVID-19 mRNA vaccination and prior SARS-CoV-2 infection defined the exposure. Cox regression estimated hazard ratios (HRs) for the Delta and Omicron periods; protection was calculated as (1-HR)x100%. RESULTS: Compared to unvaccinated and previously uninfected persons, during Delta predominance, protection against COVID-19-associated hospitalizations was high for those 2- or 3-dose vaccinated and previously infected, 3-dose vaccinated alone, and prior infection alone (range:91%-97%, with overlapping 95% confidence intervals (95%CIs)); during Omicron predominance, estimates were lower (range:77%-90%). Protection against COVID-19-associated emergency department/urgent care (ED/UC) encounters during Delta predominance was high for those exposure groups (range:86%-93%); during Omicron predominance, protection remained high for those 3-dose vaccinated with or without a prior infection (76% (95%CI=67%-83%) and 71% (95%CI=67%-73%), respectively). CONCLUSIONS: COVID-19 mRNA vaccination and/or prior SARS-CoV-2 infection provided protection against COVID-19-associated hospitalizations and ED/UC encounters regardless of variant. Staying up-to-date with COVID-19 vaccination still provides protection against severe COVID-19 disease, regardless of prior infection. |
Vaccine effectiveness against influenza-associated urgent care, emergency department, and hospital encounters during the 2021-2022 season, VISION Network
Tenforde MW , Weber ZA , DeSilva MB , Stenehjem E , Yang DH , Fireman B , Gaglani M , Kojima N , Irving SA , Rao S , Grannis SJ , Naleway AL , Kirshner L , Kharbanda AB , Dascomb K , Lewis N , Dalton AF , Ball SW , Natarajan K , Ong TC , Hartmann E , Embi PJ , McEvoy CE , Grisel N , Zerbo O , Dunne MM , Arndorfer J , Goddard K , Dickerson M , Patel P , Timbol J , Griggs EP , Hansen J , Thompson MG , Flannery B , Klein NP . J Infect Dis 2023 228 (2) 185-195 BACKGROUND: Following historically low influenza activity during the 2020-2021 season, the United States saw an increase in influenza circulating during the 2021-2022 season. Most viruses belonged to the influenza A(H3N2) 3C.2a1b 2a.2 subclade. METHODS: We conducted a test-negative case-control analysis among adults ≥18 years of age at three sites within the VISION Network. Encounters included emergency department/urgent care (ED/UC) visits or hospitalizations with ≥1 acute respiratory illness (ARI) discharge diagnosis codes and molecular testing for influenza. Vaccine effectiveness (VE) was calculated by comparing the odds of influenza vaccination ≥14 days before the encounter date between influenza-positive cases (type A) and influenza-negative and SARS-CoV-2-negative controls, applying inverse probability-to-be-vaccinated weights, and adjusting for confounders. RESULTS: 86,732 ED/UC ARI-associated encounters (7,696 [9%] cases) and 16,805 hospitalized ARI-associated encounters (649 [4%] cases) were included. VE against influenza-associated ED/UC encounters was 25% (95% confidence interval (CI): 20-29%) and 25% (95%CI: 11-37%) against influenza-associated hospitalizations. VE against ED/UC encounters was lower in adults ≥65 years of age (7%; CI: -5-17%) or with immunocompromising conditions (4%, CI:-45-36%). CONCLUSIONS: During an influenza A(H3N2)-predominant influenza season, modest VE was observed. These findings highlight the need for improved vaccines, particularly for A(H3N2) viruses that are historically associated with lower VE. |
SARS-CoV-2 infection history and antibody response to three COVID-19 mRNA vaccine doses.
Herring MK , Romine JK , Wesley MG , Ellingson KD , Yoon SK , Caban-Martinez AJ , Meece J , Gaglani M , Grant L , Olsho LEW , Tyner HL , Naleway AL , Khan SM , Phillips AL , Schaefer Solle N , Rose S , Mak J , Fuller SB , Hunt A , Kuntz JL , Beitel S , Yoo YM , Zheng PQ , Arani G , Mayo Lamberte J , Edwards T , Thompson MG , Sprissler R , Thornburg NJ , Lowe AA , Pilishvili T , Uhrlaub JL , Lutrick K , Burgess JL , Fowlkes AL . Clin Infect Dis 2022 76 (10) 1822-1831 ![]() ![]() BACKGROUND: Three doses of coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccines produce robust antibody responses, but data are limited among individuals previously infected with SARS-CoV-2. From a cohort of health care personnel (75.5%), first responders (4.6%), and other frontline workers (19.8%) in 6 US states, we longitudinally assessed antibody waning after dose-2, and response to dose-3, according to SARS-CoV-2 infection history. METHODS: Participants submitted sera every three months, after SARS-CoV-2 infection, and after each COVID-19 vaccine dose. Sera were tested for antibodies and reported quantitatively as area under the serial dilution curve (AUC). Changes in the AUC values over time were compared as fold-changes using a linear mixed model. RESULTS: Analysis included 388 participants who received dose-3 by November 2021. Three comparison groups: (1) vaccine only with no known prior SARS-CoV-2 infection (n = 224); (2) infection prior to dose-1 (n = 123); and (3) infection after dose 2 and before dose-3 (n = 41). The interval from dose 2 and dose 3 was approximately 8-months. After dose-3, antibody levels rose 2.5-fold (95%CI = 2.2-3.0) in group 2, and 2.9-fold (95%CI = 2.6-3.3) in group 1. Those infected within 90 days before dose-3 (and median 233 days (IQR = 213-246) after dose-2) did not increase significantly after dose-3. CONCLUSIONS: A third dose of mRNA vaccine typically elicited a robust humoral immune response among those with primary vaccination regardless of SARS-CoV-2 infection >3 months prior to boosting. Those with infection < 3 months prior to boosting did not have a significant increase in antibody concentrations in response to a booster. |
Protection of 2 and 3 mRNA Vaccine Doses Against Severe Outcomes Among Adults Hospitalized with COVID-19 - VISION Network, August 2021 - March 2022.
DeSilva MB , Mitchell PK , Klein NP , Dixon BE , Tenforde MW , Thompson MG , Naleway AL , Grannis SJ , Ong TC , Natarajan K , Reese SE , Zerbo O , Kharbanda AB , Patel P , Stenehjem E , Raiyani C , Irving SA , Fadel WF , Rao S , Han J , Reynolds S , Davis JM , Lewis N , McEvoy C , Dickerson M , Dascomb K , Valvi NR , Barron MA , Goddard K , Vazquez-Benitez G , Grisel N , Mamawala M , Embi PJ , Fireman B , Essien IJ , Griggs EP , Arndorfer J , Gaglani M . J Infect Dis 2022 227 (8) 961-969 BACKGROUND: We assessed COVID-19 vaccination impact on illness severity among adults hospitalized with COVID-19 August 2021-March 2022. METHODS: We evaluated differences in intensive care unit (ICU) admission, in-hospital death, and length of stay among vaccinated (2 or 3 mRNA vaccine doses) versus unvaccinated patients aged ≥18 years hospitalized for ≥24 hours with COVID-19-like illness (CLI) and positive SARS-CoV-2 molecular testing. We calculated odds ratios for ICU admission and death and subdistribution hazard ratios (SHR) for time to hospital discharge adjusted for age, geographic region, calendar time, and local virus circulation. RESULTS: We included 27,149 SARS-CoV-2 positive hospitalizations. During both Delta and Omicron-predominant periods, protection against ICU admission was strongest among 3-dose vaccinees compared with unvaccinated patients (Delta OR [CI]: 0.52 [0.28-0.96]); Omicron OR [CI]: 0.69 [0.54-0.87]). During both periods, risk of in-hospital of death was lower among vaccinated compared with unvaccinated but ORs were overlapping; during Omicron, lowest among 3-dose vaccinees (OR [CI] 0.39 [0.28-0.54]). We observed SHR >1 across all vaccination strata in both periods indicating faster discharge for vaccinated patients. CONCLUSIONS: COVID-19 vaccination was associated with lower rates of ICU admission and in-hospital death in both Delta and Omicron periods compared with being unvaccinated. |
Association of mRNA Vaccination With Clinical and Virologic Features of COVID-19 Among US Essential and Frontline Workers.
Thompson MG , Yoon SK , Naleway AL , Meece J , Fabrizio TP , Caban-Martinez AJ , Burgess JL , Gaglani M , Olsho LEW , Bateman A , Lundgren J , Grant L , Phillips AL , Groom HC , Stefanski E , Solle NS , Ellingson K , Lutrick K , Dunnigan K , Wesley MG , Guenther K , Hunt A , Mak J , Hegmann KT , Kuntz JL , Bissonnette A , Hollister J , Rose S , Morrill TC , Respet K , Fowlkes AL , Thiese MS , Rivers P , Herring MK , Odean MJ , Yoo YM , Brunner M , Bedrick EJ , Fleary DE , Jones JT , Praggastis J , Romine J , Dickerson M , Khan SM , Lamberte JM , Beitel S , Webby RJ , Tyner HL . JAMA 2022 328 (15) 1523-1533 ![]() IMPORTANCE: Data on the epidemiology of mild to moderately severe COVID-19 are needed to inform public health guidance. OBJECTIVE: To evaluate associations between 2 or 3 doses of mRNA COVID-19 vaccine and attenuation of symptoms and viral RNA load across SARS-CoV-2 viral lineages. DESIGN, SETTING, AND PARTICIPANTS: A prospective cohort study of essential and frontline workers in Arizona, Florida, Minnesota, Oregon, Texas, and Utah with COVID-19 infection confirmed by reverse transcriptase-polymerase chain reaction testing and lineage classified by whole genome sequencing of specimens self-collected weekly and at COVID-19 illness symptom onset. This analysis was conducted among 1199 participants with SARS-CoV-2 from December 14, 2020, to April 19, 2022, with follow-up until May 9, 2022, reported. EXPOSURES: SARS-CoV-2 lineage (origin strain, Delta variant, Omicron variant) and COVID-19 vaccination status. MAIN OUTCOMES AND MEASURES: Clinical outcomes included presence of symptoms, specific symptoms (including fever or chills), illness duration, and medical care seeking. Virologic outcomes included viral load by quantitative reverse transcriptase-polymerase chain reaction testing along with viral viability. RESULTS: Among 1199 participants with COVID-19 infection (714 [59.5%] women; median age, 41 years), 14.0% were infected with the origin strain, 24.0% with the Delta variant, and 62.0% with the Omicron variant. Participants vaccinated with the second vaccine dose 14 to 149 days before Delta infection were significantly less likely to be symptomatic compared with unvaccinated participants (21/27 [77.8%] vs 74/77 [96.1%]; OR, 0.13 [95% CI, 0-0.6]) and, when symptomatic, those vaccinated with the third dose 7 to 149 days before infection were significantly less likely to report fever or chills (5/13 [38.5%] vs 62/73 [84.9%]; OR, 0.07 [95% CI, 0.0-0.3]) and reported significantly fewer days of symptoms (10.2 vs 16.4; difference, -6.1 [95% CI, -11.8 to -0.4] days). Among those with Omicron infection, the risk of symptomatic infection did not differ significantly for the 2-dose vaccination status vs unvaccinated status and was significantly higher for the 3-dose recipients vs those who were unvaccinated (327/370 [88.4%] vs 85/107 [79.4%]; OR, 2.0 [95% CI, 1.1-3.5]). Among symptomatic Omicron infections, those vaccinated with the third dose 7 to 149 days before infection compared with those who were unvaccinated were significantly less likely to report fever or chills (160/311 [51.5%] vs 64/81 [79.0%]; OR, 0.25 [95% CI, 0.1-0.5]) or seek medical care (45/308 [14.6%] vs 20/81 [24.7%]; OR, 0.45 [95% CI, 0.2-0.9]). Participants with Delta and Omicron infections who received the second dose 14 to 149 days before infection had a significantly lower mean viral load compared with unvaccinated participants (3 vs 4.1 log10 copies/L; difference, -1.0 [95% CI, -1.7 to -0.2] for Delta and 2.8 vs 3.5 log10 copies/L, difference, -1.0 [95% CI, -1.7 to -0.3] for Omicron). CONCLUSIONS AND RELEVANCE: In a cohort of US essential and frontline workers with SARS-CoV-2 infections, recent vaccination with 2 or 3 mRNA vaccine doses less than 150 days before infection with Delta or Omicron variants, compared with being unvaccinated, was associated with attenuated symptoms, duration of illness, medical care seeking, or viral load for some comparisons, although the precision and statistical significance of specific estimates varied. |
Waning of vaccine effectiveness against moderate and severe covid-19 among adults in the US from the VISION network: test negative, case-control study.
Ferdinands JM , Rao S , Dixon BE , Mitchell PK , DeSilva MB , Irving SA , Lewis N , Natarajan K , Stenehjem E , Grannis SJ , Han J , McEvoy C , Ong TC , Naleway AL , Reese SE , Embi PJ , Dascomb K , Klein NP , Griggs EP , Liao IC , Yang DH , Fadel WF , Grisel N , Goddard K , Patel P , Murthy K , Birch R , Valvi NR , Arndorfer J , Zerbo O , Dickerson M , Raiyani C , Williams J , Bozio CH , Blanton L , Link-Gelles R , Barron MA , Gaglani M , Thompson MG , Fireman B . BMJ 2022 379 e072141 ![]() OBJECTIVE: To estimate the effectiveness of mRNA vaccines against moderate and severe covid-19 in adults by time since second, third, or fourth doses, and by age and immunocompromised status. DESIGN: Test negative case-control study. SETTING: Hospitals, emergency departments, and urgent care clinics in 10 US states, 17 January 2021 to 12 July 2022. PARTICIPANTS: 893 461 adults (≥18 years) admitted to one of 261 hospitals or to one of 272 emergency department or 119 urgent care centers for covid-like illness tested for SARS-CoV-2. MAIN OUTCOME MEASURES: The main outcome was waning of vaccine effectiveness with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine during the omicron and delta periods, and the period before delta was dominant using logistic regression conditioned on calendar week and geographic area while adjusting for age, race, ethnicity, local virus circulation, immunocompromised status, and likelihood of being vaccinated. RESULTS: 45 903 people admitted to hospital with covid-19 (cases) were compared with 213 103 people with covid-like illness who tested negative for SARS-CoV-2 (controls), and 103 287 people admitted to emergency department or urgent care with covid-19 (cases) were compared with 531 168 people with covid-like illness who tested negative for SARS-CoV-2. In the omicron period, vaccine effectiveness against covid-19 requiring admission to hospital was 89% (95% confidence interval 88% to 90%) within two months after dose 3 but waned to 66% (63% to 68%) by four to five months. Vaccine effectiveness of three doses against emergency department or urgent care visits was 83% (82% to 84%) initially but waned to 46% (44% to 49%) by four to five months. Waning was evident in all subgroups, including young adults and individuals who were not immunocompromised; although waning was morein people who were immunocompromised. Vaccine effectiveness increased among most groups after a fourth dose in whom this booster was recommended. CONCLUSIONS: Effectiveness of mRNA vaccines against moderate and severe covid-19 waned with time after vaccination. The findings support recommendations for a booster dose after a primary series and consideration of additional booster doses. |
Estimation of COVID-19 mRNA Vaccine Effectiveness Against Medically Attended COVID-19 in Pregnancy During Periods of Delta and Omicron Variant Predominance in the United States.
Schrag SJ , Verani JR , Dixon BE , Page JM , Butterfield KA , Gaglani M , Vazquez-Benitez G , Zerbo O , Natarajan K , Ong TC , Lazariu V , Rao S , Beaver R , Ellington SR , Klein NP , Irving SA , Grannis SJ , Kiduko S , Barron MA , Midturi J , Dickerson M , Lewis N , Stockwell MS , Stenehjem E , Fadel WF , Link-Gelles R , Murthy K , Goddard K , Grisel N , Valvi NR , Fireman B , Arndorfer J , Konatham D , Ball S , Thompson MG , Naleway AL . JAMA Netw Open 2022 5 (9) e2233273 ![]() IMPORTANCE: Pregnant people are at high risk for severe COVID-19 but were excluded from mRNA vaccine trials; data on COVID-19 vaccine effectiveness (VE) are needed. OBJECTIVE: To evaluate the estimated effectiveness of mRNA vaccination against medically attended COVID-19 among pregnant people during Delta and Omicron predominance. DESIGN, SETTING, AND PARTICIPANTS: This test-negative, case-control study was conducted from June 2021 to June 2022 in a network of 306 hospitals and 164 emergency department and urgent care (ED/UC) facilities across 10 US states, including 4517 ED/UC encounters and 975 hospitalizations among pregnant people with COVID-19-like illness (CLI) who underwent SARS-CoV-2 molecular testing. EXPOSURES: Two doses (14-149 and ≥150 days prior) and 3 doses (7-119 and ≥120 days prior) of COVID-19 mRNA vaccine (≥1 dose received during pregnancy) vs unvaccinated. MAIN OUTCOMES AND MEASURES: Estimated VE against laboratory-confirmed COVID-19-associated ED/UC encounter or hospitalization, based on the adjusted odds ratio (aOR) for prior vaccination; VE was calculated as (1 - aOR) × 100%. RESULTS: Among 4517 eligible CLI-associated ED/UC encounters and 975 hospitalizations, 885 (19.6%) and 334 (34.3%) were SARS-CoV-2 positive, respectively; the median (IQR) patient age was 28 (24-32) years and 31 (26-35) years, 537 (12.0%) and 118 (12.0%) were non-Hispanic Black and 1189 (26.0%) and 240 (25.0%) were Hispanic. During Delta predominance, the estimated VE against COVID-19-associated ED/UC encounters was 84% (95% CI, 69% to 92%) for 2 doses within 14 to 149 days, 75% (95% CI, 5% to 93%) for 2 doses 150 or more days prior, and 81% (95% CI, 30% to 95%) for 3 doses 7 to 119 days prior; estimated VE against COVID-19-associated hospitalization was 99% (95% CI, 96% to 100%), 96% (95% CI, 86% to 99%), and 97% (95% CI, 79% to 100%), respectively. During Omicron predominance, for ED/UC encounters, the estimated VE of 2 doses within 14 to 149 days, 2 doses 150 or more days, 3 doses within 7 to 119 days, and 3 doses 120 or more days prior was 3% (95% CI, -49% to 37%), 42% (95% CI, -16% to 72%), 79% (95% CI, 59% to 89%), and -124% (95% CI, -414% to 2%), respectively; for hospitalization, estimated VE was 86% (95% CI, 41% to 97%), 64% (95% CI, -102% to 93%), 86% (95% CI, 28% to 97%), and -53% (95% CI, -1254% to 83%), respectively. CONCLUSIONS AND RELEVANCE: In this study, maternal mRNA COVID-19 vaccination, including booster dose, was associated with protection against medically attended COVID-19. VE estimates were higher against COVID-19-associated hospitalization than ED/UC visits and lower against the Omicron variant than the Delta variant. Protection waned over time, particularly during Omicron predominance. |
Effect of repeat vaccination on immunogenicity of quadrivalent cell-culture and recombinant influenza vaccines among healthcare personnel aged 18-64 years: A randomized, open-label trial
Gaglani M , Kim SS , Naleway AL , Levine MZ , Edwards L , Murthy K , Dunnigan K , Zunie T , Groom H , Ball S , Jeddy Z , Hunt D , Wesley MG , Sambhara S , Gangappa S , Grant L , Cao W , Liaini Gross F , Mishina M , Fry AM , Thompson MG , Dawood FS , Flannery B . Clin Infect Dis 2022 76 (3) e1168-e1176 BACKGROUND: Antibody responses to non-egg-based standard-dose cell-culture influenza vaccine (containing 15 µg hemagglutinin (HA)/component) and recombinant vaccine (containing 45 µg HA/component) during consecutive seasons have not been studied in the United States. METHODS: In a randomized trial of immunogenicity of quadrivalent influenza vaccines among healthcare personnel (HCP) aged 18-64 years over two consecutive seasons, HCP who received recombinant-hemagglutinin (RIV) or cell-culture-based vaccine (ccIIV) during the first season (Y1) were re-randomized the second season of 2019-2020 (Y2) to receive ccIIV or RIV, resulting in four ccIIV-RIV combinations. In Y2, hemagglutination inhibition (HI) antibody titers against reference cell-grown vaccine viruses were compared in each ccIIV-RIV group with titers among HCP randomized both seasons to receive egg-based, standard-dose inactivated influenza vaccine (IIV), using geometric mean titer (GMT) ratios of Y2-post-vaccination titers. RESULTS: Y2 data from 414 HCPs were analyzed per-protocol. Compared to 60 IIV/IIV recipients, 74 RIV/RIV and 106 ccIIV/RIV recipients showed significantly elevated GMT ratios (Bonferroni corrected P <.007) against all components except A (H3N2). Post-vaccination GMT ratios for ccIIV/ccIIV and RIV/ccIIV were not significantly elevated compared to IIV/IIV except for RIV/ccIIV against A(H1N1)pdm09. CONCLUSIONS: In adult HCPs, receipt of RIV two consecutive seasons or the second season was more immunogenic than consecutive egg-based IIV for three of the four components of quadrivalent vaccine. Immunogenicity of ccIIV/ccIIV was similar to that of IIV/IIV. Differences in hemagglutinin antigen content may play a role in immunogenicity of influenza vaccination in consecutive seasons. |
COVID-19 Vaccination Perspectives and Illnesses Among Law Enforcement Officers, Firefighters, and Other First Responders in the US, January to September 2021.
Caban-Martinez AJ , Gaglani M , Olsho LEW , Grant L , Schaefer-Solle N , Thompson MG , Burgess JL . JAMA Netw Open 2022 5 (7) e2222640 This cohort study assesses attitudes toward COVID-19 vaccination and illness burden among vaccinated and unvaccinated law enforcement officers, firefighters, and other first responders in the US. |
Effectiveness of 2, 3, and 4 COVID-19 mRNA Vaccine Doses Among Immunocompetent Adults During Periods when SARS-CoV-2 Omicron BA.1 and BA.2/BA.2.12.1 Sublineages Predominated - VISION Network, 10 States, December 2021-June 2022.
Link-Gelles R , Levy ME , Gaglani M , Irving SA , Stockwell M , Dascomb K , DeSilva MB , Reese SE , Liao IC , Ong TC , Grannis SJ , McEvoy C , Patel P , Klein NP , Hartmann E , Stenehjem E , Natarajan K , Naleway AL , Murthy K , Rao S , Dixon BE , Kharbanda AB , Akinseye A , Dickerson M , Lewis N , Grisel N , Han J , Barron MA , Fadel WF , Dunne MM , Goddard K , Arndorfer J , Konatham D , Valvi NR , Currey JC , Fireman B , Raiyani C , Zerbo O , Sloan-Aagard C , Ball SW , Thompson MG , Tenforde MW . MMWR Morb Mortal Wkly Rep 2022 71 (29) 931-939 The Omicron variant (B.1.1.529) of SARS-CoV-2, the virus that causes COVID-19, was first identified in the United States in November 2021, with the BA.1 sublineage (including BA.1.1) causing the largest surge in COVID-19 cases to date. Omicron sublineages BA.2 and BA.2.12.1 emerged later and by late April 2022, accounted for most cases.* Estimates of COVID-19 vaccine effectiveness (VE) can be reduced by newly emerging variants or sublineages that evade vaccine-induced immunity (1), protection from previous SARS-CoV-2 infection in unvaccinated persons (2), or increasing time since vaccination (3). Real-world data comparing VE during the periods when the BA.1 and BA.2/BA.2.12.1 predominated (BA.1 period and BA.2/BA.2.12.1 period, respectively) are limited. The VISION network(†) examined 214,487 emergency department/urgent care (ED/UC) visits and 58,782 hospitalizations with a COVID-19-like illness(§) diagnosis among 10 states during December 18, 2021-June 10, 2022, to evaluate VE of 2, 3, and 4 doses of mRNA COVID-19 vaccines (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) compared with no vaccination among adults without immunocompromising conditions. VE against COVID-19-associated hospitalization 7-119 days and ≥120 days after receipt of dose 3 was 92% (95% CI = 91%-93%) and 85% (95% CI = 81%-89%), respectively, during the BA.1 period, compared with 69% (95% CI = 58%-76%) and 52% (95% CI = 44%-59%), respectively, during the BA.2/BA.2.12.1 period. Patterns were similar for ED/UC encounters. Among adults aged ≥50 years, VE against COVID-19-associated hospitalization ≥120 days after receipt of dose 3 was 55% (95% CI = 46%-62%) and ≥7 days (median = 27 days) after a fourth dose was 80% (95% CI = 71%-85%) during BA.2/BA.2.12.1 predominance. Immunocompetent persons should receive recommended COVID-19 booster doses to prevent moderate to severe COVID-19, including a first booster dose for all eligible persons and second booster dose for adults aged ≥50 years at least 4 months after an initial booster dose. Booster doses should be obtained immediately when persons become eligible.(¶). |
Vaccine-associated attenuation of subjective severity among outpatients with influenza
Chung JR , Kim SS , Flannery B , Smith ME , Dunnigan K , Raiyani C , Murthy K , Gaglani M , Jackson ML , Jackson LA , Bear T , Moehling Geffel K , Nowalk MP , Zimmerman RK , Martin ET , Lamerato L , McLean HQ , King JP , Belongia EA , Thompson MG , Patel M . Vaccine 2022 40 (32) 4322-4327 Influenza vaccines can mitigate illness severity, including reduced risk of ICU admission and death, in people with breakthrough infection. Less is known about vaccine attenuation of mild/moderate influenza illness. We compared subjective severity scores in vaccinated and unvaccinated persons with medically attended illness and laboratory-confirmed influenza. Participants were prospectively recruited when presenting for care at five US sites over nine seasons. Participants aged ≥ 16 years completed the EQ-5D-5L visual analog scale (VAS) at enrollment. After controlling for potential confounders in a multivariable model, including age and general health status, VAS scores were significantly higher among 2,830 vaccinated participants compared with 3,459 unvaccinated participants, indicating vaccinated participants felt better at the time of presentation for care. No differences in VAS scores were observed by the type of vaccine received among persons aged ≥ 65 years. Our findings suggest vaccine-associated attenuation of milder influenza illness is possible. |
Pediatric Research Observing Trends and Exposures in COVID-19 Timelines (PROTECT): Protocol for a Multisite Longitudinal Cohort Study.
Burns J , Rivers P , LeClair LB , Jovel K , Rai RP , Lowe AA , Edwards LJ , Khan SM , Mathenge C , Ferraris M , Kuntz JL , Lamberte JM , Hegmann KT , Odean MJ , McLeland-Wieser H , Beitel S , Odame-Bamfo L , Schaefer Solle N , Mak J , Phillips AL , Sokol BE , Hollister J , Ochoa JS , Grant L , Thiese MS , Jacoby KB , Lutrick K , Pubillones FA , Yoo YM , Rentz Hunt D , Ellingson K , Berry MC , Gerald JK , Lopez J , Gerald L , Wesley MG , Krupp K , Herring MK , Madhivanan P , Caban-Martinez AJ , Tyner HL , Meece JK , Yoon SK , Fowlkes AL , Naleway AL , Gwynn L , Burgess JL , Thompson MG , Olsho LE , Gaglani M . JMIR Res Protoc 2022 11 (7) e37929 BACKGROUND: Assessing the real-world effectiveness of COVID-19 vaccines and understanding the incidence and severity of SARS-CoV-2 illness in children is essential to inform policy and guide healthcare professionals advising parents and caregivers of children who test positive for SARS-CoV-2. OBJECTIVE: This report describes the objectives and methods for conducting the Pediatric Research Observing Trends and Exposures in COVID-19 Timelines (PROTECT) study. PROTECT is a longitudinal prospective pediatric cohort study designed to estimate SARS-CoV-2 incidence and COVID-19 vaccine effectiveness (VE) against infection among children aged 6 months to 17 years as well as differences in SARS-CoV-2 infection and vaccine response between children and adolescents. METHODS: The PROTECT multisite network was initiated in July 2021 and aims to enroll approximately 2,305 children across four U.S. locations and collect data over a two-year surveillance period; the enrollment target was based on prospective power calculations and account for expected attrition and nonresponse. Study sites recruit parents and legal guardians (PLGs) of age-eligible children participating in the existing HEROES-RECOVER network as well as from surrounding communities. Child demographics, medical history, COVID-19 exposure, vaccination history, and PLGs' knowledge and attitudes about COVID-19 are collected at baseline and throughout the study. Mid-turbinate nasal specimens are self- or PLG-collected weekly, regardless of symptoms, for SARS-CoV-2 and influenza testing via reverse transcription-polymerase chain reaction (RT-PCR) assay, and the presence of COVID-like-illness (CLI) is reported. Children who test positive for SARS-CoV-2 or influenza or report CLI are monitored weekly by online surveys to report exposure and medical utilization until no longer ill. Children, with their PLG's permission, may elect to contribute blood at enrollment, following SARS-CoV-2 infection, following COVID-19 vaccination, and at the end of the study period. PROTECT uses electronic medical records (EMR) linkages where available and verifies COVID-19 and influenza vaccinations through EMR or state vaccine registries. RESULTS: Data collection began in July 2021 and is expected to continue through Spring 2023. As of 05/13/2022, 2,371 children are enrolled in PROTECT. Enrollment is ongoing at all study sites. CONCLUSIONS: As COVID-19 vaccine products are authorized for use in pediatric populations, PROTECT study data will provide real-world estimates of VE in preventing infection. In addition, this prospective cohort provides a unique opportunity to further understand SARS-CoV-2 incidence, clinical course, and key knowledge gaps that may inform public health. |
How repeated influenza vaccination effects might apply to COVID-19 vaccines.
Thompson MG , Cowling BJ . Lancet Respir Med 2022 10 (7) 636-638 Many of the current questions on the public health and research aspects of the future of COVID-19 vaccines and vaccine strategies have been topics of research and debate in the influenza vaccine literature for decades. Here, we describe how the lessons learned from the study of repeated influenza vaccinations might apply to the evaluation of COVID-19 vaccines, and the prospect of future seasonal or periodic booster vaccinations. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure