Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-10 (of 10 Records) |
Query Trace: Thomas TA[original query] |
---|
Pulmonary evaluation of whole-body inhalation exposure of polycarbonate (PC) filament 3D printer emissions in rats
Farcas MT , McKinney W , Mandler WK , Knepp AK , Battelli L , Friend SA , Stefaniak AB , Service S , Kashon M , LeBouf RF , Thomas TA , Matheson J , Qian Y . J Toxicol Environ Health A 2024 87 (8) 325-341 During fused filament fabrication (FFF) 3D printing with polycarbonate (PC) filament, a release of ultrafine particles (UFPs) and volatile organic compounds (VOCs) occurs. This study aimed to determine PC filament printing emission-induced toxicity in rats via whole-body inhalation exposure. Male Sprague Dawley rats were exposed to a single concentration (0.529 mg/m(3), 40 nm mean diameter) of the 3D PC filament emissions in a time-course via whole body inhalation for 1, 4, 8, 15, and 30 days (4 hr/day, 4 days/week), and sacrificed 24 hr after the last exposure. Following exposures, rats were assessed for pulmonary and systemic responses. To determine pulmonary injury, total protein and lactate dehydrogenase (LDH) activity, surfactant proteins A and D, total as well as lavage fluid differential cells in bronchoalveolar lavage fluid (BALF) were examined, as well as histopathological analysis of lung and nasal passages was performed. To determine systemic injury, hematological differentials, and blood biomarkers of muscle, metabolic, renal, and hepatic functions were also measured. Results showed that inhalation exposure induced no marked pulmonary or systemic toxicity in rats. In conclusion, inhalation exposure of rats to a low concentration of PC filament emissions produced no significant pulmonary or systemic toxicity. |
Evaluation of pulmonary effects of 3-D printer emissions from acrylonitrile butadiene styrene using an air-liquid interface model of primary normal human-derived bronchial epithelial cells
Farcas MT , McKinney W , Coyle J , Orandle M , Mandler WK , Stefaniak AB , Bowers L , Battelli L , Richardson D , Hammer MA , Friend SA , Service S , Kashon M , Qi C , Hammond DR , Thomas TA , Matheson J , Qian Y . Int J Toxicol 2022 41 (4) 10915818221093605 This study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) in vitro model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively. The average particle deposition per surface area of the epithelium was 2.29 × 10(7) ± 1.47 × 10(7) particle/cm(2), equivalent to an estimated average particle mass of 0.144 ± 0.042 μg/cm(2). Results showed exposure of NHBEs to ABS emissions did not significantly affect epithelium integrity, ciliation, mucus production, nor induce cytotoxicity. At 24 hours after the exposure, significant increases in the pro-inflammatory markers IL-12p70, IL-13, IL-15, IFN-γ, TNF-α, IL-17A, VEGF, MCP-1, and MIP-1α were noted in the basolateral cell culture medium of ABS-exposed cells compared to non-exposed chamber control cells. Results obtained from this study correspond with those from our previous in vivo studies, indicating that the increase in inflammatory mediators occur without associated membrane damage. The combination of the exposure chamber and the ALI-based model is promising for assessing 3-D printer emission-induced toxicity. |
Pulmonary and systemic toxicity in rats following inhalation exposure of 3-D printer emissions from acrylonitrile butadiene styrene (ABS) filament
Farcas MT , McKinney W , Qi C , Mandler KW , Battelli L , Friend SA , Stefaniak AB , Jackson M , Orandle M , Winn A , Kashon M , LeBouf RF , Russ KA , Hammond DR , Burns D , Ranpara A , Thomas TA , Matheson J , Qian Y . Inhal Toxicol 2020 32 1-16 BACKGROUND: Fused filament fabrication 3-D printing with acrylonitrile butadiene styrene (ABS) filament emits ultrafine particulates (UFPs) and volatile organic compounds (VOCs). However, the toxicological implications of the emissions generated during 3-D printing have not been fully elucidated. AIM AND METHODS: The goal of this study was to investigate the in vivo toxicity of ABS-emissions from a commercial desktop 3-D printer. Male Sprague Dawley rats were exposed to a single concentration of ABS-emissions or air for 4 hours/day, 4 days/week for five exposure durations (1, 4, 8, 15, and 30 days). At 24 hours after the last exposure, rats were assessed for pulmonary injury, inflammation, and oxidative stress as well as systemic toxicity. RESULTS AND DISCUSSION: 3-D printing generated particulate with average particle mass concentration of 240 ± 90 µg/m³, with an average geometric mean particle mobility diameter of 85 nm (geometric standard deviation = 1.6). The number of macrophages increased significantly at day 15. In bronchoalveolar lavage, IFN-γ and IL-10 were significantly higher at days 1 and 4, with IL-10 levels reaching a peak at day 15 in ABS-exposed rats. Neither pulmonary oxidative stress responses nor histopathological changes of the lungs and nasal passages were found among the treatments. There was an increase in platelets and monocytes in the circulation at day 15. Several serum biomarkers of hepatic and kidney functions were significantly higher at day 1. CONCLUSIONS: At the current experimental conditions applied, it was concluded that the emissions from ABS filament caused minimal transient pulmonary and systemic toxicity. |
Acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) filaments three-dimensional (3-D) printer emissions-induced cell toxicity
Farcas MT , Stefaniak AB , Knepp AK , Bowers L , Mandler WK , Kashon M , Jackson SR , Stueckle TA , Sisler JD , Friend SA , Qi C , Hammond DR , Thomas TA , Matheson J , Castranova V , Qian Y . Toxicol Lett 2019 317 1-12 During extrusion of some polymers, fused filament fabrication (FFF) 3-D printers emit billions of particles per minute and numerous organic compounds. The scope of this study was to evaluate FFF 3-D printer emission-induced toxicity in human small airway epithelial cells (SAEC). Emissions were generated from a commercially available 3-D printer inside a chamber, while operating for 1.5h with acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) filaments, and collected in cell culture medium. Characterization of the culture medium revealed that repeat print runs with an identical filament yield various amounts of particles and organic compounds. Mean particle sizes in cell culture medium were 201+/-18nm and 202+/-8nm for PC and ABS, respectively. At 24h post-exposure, both PC and ABS emissions induced a dose dependent significant cytotoxicity, oxidative stress, apoptosis, necrosis, and production of pro-inflammatory cytokines and chemokines in SAEC. Though the emissions may not completely represent all possible exposure scenarios, this study indicate that the FFF could induce toxicological effects. Further studies are needed to quantify the detected chemicals in the emissions and their corresponding toxicological effects. |
Toxicological assessment of dust from sanding micronized copper-treated lumber in vivo
Sisler JD , Mandler WK , Shaffer J , Lee T , McKinney WG , Battelli LA , Orandle MS , Thomas TA , Castranova VC , Qi C , Porter DW , Andrew ME , Fedan JS , Mercer RR , Qian Y . J Hazard Mater 2019 373 630-639 Micronized copper azole (MCA) is a lumber treatment improve longevity. In this study, the in vivo response to PM2.5 sanding dust generated from MCA-treated lumber was compared to that of untreated yellow pine (UYP) or soluble copper azole-treated (CA-C) lumber to determine if the MCA was more bioactive than CA-C. Mice were exposed to doses (28, 140, or 280 mug/mouse) of UYP, MCA, or CA-C sanding dust using oropharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) lactate dehydrogenase activity was increased at 1 day post-exposure to 280 mug/mouse of MCA and CA-C compared to UYP. BALF polymorphonuclear cells were increased by MCA and CA-C. There were increases in BALF cytokines in MCA and CA-C-exposed groups at 1 day post-exposure. Lung histopathology indicated inflammation with infiltration of neutrophils and macrophages. Pulmonary responses were more severe in MCA and CA-C-exposed groups at 1 day post-exposure. MCA caused more severe inflammatory responses than CA-C at 1 day post-exposure. These findings suggest that the MCA and CA-C sanding dusts are more bioactive than the UYP sanding dust, and, moreover, the MCA sanding dust is more bioactive in comparison to the CA-C sanding dust. No chronic toxic effects were observed among all observed sanding dusts. |
Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children's potential exposures
Tulve NS , Stefaniak AB , Vance ME , Rogers K , Mwilu S , LeBouf RF , Schwegler-Berry D , Willis R , Thomas TA , Marr LC . Int J Hyg Environ Health 2015 218 (3) 345-57 Due to their antifungal, antibacterial, antiviral, and antimicrobial properties, silver nanoparticles (AgNPs) are used in consumer products intended for use by children or in the home. Children may be especially affected by the normal use of consumer products because of their physiological functions, developmental stage, and activities and behaviors. Despite much research to date, children's potential exposures to AgNPs are not well characterized. Our objectives were to characterize selected consumer products containing AgNPs and to use the data to estimate a child's potential non-dietary ingestion exposure. We identified and cataloged 165 consumer products claiming to contain AgNPs that may be used by or near children or found in the home. Nineteen products (textile, liquid, plastic) were selected for further analysis. We developed a tiered analytical approach to determine silver content, form (particulate or ionic), size, morphology, agglomeration state, and composition. Silver was detected in all products except one sippy cup body. Among products in a given category, silver mass contributions were highly variable and not always uniformly distributed within products, highlighting the need to sample multiple areas of a product. Electron microscopy confirmed the presence of AgNPs. Using this data, a child's potential non-dietary ingestion exposure to AgNPs when drinking milk formula from a sippy cup is 1.53mug Ag/kg. Additional research is needed to understand the number and types of consumer products containing silver and the concentrations of silver in these products in order to more accurately predict children's potential aggregate and cumulative exposures to AgNPs. |
Dermal exposure potential from textiles that contain silver nanoparticles
Stefaniak AB , Duling MG , Lawrence RB , Thomas TA , LeBouf RF , Wade EE , Abbas Virji M . Int J Occup Environ Health 2014 20 (3) 220-234 BACKGROUND: Factors that influence exposure to silver particles from the use of textiles are not well understood. OBJECTIVES: The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. METHODS: Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). RESULTS: Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated "use" and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0.51+/-0.04%) than the masterbatch process textile (0.21+/-0.01%); P<0.01. CONCLUSIONS: We found that the process (masterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva. |
Pulmonary and cardiovascular responses of rats to inhalation of silver nanoparticles
Roberts JR , McKinney W , Kan H , Krajnak K , Frazer DG , Thomas TA , Waugh S , Kenyon A , Maccuspie RI , Hackley VA , Castranova V . J Toxicol Environ Health A 2013 76 (11) 651-68 Exposure to wet aerosols generated during use of spray products containing silver (Ag) has not been evaluated. The goal was to assess the potential for cardiopulmonary toxicity following an acute inhalation of wet silver colloid. Rats were exposed by inhalation to a low concentration (100 mug/m(3) ) using an undiluted commercial antimicrobial product (20 mg/L total silver; approximately 33 nm mean aerodynamic diameter [MAD]) or to a higher concentration (1000 mug/m(3)) using a suspension (200 mg/L total silver; approximately 39 nm MAD) synthesized to possess a similar size distribution of Ag nanoparticles for 5 h. Estimated lung burdens from deposition models were 0, 1.4, or 14 mug Ag/rat after exposure to control aerosol, low, and high doses, respectively. At 1 and 7 d postexposure, the following parameters were monitored: pulmonary inflammation, lung cell toxicity, alveolar air/blood barrier damage, alveolar macrophage activity, blood cell differentials, responsiveness of tail artery to vasoconstrictor or vasodilatory agents, and heart rate and blood pressure in response to isoproterenol or norepinephrine, respectively. Changes in pulmonary or cardiovascular parameters were absent or nonsignificant at 1 or 7 d postexposure with the exceptions of increased blood monocytes 1 d after high-dose Ag exposure and decreased dilation of tail artery after stimulation, as well as elevated heart rate in response to isoproterenol 1 d after low-dose Ag exposure, possibly due to bioavailable ionic Ag in the commercial product. In summary, short-term inhalation of nano-Ag did not produce apparent marked acute toxicity in this animal model. |
Pulmonary and cardiovascular responses of rats to inhalation of a commercial antimicrobial spray containing titanium dioxide nanoparticles
McKinney W , Jackson M , Sager TM , Reynolds JS , Chen BT , Afshari A , Krajnak K , Waugh S , Johnson C , Mercer RR , Frazer DG , Thomas TA , Castranova V . Inhal Toxicol 2012 24 (7) 447-57 Our laboratory has previously demonstrated that application of an antimicrobial spray product containing titanium dioxide (TiO(2)) generates an aerosol of titanium dioxide in the breathing zone of the applicator. The present report describes the design of an automated spray system and the characterization of the aerosol delivered to a whole body inhalation chamber. This system produced stable airborne levels of TiO(2) particles with a median count size diameter of 110 nm. Rats were exposed to 314 mg/m(3) min (low dose), 826 mg/m(3) min (medium dose), and 3638 mg/m(3) min (high dose) of TiO(2) under the following conditions: 2.62 mg/m(3) for 2 h, 1.72 mg/m(3) 4 h/day for 2 days, and 3.79 mg/m(3) 4 h/day for 4 days, respectively. Pulmonary (breathing rate, specific airway resistance, inflammation, and lung damage) and cardiovascular (the responsiveness of the tail artery to constrictor or dilatory agents) endpoints were monitored 24 h post-exposure. No significant pulmonary or cardiovascular changes were noted at low and middle dose levels. However, the high dose caused significant increases in breathing rate, pulmonary inflammation, and lung cell injury. Results suggest that occasional consumer use of this antimicrobial spray product should not be a hazard. However, extended exposure of workers routinely applying this product to surfaces should be avoided. During application, care should be taken to minimize exposure by working under well ventilated conditions and by employing respiratory protection as needed. It would be prudent to avoid exposure to children or those with pre-existing respiratory disease. |
Nanoparticles-containing spray can aerosol: characterization, exposure assessment, and generator design
Chen BT , Afshari A , Stone S , Jackson M , Schwegler-Berry D , Frazer DG , Castranova V , Thomas TA . Inhal Toxicol 2010 22 (13) 1072-82 This is the first report demonstrating that a commercially available household consumer product produces nanoparticles in a respirable range. This report describes a method developed to characterize nanoparticles that were produced under typical exposure conditions when using a consumer spray product. A well-controlled indoor environment was simulated for conducting spray applications approximating a human exposure scenario. Results indicated that, while aerosol droplets were large with a count median diameter of 22 micrometers during spraying, the final aerosol contained primarily solid TiO2 particles with a diameter of 75 nm. This size reduction was due to the surface deposition of the droplets and the rapid evaporation of the aerosol propellant. In the breathing zone, the aerosol, containing primarily individual particles (>90%), had a mass concentration of 3.4 mg/m3, or 1.6 x 105 particles/cm3, with a nanoparticle fraction limited to 170 micrograms/m3, or 1.2 x 105 particles/cm3. The results were used to estimate the pulmonary dose in an average human (0.075 micrograms TiO2 per m2 alveolar epithelium per minute) and rat (0.03 micrograms TiO2) and, consequently, this information was used to design an inhalation exposure system. The system consisted of a computer-controlled solenoid "finger" for generating constant concentrations of spray can aerosols inside a chamber. Test results demonstrated great similarity between the solenoid "finger"-dispersed aerosol compared to human-generated aerosol. Future investigations will include an inhalation study to obtain information on dose-response relationships in rats and to use it to establish a No Effect Exposure Level for setting guidelines for this consumer product. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure