Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-4 (of 4 Records) |
Query Trace: Thamthitiwat Somsak[original query] |
---|
Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study
Pneumonia Etiology Research for Child Health Study Group , O'Brien Katherine L , Levine Orin S , Knoll Maria Deloria , Feikin Daniel R , DeLuca Andrea N , Driscoll Amanda J , Fancourt Nicholas , Fu Wei , Haddix Meredith , Hammitt Laura L , Higdon Melissa M , Kagucia E Wangeci , Karron Ruth A , Li Mengying , Park Daniel E , Prosperi Christine , Shi Qiyuan , Wu Zhenke , Zeger Scott L , Watson Nora L , Crawley Jane , Murdoch David R , Brooks W Abdullah , Endtz Hubert P , Zaman Khalequ , Goswami Doli , Hossain Lokman , Jahan Yasmin , Chisti Mohammod Jobayer , Howie Stephen R C , Ebruke Bernard E , Antonio Martin , McLellan Jessica L , Machuka Eunice M , Shamsul Arifin , Zaman Syed M A , Mackenzie Grant , Scott J Anthony G , Awori Juliet O , Morpeth Susan C , Kamau Alice , Kazungu Sidi , Ominde Micah Silaba , Kotloff Karen L , Tapia Milagritos D , Sow Samba O , Sylla Mamadou , Tamboura Boubou , Onwuchekwa Uma , Kourouma Nana , Toure Aliou , Sissoko Seydou , Madhi Shabir A , Moore David P , Adrian Peter V , Baillie Vicky L , Kuwanda Locadiah , Mudau Azwifarwi , Groome Michelle J , Mahomed Nasreen , Simões Eric A F , Baggett Henry C , Thamthitiwat Somsak , Maloney Susan A , Bunthi Charatdao , Rhodes Julia , Sawatwong Pongpun , Akarasewi Pasakorn , Thea Donald M , Mwananyanda Lawrence , Chipeta James , Seidenberg Phil , Mwansa James , Somwe Somwe Wa , Kwenda Geoffrey , Anderson Trevor P , Mitchell Joanne L . Lancet 2019 394 (10200) 757-779 BACKGROUND: Pneumonia is the leading cause of death among children younger than 5 years. In this study, we estimated causes of pneumonia in young African and Asian children, using novel analytical methods applied to clinical and microbiological findings. METHODS: We did a multi-site, international case-control study in nine study sites in seven countries: Bangladesh, The Gambia, Kenya, Mali, South Africa, Thailand, and Zambia. All sites enrolled in the study for 24 months. Cases were children aged 1-59 months admitted to hospital with severe pneumonia. Controls were age-group-matched children randomly selected from communities surrounding study sites. Nasopharyngeal and oropharyngeal (NP-OP), urine, blood, induced sputum, lung aspirate, pleural fluid, and gastric aspirates were tested with cultures, multiplex PCR, or both. Primary analyses were restricted to cases without HIV infection and with abnormal chest x-rays and to controls without HIV infection. We applied a Bayesian, partial latent class analysis to estimate probabilities of aetiological agents at the individual and population level, incorporating case and control data. FINDINGS: Between Aug 15, 2011, and Jan 30, 2014, we enrolled 4232 cases and 5119 community controls. The primary analysis group was comprised of 1769 (41·8% of 4232) cases without HIV infection and with positive chest x-rays and 5102 (99·7% of 5119) community controls without HIV infection. Wheezing was present in 555 (31·7%) of 1752 cases (range by site 10·6-97·3%). 30-day case-fatality ratio was 6·4% (114 of 1769 cases). Blood cultures were positive in 56 (3·2%) of 1749 cases, and Streptococcus pneumoniae was the most common bacteria isolated (19 [33·9%] of 56). Almost all cases (98·9%) and controls (98·0%) had at least one pathogen detected by PCR in the NP-OP specimen. The detection of respiratory syncytial virus (RSV), parainfluenza virus, human metapneumovirus, influenza virus, S pneumoniae, Haemophilus influenzae type b (Hib), H influenzae non-type b, and Pneumocystis jirovecii in NP-OP specimens was associated with case status. The aetiology analysis estimated that viruses accounted for 61·4% (95% credible interval [CrI] 57·3-65·6) of causes, whereas bacteria accounted for 27·3% (23·3-31·6) and Mycobacterium tuberculosis for 5·9% (3·9-8·3). Viruses were less common (54·5%, 95% CrI 47·4-61·5 vs 68·0%, 62·7-72·7) and bacteria more common (33·7%, 27·2-40·8 vs 22·8%, 18·3-27·6) in very severe pneumonia cases than in severe cases. RSV had the greatest aetiological fraction (31·1%, 95% CrI 28·4-34·2) of all pathogens. Human rhinovirus, human metapneumovirus A or B, human parainfluenza virus, S pneumoniae, M tuberculosis, and H influenzae each accounted for 5% or more of the aetiological distribution. We observed differences in aetiological fraction by age for Bordetella pertussis, parainfluenza types 1 and 3, parechovirus-enterovirus, P jirovecii, RSV, rhinovirus, Staphylococcus aureus, and S pneumoniae, and differences by severity for RSV, S aureus, S pneumoniae, and parainfluenza type 3. The leading ten pathogens of each site accounted for 79% or more of the site's aetiological fraction. INTERPRETATION: In our study, a small set of pathogens accounted for most cases of pneumonia requiring hospital admission. Preventing and treating a subset of pathogens could substantially affect childhood pneumonia outcomes. FUNDING: Bill & Melinda Gates Foundation. |
Identification of Gram negative non-fermentative bacteria: How hard can it be?
Whistler T , Sangwichian O , Jorakate P , Sawatwong P , Surin U , Piralam B , Thamthitiwat S , Promkong C , Peruski L . PLoS Negl Trop Dis 2019 13 (9) e0007729 INTRODUCTION: The prevalence of bacteremia caused by Gram negative non-fermentative (GNNF) bacteria has been increasing globally over the past decade. Many studies have investigated their epidemiology but focus on the common GNNF including Pseudomonas aeruginosa and Acinetobacter baumannii. Knowledge of the uncommon GNNF bacteremias is very limited. This study explores invasive bloodstream infection GNNF isolates that were initially unidentified after testing with standard microbiological techniques. All isolations were made during laboratory-based surveillance activities in two rural provinces of Thailand between 2006 and 2014. METHODS: A subset of GNNF clinical isolates (204/947), not identified by standard manual biochemical methodologies were run on the BD Phoenix automated identification and susceptibility testing system. If an organism was not identified (12/204) DNA was extracted for whole genome sequencing (WGS) on a MiSeq platform and data analysis performed using 3 web-based platforms: Taxonomer, CGE KmerFinder and One Codex. RESULTS: The BD Phoenix automated identification system recognized 92% (187/204) of the GNNF isolates, and because of their taxonomic complexity and high phenotypic similarity 37% (69/187) were only identified to the genus level. Five isolates grew too slowly for identification. Antimicrobial sensitivity (AST) data was not obtained for 93/187 (50%) identified isolates either because of their slow growth or their taxa were not in the AST database associated with the instrument. WGS identified the 12 remaining unknowns, four to genus level only. CONCLUSION: The GNNF bacteria are of increasing concern in the clinical setting, and our inability to identify these organisms and determine their AST profiles will impede treatment. Databases for automated identification systems and sequencing annotation need to be improved so that opportunistic organisms are better covered. |
Colonization Density of the Upper Respiratory Tract as a Predictor of Pneumonia-Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii.
Park DE , Baggett HC , Howie SRC , Shi Q , Watson NL , Brooks WA , Deloria Knoll M , Hammitt LL , Kotloff KL , Levine OS , Madhi SA , Murdoch DR , O'Brien KL , Scott JAG , Thea DM , Ahmed D , Antonio M , Baillie VL , DeLuca AN , Driscoll AJ , Fu W , Gitahi CW , Olutunde E , Higdon MM , Hossain L , Karron RA , Maiga AA , Maloney SA , Moore DP , Morpeth SC , Mwaba J , Mwenechanya M , Prosperi C , Sylla M , Thamthitiwat S , Zeger SL , Feikin DR . Clin Infect Dis 2017 64 S328-s336 Background.: There is limited information on the association between colonization density of upper respiratory tract colonizers and pathogen-specific pneumonia. We assessed this association for Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. Methods.: In 7 low- and middle-income countries, nasopharyngeal/oropharyngeal swabs from children with severe pneumonia and age-frequency matched community controls were tested using quantitative polymerase chain reaction (PCR). Differences in median colonization density were evaluated using the Wilcoxon rank-sum test. Density cutoffs were determined using receiver operating characteristic curves. Cases with a pathogen identified from lung aspirate culture or PCR, pleural fluid culture or PCR, blood culture, and immunofluorescence for P. jirovecii defined microbiologically confirmed cases for the given pathogens. Results.: Higher densities of H. influenzae were observed in both microbiologically confirmed cases and chest radiograph (CXR)-positive cases compared to controls. Staphylococcus aureus and P. jirovecii had higher densities in CXR-positive cases vs controls. A 5.9 log10 copies/mL density cutoff for H. influenzae yielded 86% sensitivity and 77% specificity for detecting microbiologically confirmed cases; however, densities overlapped between cases and controls and positive predictive values were poor (<3%). Informative density cutoffs were not found for S. aureus and M. catarrhalis, and a lack of confirmed case data limited the cutoff identification for P. jirovecii. Conclusions.: There is evidence for an association between H. influenzae colonization density and H. influenzae-confirmed pneumonia in children; the association may be particularly informative in epidemiologic studies. Colonization densities of M. catarrhalis, S. aureus, and P. jirovecii are unlikely to be of diagnostic value in clinical settings. |
Molecular characterization of Mycoplasma pneumoniae infections in two rural populations of Thailand from 2009-2012.
Whistler T , Sawatwong P , Diaz MH , Benitez AJ , Wolff BJ , Sapchookul P , Thamthitiwat S , Winchell JM . J Clin Microbiol 2017 55 (7) 2222-2233 Studies on Mycoplasma pneumoniae in Thailand have focused on urban centers and have not included the molecular characterization. In an attempt to provide a more comprehensive understanding of this organism, we conducted a systematic random sampling to identify 3000 nasopharyngeal swab specimens, collected from January 2009 through July 2012 during population-based surveillance for influenza-like illness in two rural provinces. M. pneumoniae was detected by real-time PCR in 175 (5.8%) specimens. Genotyping was performed using the major adhesion protein (P1) and multilocus variable-number tandem-repeat analysis (MLVA). Of the 157 specimens typed, 97 were P1 type 1 and 60 were P1 type 2. Six different MLVA profiles were identified in 149 specimens with 4/5/7/2 (40%) and 3/5/6/2 (26%) predominating. There was no discrete seasonality to M. pneumoniae infections. Examination of the 23S rRNA sequence for known polymorphisms conferring macrolide resistance revealed all 141 tested to possess the genotype associated with macrolide susceptibility. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure