Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-30 (of 108 Records) |
Query Trace: Tenforde M[original query] |
---|
Benefit of early oseltamivir therapy for adults hospitalized with influenza A: an observational study
Lewis NM , Harker EJ , Grant LB , Zhu Y , Grijalva CG , Chappell JD , Rhoads JP , Baughman A , Casey JD , Blair PW , Jones ID , Johnson CA , Lauring AS , Gaglani M , Ghamande S , Columbus C , Steingrub JS , Shapiro NI , Duggal A , Busse LW , Felzer J , Prekker ME , Peltan ID , Brown SM , Hager DN , Gong MN , Mohamed A , Exline MC , Khan A , Hough CL , Wilson JG , Mosier J , Qadir N , Chang SY , Ginde AA , Martinez A , Mohr NM , Mallow C , Harris ES , Johnson NJ , Srinivasan V , Gibbs KW , Kwon JH , Vaughn IA , Ramesh M , Safdar B , Goyal A , DeLamielleure LE , DeCuir J , Surie D , Dawood FS , Tenforde MW , Uyeki TM , Garg S , Ellington S , Self WH . Clin Infect Dis 2024 BACKGROUND: clinical guidelines recommend initiation of antiviral therapy as soon as possible for patients hospitalized with confirmed or suspected influenza. METHODS: A multicenter US observational sentinel surveillance network prospectively enrolled adults (aged ≥18 years) hospitalized with laboratory-confirmed influenza at 24 hospitals during October 1, 2022-July 21, 2023. A multivariable proportional odds model was used to compare peak pulmonary disease severity (no oxygen support, standard supplemental oxygen, high-flow oxygen/non-invasive ventilation, invasive mechanical ventilation, or death) after the day of hospital admission among patients starting oseltamivir treatment on the day of admission (early) versus those who did not (late or not treated), adjusting for baseline (admission day) severity, age, sex, site, and vaccination status. Multivariable logistic regression models were used to evaluate the odds of intensive care unit (ICU) admission, acute kidney replacement therapy or vasopressor use, and in-hospital death. RESULTS: A total of 840 influenza-positive patients were analyzed, including 415 (49%) who started oseltamivir treatment on the day of admission, and 425 (51%) who did not. Compared with late or not treated patients, those treated early had lower peak pulmonary disease severity (proportional aOR: 0.60, 95% CI: 0.49-0.72), and lower odds of intensive care unit admission (aOR: 0.24, 95% CI: 0.13-0.47), acute kidney replacement therapy or vasopressor use (aOR: 0.40, 95% CI: 0.22-0.67), and in-hospital death (aOR: 0.36, 95% CI: 0.18-0.72). CONCLUSION: Among adults hospitalized with influenza, treatment with oseltamivir on day of hospital admission was associated reduced risk of disease progression, including pulmonary and extrapulmonary organ failure and death. |
Social vulnerability, intervention utilization, and outcomes in US adults hospitalized with influenza
Adams K , Yousey-Hindes K , Bozio CH , Jain S , Kirley PD , Armistead I , Alden NB , Openo KP , Witt LS , Monroe ML , Kim S , Falkowski A , Lynfield R , McMahon M , Hoffman MR , Shaw YP , Spina NL , Rowe A , Felsen CB , Licherdell E , Lung K , Shiltz E , Thomas A , Talbot HK , Schaffner W , Crossland MT , Olsen KP , Chang LW , Cummings CN , Tenforde MW , Garg S , Hadler JL , O'Halloran A . JAMA Netw Open 2024 7 (11) e2448003 IMPORTANCE: Seasonal influenza is associated with substantial disease burden. The relationship between census tract-based social vulnerability and clinical outcomes among patients with influenza remains unknown. OBJECTIVE: To characterize associations between social vulnerability and outcomes among patients hospitalized with influenza and to evaluate seasonal influenza vaccine and influenza antiviral utilization patterns across levels of social vulnerability. DESIGN, SETTING, AND PARTICIPANTS: This retrospective repeated cross-sectional study was conducted among adults with laboratory-confirmed influenza-associated hospitalizations from the 2014 to 2015 through the 2018 to 2019 influenza seasons. Data were from a population-based surveillance network of counties within 13 states. Data analysis was conducted in December 2023. EXPOSURE: Census tract-based social vulnerability. MAIN OUTCOMES AND MEASURES: Associations between census tract-based social vulnerability and influenza outcomes (intensive care unit admission, invasive mechanical ventilation and/or extracorporeal membrane oxygenation support, and 30-day mortality) were estimated using modified Poisson regression as adjusted prevalence ratios. Seasonal influenza vaccine and influenza antiviral utilization were also characterized across levels of social vulnerability. RESULTS: Among 57 964 sampled cases, the median (IQR) age was 71 (58-82) years; 55.5% (95% CI, 51.5%-56.0%) were female; 5.2% (5.0%-5.4%) were Asian or Pacific Islander, 18.3% (95% CI, 18.0%-18.6%) were Black or African American, and 64.6% (95% CI, 64.2%-65.0%) were White; and 6.6% (95% CI, 6.4%-68%) were Hispanic or Latino and 74.7% (95% CI, 74.3%-75.0%) were non-Hispanic or Latino. High social vulnerability was associated with higher prevalence of invasive mechanical ventilation and/or extracorporeal membrane oxygenation support (931 of 13 563 unweighted cases; adjusted prevalence ratio [aPR], 1.25 [95% CI, 1.13-1.39]), primarily due to socioeconomic status (790 of 11 255; aPR, 1.31 [95% CI, 1.17-1.47]) and household composition and disability (773 of 11 256; aPR, 1.20 [95% CI, 1.09-1.32]). Vaccination status, presence of underlying medical conditions, and respiratory symptoms partially mediated all significant associations. As social vulnerability increased, the proportion of patients receiving seasonal influenza vaccination declined (-19.4% relative change across quartiles; P < .001) as did the proportion vaccinated by October 31 (-6.8%; P < .001). No differences based on social vulnerability were found in in-hospital antiviral receipt, but early in-hospital antiviral initiation (-1.0%; P = .01) and prehospital antiviral receipt (-17.3%; P < .001) declined as social vulnerability increased. CONCLUSIONS AND RELEVANCE: In this cross-sectional study, social vulnerability was associated with a modestly increased prevalence of invasive mechanical ventilation and/or extracorporeal membrane oxygenation support among patients hospitalized with influenza. Contributing factors may have included worsened baseline respiratory health and reduced receipt of influenza prevention and prehospital or early in-hospital treatment interventions among persons residing in low socioeconomic areas. |
Bias and negative values of COVID-19 vaccine effectiveness estimates from a test-negative design without controlling for prior SARS-CoV-2 infection
Wiegand RE , Fireman B , Najdowski M , Tenforde MW , Link-Gelles R , Ferdinands JM . Nat Commun 2024 15 (1) 10062 Test-negative designs (TNDs) are used to assess vaccine effectiveness (VE). Protection from infection-induced immunity may confound the association between case and vaccination status, but collecting reliable infection history can be challenging. If vaccinated individuals have less infection-induced protection than unvaccinated individuals, failure to account for infection history could underestimate VE, though the bias is not well understood. We simulated individual-level SARS-CoV-2 infection and COVID-19 vaccination histories and a TND. VE against symptomatic infection and VE against severe disease estimates unadjusted for infection history underestimated VE compared to estimates adjusted for infection history, and unadjusted estimates were more likely to be below 0%, which could lead to an incorrect interpretation that COVID-19 vaccines are harmful. TNDs assessing VE immediately following vaccine rollout introduced the largest bias and potential for negative VE against symptomatic infection. Despite the potential for bias, VE estimates from TNDs without prior infection information are useful because underestimation is rarely more than 8 percentage points. |
Respiratory syncytial virus (RSV) vaccine effectiveness against RSV-associated hospitalisations and emergency department encounters among adults aged 60 years and older in the USA, October, 2023, to March, 2024: a test-negative design analysis
Payne AB , Watts JA , Mitchell PK , Dascomb K , Irving SA , Klein NP , Grannis SJ , Ong TC , Ball SW , DeSilva MB , Natarajan K , Sheffield T , Bride D , Arndorfer J , Naleway AL , Koppolu P , Fireman B , Zerbo O , Timbol J , Goddard K , Dixon BE , Fadel WF , Rogerson C , Allen KS , Rao S , Mayer D , Barron M , Reese SE , Rowley EAK , Najdowski M , Ciesla AA , Mak J , Reeves EL , Akinsete OO , McEvoy CE , Essien IJ , Tenforde MW , Fleming-Dutra KE , Link-Gelles R . Lancet 2024 404 (10462) 1547-1559 BACKGROUND: Respiratory syncytial virus vaccines first recommended for use during 2023 were efficacious against lower respiratory tract disease in clinical trials. Limited real-world data regarding respiratory syncytial virus vaccine effectiveness are available. To inform vaccine policy and address gaps in evidence from the clinical trials, we aimed to assess the effectiveness against respiratory syncytial virus-associated hospitalisations and emergency department encounters among adults aged at least 60 years. METHODS: We conducted a test-negative design analysis in an electronic health records-based network in eight states in the USA, including hospitalisations and emergency department encounters with respiratory syncytial virus-like illness among adults aged at least 60 years who underwent respiratory syncytial virus testing from Oct 1, 2023, to March 31, 2024. Respiratory syncytial virus vaccination status at the time of the encounter was derived from electronic health record documentation, state and city immunisation registries, and, for some sites, medical claims. Vaccine effectiveness was estimated by immunocompromise status, comparing the odds of vaccination among respiratory syncytial virus-positive case patients and respiratory syncytial virus-negative control patients, and adjusting for age, race and ethnicity, sex, calendar day, social vulnerability index, number of underlying non-respiratory medical conditions, presence of respiratory underlying medical conditions, and geographical region. FINDINGS: Among 28 271 hospitalisations for respiratory syncytial virus-like illness among adults aged at least 60 years without immunocompromising conditions, vaccine effectiveness was 80% (95% CI 71-85) against respiratory syncytial virus-associated hospitalisations, and vaccine effectiveness was 81% (52-92) against respiratory syncytial virus-associated critical illness (ICU admission or death, or both). Among 8435 hospitalisations for respiratory syncytial virus-like illness among adults with immunocompromising conditions, vaccine effectiveness was 73% (48-85) against associated hospitalisation. Among 36 521 emergency department encounters for respiratory syncytial virus-like illness among adults aged at least 60 years without an immunocompromising condition, vaccine effectiveness was 77% (70-83) against respiratory syncytial virus-associated emergency department encounters. Vaccine effectiveness estimates were similar by age group and product type. INTERPRETATION: Respiratory syncytial virus vaccination was effective in preventing respiratory syncytial virus-associated hospitalisations and emergency department encounters among adults aged at least 60 years in the USA during the 2023-24 respiratory syncytial virus season, which was the first season after respiratory syncytial virus vaccine was approved. FUNDING: The Centers for Disease Control and Prevention. |
Timing of influenza antiviral therapy and risk of death in adults hospitalized with influenza-associated pneumonia, FluSurv-NET, 2012-2019
Tenforde MW , Noah KP , O'Halloran AC , Kirley PD , Hoover C , Alden NB , Armistead I , Meek J , Yousey-Hindes K , Openo KP , Witt LS , Monroe ML , Ryan PA , Falkowski A , Reeg L , Lynfield R , McMahon M , Hancock EB , Hoffman MR , McGuire S , Spina NL , Felsen CB , Gaitan MA , Lung K , Shiltz E , Thomas A , Schaffner W , Talbot HK , Crossland MT , Price A , Masalovich S , Adams K , Holstein R , Sundaresan D , Uyeki TM , Reed C , Bozio CH , Garg S . Clin Infect Dis 2024 BACKGROUND: Pneumonia is common in adults hospitalized with laboratory-confirmed influenza, but the association between timeliness of influenza antiviral treatment and severe clinical outcomes in patients with influenza-associated pneumonia is not well characterized. METHODS: We included adults aged ≥18 years hospitalized with laboratory-confirmed influenza and a discharge diagnosis of pneumonia over 7 influenza seasons (2012-2019) sampled from a multi-state population-based surveillance network. We evaluated 3 treatment groups based on timing of influenza antiviral initiation relative to admission date (day 0, day 1, days 2-5). Baseline characteristics and clinical outcomes were compared across groups using unweighted counts and weighted percentages accounting for the complex survey design. Logistic regression models were generated to evaluate the association between delayed treatment and 30-day all-cause mortality. RESULTS: 26,233 adults were sampled in the analysis. Median age was 71 years and most (92.2%) had ≥1 non-immunocompromising condition. Overall, 60.9% started antiviral treatment on day 0, 29.5% on day 1, and 9.7% on days 2-5 (median 2 days). Baseline characteristics were similar across groups. Thirty-day mortality occurred in 7.5%, 8.5%, and 10.2% of patients who started treatment on day 0, day 1, and days 2-5, respectively. Compared to those treated on day 0, adjusted OR for death was 1.14 (95%CI: 1.01-1.27) in those starting treatment on day 1 and 1.40 (95%CI: 1.17-1.66) in those starting on days 2-5. DISCUSSION: Delayed initiation of antiviral treatment in patients hospitalized with influenza-associated pneumonia was associated with higher risk of death, highlighting the importance of timely initiation of antiviral treatment at admission. |
Influenza vaccine effectiveness against influenza a-associated emergency department, urgent care, and hospitalization encounters among US Adults, 2022-2023
Tenforde MW , Weber ZA , Yang DH , DeSilva MB , Dascomb K , Irving SA , Naleway AL , Gaglani M , Fireman B , Lewis N , Zerbo O , Goddard K , Timbol J , Hansen JR , Grisel N , Arndorfer J , McEvoy CE , Essien IJ , Rao S , Grannis SJ , Kharbanda AB , Natarajan K , Ong TC , Embi PJ , Ball SW , Dunne MM , Kirshner L , Wiegand RE , Dickerson M , Patel P , Ray C , Flannery B , Garg S , Adams K , Klein NP . J Infect Dis 2024 230 (1) 141-151 BACKGROUND: The 2022-2023 United States influenza season had unusually early influenza activity with high hospitalization rates. Vaccine-matched A(H3N2) viruses predominated, with lower levels of A(H1N1)pdm09 activity also observed. METHODS: Using the test-negative design, we evaluated influenza vaccine effectiveness (VE) during the 2022-2023 season against influenza A-associated emergency department/urgent care (ED/UC) visits and hospitalizations from October 2022 to March 2023 among adults (aged ≥18 years) with acute respiratory illness (ARI). VE was estimated by comparing odds of seasonal influenza vaccination among case-patients (influenza A test positive by molecular assay) and controls (influenza test negative), applying inverse-propensity-to-be-vaccinated weights. RESULTS: The analysis included 85 389 ED/UC ARI encounters (17.0% influenza A positive; 37.8% vaccinated overall) and 19 751 hospitalizations (9.5% influenza A positive; 52.8% vaccinated overall). VE against influenza A-associated ED/UC encounters was 44% (95% confidence interval [CI], 40%-47%) overall and 45% and 41% among adults aged 18-64 and ≥65 years, respectively. VE against influenza A-associated hospitalizations was 35% (95% CI, 27%-43%) overall and 23% and 41% among adults aged 18-64 and ≥65 years, respectively. CONCLUSIONS: VE was moderate during the 2022-2023 influenza season, a season characterized with increased burden of influenza and co-circulation with other respiratory viruses. Vaccination is likely to substantially reduce morbidity, mortality, and strain on healthcare resources. |
Communicating the value of influenza vaccines to patients
Tenforde MW , Dawood FS . Ann Intern Med 2024 177 (7) 991 |
Interim effectiveness of updated 2023-2024 (monovalent XBB.1.5) COVID-19 vaccines against COVID-19-associated hospitalization among adults aged ≥18 years with immunocompromising conditions - VISION Network, September 2023-February 2024
Link-Gelles R , Rowley EAK , DeSilva MB , Dascomb K , Irving SA , Klein NP , Grannis SJ , Ong TC , Weber ZA , Fleming-Dutra KE , McEvoy CE , Akinsete O , Bride D , Sheffield T , Naleway AL , Zerbo O , Fireman B , Hansen J , Goddard K , Dixon BE , Rogerson C , Fadel WF , Duszynski T , Rao S , Barron MA , Reese SE , Ball SW , Dunne MM , Natarajan K , Okwuazi E , Shah AB , Wiegand R , Tenforde MW , Payne AB . MMWR Morb Mortal Wkly Rep 2024 73 (12) 271-276 In September 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (monovalent XBB.1.5) COVID-19 vaccination for all persons aged ≥6 months to prevent COVID-19, including severe disease. As with past COVID-19 vaccines, additional doses may be considered for persons with immunocompromising conditions, who are at higher risk for severe COVID-19 and might have decreased response to vaccination. In this analysis, vaccine effectiveness (VE) of an updated COVID-19 vaccine dose against COVID-19-associated hospitalization was evaluated during September 2023-February 2024 using data from the VISION VE network. Among adults aged ≥18 years with immunocompromising conditions, VE against COVID-19-associated hospitalization was 38% in the 7-59 days after receipt of an updated vaccine dose and 34% in the 60-119 days after receipt of an updated dose. Few persons (18%) in this high-risk study population had received updated COVID-19 vaccine. All persons aged ≥6 months should receive updated 2023-2024 COVID-19 vaccination; persons with immunocompromising conditions may get additional updated COVID-19 vaccine doses ≥2 months after the last recommended COVID-19 vaccine. |
Risk of COVID-19 hospitalization and protection associated with mRNA vaccination among US adults with psychiatric disorders
Levy ME , Yang DH , Dunne MM , Miley K , Irving SA , Grannis SJ , Weber ZA , Griggs EP , Spark TL , Bassett E , Embi PJ , Gaglani M , Natarajan K , Valvi NR , Ong TC , Naleway AL , Stenehjem E , Klein NP , Link-Gelles R , DeSilva MB , Kharbanda AB , Raiyani C , Beaton MA , Dixon BE , Rao S , Dascomb K , Patel P , Mamawala M , Han J , Fadel WF , Barron MA , Grisel N , Dickerson M , Liao IC , Arndorfer J , Najdowski M , Murthy K , Ray C , Tenforde MW , Ball SW . Influenza Other Respir Viruses 2024 18 (3) e13269 BACKGROUND: Although psychiatric disorders have been associated with reduced immune responses to other vaccines, it remains unknown whether they influence COVID-19 vaccine effectiveness (VE). This study evaluated risk of COVID-19 hospitalization and estimated mRNA VE stratified by psychiatric disorder status. METHODS: In a retrospective cohort analysis of the VISION Network in four US states, the rate of laboratory-confirmed COVID-19-associated hospitalization between December 2021 and August 2022 was compared across psychiatric diagnoses and by monovalent mRNA COVID-19 vaccination status using Cox proportional hazards regression. RESULTS: Among 2,436,999 adults, 22.1% had ≥1 psychiatric disorder. The incidence of COVID-19-associated hospitalization was higher among patients with any versus no psychiatric disorder (394 vs. 156 per 100,000 person-years, p < 0.001). Any psychiatric disorder (adjusted hazard ratio [aHR], 1.27; 95% CI, 1.18-1.37) and mood (aHR, 1.25; 95% CI, 1.15-1.36), anxiety (aHR, 1.33, 95% CI, 1.22-1.45), and psychotic (aHR, 1.41; 95% CI, 1.14-1.74) disorders were each significant independent predictors of hospitalization. Among patients with any psychiatric disorder, aHRs for the association between vaccination and hospitalization were 0.35 (95% CI, 0.25-0.49) after a recent second dose, 0.08 (95% CI, 0.06-0.11) after a recent third dose, and 0.33 (95% CI, 0.17-0.66) after a recent fourth dose, compared to unvaccinated patients. Corresponding VE estimates were 65%, 92%, and 67%, respectively, and were similar among patients with no psychiatric disorder (68%, 92%, and 79%). CONCLUSION: Psychiatric disorders were associated with increased risk of COVID-19-associated hospitalization. However, mRNA vaccination provided similar protection regardless of psychiatric disorder status, highlighting its benefit for individuals with psychiatric disorders. |
Interim effectiveness of updated 2023-2024 (monovalent xbb.1.5) COVID-19 vaccines against COVID-19-associated emergency department and urgent care encounters and hospitalization among immunocompetent adults aged ≥18 years - VISION and IVY Networks, September 2023-January 2024
DeCuir J , Payne AB , Self WH , Rowley EAK , Dascomb K , DeSilva MB , Irving SA , Grannis SJ , Ong TC , Klein NP , Weber ZA , Reese SE , Ball SW , Barron MA , Naleway AL , Dixon BE , Essien I , Bride D , Natarajan K , Fireman B , Shah AB , Okwuazi E , Wiegand R , Zhu Y , Lauring AS , Martin ET , Gaglani M , Peltan ID , Brown SM , Ginde AA , Mohr NM , Gibbs KW , Hager DN , Prekker M , Mohamed A , Srinivasan V , Steingrub JS , Khan A , Busse LW , Duggal A , Wilson JG , Chang SY , Mallow C , Kwon JH , Exline MC , Columbus C , Vaughn IA , Safdar B , Mosier JM , Harris ES , Casey JD , Chappell JD , Grijalva CG , Swan SA , Johnson C , Lewis NM , Ellington S , Adams K , Tenforde MW , Paden CR , Dawood FS , Fleming-Dutra KE , Surie D , Link-Gelles R . MMWR Morb Mortal Wkly Rep 2024 73 (8) 180-188 In September 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (monovalent XBB.1.5) COVID-19 vaccination for all persons aged ≥6 months to prevent COVID-19, including severe disease. However, few estimates of updated vaccine effectiveness (VE) against medically attended illness are available. This analysis evaluated VE of an updated COVID-19 vaccine dose against COVID-19-associated emergency department (ED) or urgent care (UC) encounters and hospitalization among immunocompetent adults aged ≥18 years during September 2023-January 2024 using a test-negative, case-control design with data from two CDC VE networks. VE against COVID-19-associated ED/UC encounters was 51% (95% CI = 47%-54%) during the first 7-59 days after an updated dose and 39% (95% CI = 33%-45%) during the 60-119 days after an updated dose. VE estimates against COVID-19-associated hospitalization from two CDC VE networks were 52% (95% CI = 47%-57%) and 43% (95% CI = 27%-56%), with a median interval from updated dose of 42 and 47 days, respectively. Updated COVID-19 vaccine provided increased protection against COVID-19-associated ED/UC encounters and hospitalization among immunocompetent adults. These results support CDC recommendations for updated 2023-2024 COVID-19 vaccination. All persons aged ≥6 months should receive updated 2023-2024 COVID-19 vaccine. |
Interim estimates of 2023-24 seasonal influenza vaccine effectiveness - United States
Frutos AM , Price AM , Harker E , Reeves EL , Ahmad HM , Murugan V , Martin ET , House S , Saade EA , Zimmerman RK , Gaglani M , Wernli KJ , Walter EB , Michaels MG , Staat MA , Weinberg GA , Selvarangan R , Boom JA , Klein EJ , Halasa NB , Ginde AA , Gibbs KW , Zhu Y , Self WH , Tartof SY , Klein NP , Dascomb K , DeSilva MB , Weber ZA , Yang DH , Ball SW , Surie D , DeCuir J , Dawood FS , Moline HL , Toepfer AP , Clopper BR , Link-Gelles R , Payne AB , Chung JR , Flannery B , Lewis NM , Olson SM , Adams K , Tenforde MW , Garg S , Grohskopf LA , Reed C , Ellington S . MMWR Morb Mortal Wkly Rep 2024 73 (8) 168-174 In the United States, annual influenza vaccination is recommended for all persons aged ≥6 months. Using data from four vaccine effectiveness (VE) networks during the 2023-24 influenza season, interim influenza VE was estimated among patients aged ≥6 months with acute respiratory illness-associated medical encounters using a test-negative case-control study design. Among children and adolescents aged 6 months-17 years, VE against influenza-associated outpatient visits ranged from 59% to 67% and against influenza-associated hospitalization ranged from 52% to 61%. Among adults aged ≥18 years, VE against influenza-associated outpatient visits ranged from 33% to 49% and against hospitalization from 41% to 44%. VE against influenza A ranged from 46% to 59% for children and adolescents and from 27% to 46% for adults across settings. VE against influenza B ranged from 64% to 89% for pediatric patients in outpatient settings and from 60% to 78% for all adults across settings. These findings demonstrate that the 2023-24 seasonal influenza vaccine is effective at reducing the risk for medically attended influenza virus infection. CDC recommends that all persons aged ≥6 months who have not yet been vaccinated this season get vaccinated while influenza circulates locally. |
Interim influenza vaccine effectiveness against laboratory-confirmed influenza - California, October 2023-January 2024
Zhu S , Quint J , León TM , Sun M , Li NJ , Tenforde MW , Jain S , Schechter R , Hoover C , Murray EL . MMWR Morb Mortal Wkly Rep 2024 73 (8) 175-179 Surveillance data can provide rapid, within-season influenza vaccine effectiveness (VE) estimates to guide public health recommendations. Mandatory reporting of influenza vaccine administration to California's immunization information registry began January 1, 2023, and mandatory reporting of all influenza laboratory test results, including negative results, was instituted in California on June 15, 2023. These data, collected by the California Department of Public Health during October 1, 2023-January 31, 2024, were used to calculate interim influenza VE against laboratory-confirmed influenza by comparing the odds of vaccination among case-patients (persons who received a positive influenza laboratory test result) and control patients (those who received a negative influenza laboratory test result). VE was calculated as 1 - adjusted odds ratio using mixed-effects logistic regression, with age, race, and ethnicity as fixed effects and specimen collection week and county as random effects. Overall, during October 1, 2023-January 31, 2024, estimated VE was 45% among persons aged ≥6 months, 56% among children and adolescents aged 6 months-17 years, 48% among adults aged 18-49 years, 36% among those aged 50-64 years, and 30% among those aged ≥65 years. Consistent with some previous influenza seasons, influenza vaccination provided moderate protection against laboratory-confirmed influenza among infants, children, adolescents, and adults. All persons aged ≥6 months without a contraindication to vaccination should receive annual influenza vaccination to reduce influenza illness, severe influenza, and strain on health care resources. Influenza vaccination remains the best way to prevent influenza. |
Annals On Call - Encouraging Influenza Vaccination
Centor RM , Tenforde MW , Dawood FS . Ann Intern Med 2024 177 (2) eA230004 |
Clinical outcomes of US adults hospitalized for COVID-19 and influenza in the Respiratory Virus Hospitalization Surveillance Network, October 2021-September 2022
Kojima N , Taylor CA , Tenforde MW , Ujamaa D , O'Halloran A , Patel K , Chai SJ , Daily Kirley P , Alden NB , Kawasaki B , Meek J , Yousey-Hindes K , Anderson EJ , Openo KP , Reeg L , Tellez Nunez V , Lynfield R , Como-Sabetti K , Ropp SL , Shaw YP , Spina NL , Barney G , Bushey S , Popham K , Moran NE , Shiltz E , Sutton M , Abdullah N , Talbot HK , Schaffner W , Chatelain R , Price A , Garg S , Havers FP , Bozio CH . Open Forum Infect Dis 2024 11 (1) ofad702 Severe outcomes were common among adults hospitalized for COVID-19 or influenza, while the percentage of COVID-19 hospitalizations involving critical care decreased from October 2021 to September 2022. During the Omicron BA.5 period, intensive care unit admission frequency was similar for COVID-19 and influenza, although patients with COVID-19 had a higher frequency of in-hospital death. |
Vaccine effectiveness against SARS-CoV-2 related hospitalizations in people who had experienced homelessness or incarceration - findings from the Minnesota EHR Consortium
DeSilva MB , Knowlton G , Rai NK , Bodurtha P , Essien I , Riddles J , Mehari L , Muscoplat M , Lynfield R , Rowley EA , Chamberlain AM , Patel P , Hughes A , Dickerson M , Thompson MG , Griggs EP , Tenforde M , Winkelman TN , Benitez GV , Drawz PE . J Community Health 2023 COVID-19 disproportionately affects people experiencing homelessness or incarceration. While homelessness or incarceration alone may not impact vaccine effectiveness, medical comorbidities along with social conditions associated with homelessness or incarceration may impact estimated vaccine effectiveness. COVID-19 vaccines reduce rates of hospitalization and death; vaccine effectiveness (VE) against severe outcomes in people experiencing homelessness or incarceration is unknown. We conducted a retrospective, observational cohort study evaluating COVID-19 vaccine VE against SARS-CoV-2 related hospitalization (positive SARS-CoV-2 molecular test same week or within 3 weeks prior to hospital admission) among patients who had experienced homelessness or incarceration. We utilized data from 8 health systems in the Minnesota Electronic Health Record Consortium linked to data from Minnesota's immunization information system, Homeless Management Information System, and Department of Corrections. We included patients 18 years and older with a history of experiencing homelessness or incarceration. VE and 95% Confidence Intervals (CI) against SARS-CoV-2 hospitalization were estimated for primary series and one booster dose from Cox proportional hazard models as 100*(1-Hazard Ratio) during August 26, 2021, through October 8, 2022 adjusting for patient age, sex, comorbid medical conditions, and race/ethnicity. We included 80,051 individuals who had experienced homelessness or incarceration. Adjusted VE was 52% (95% CI, 41-60%) among those 22 weeks or more since their primary series, 66% (95% CI, 53-75%) among those less than 22 weeks since their primary series, and 69% (95% CI: 60-76%) among those with one booster. VE estimates were consistently lower during the Omicron predominance period compared with the combined Omicron and Delta periods. Despite higher exposure risk, COVID-19 vaccines provided good effectiveness against SARS-CoV-2 related hospitalizations in persons who have experienced homelessness or incarceration. |
Influenza vaccine effectiveness against influenza-A-associated emergency department, urgent care, and hospitalization encounters among U.S. adults, 2022-2023
Tenforde MW , Weber ZA , Yang DH , DeSilva MB , Dascomb K , Irving SA , Naleway AL , Gaglani M , Fireman B , Lewis N , Zerbo O , Goddard K , Timbol J , Hansen JR , Grisel N , Arndorfer J , McEvoy CE , Essien IJ , Rao S , Grannis SJ , Kharbanda AB , Natarajan K , Ong TC , Embi PJ , Ball SW , Dunne MM , Kirshner L , Wiegand RE , Dickerson M , Patel P , Ray C , Flannery B , Garg S , Adams K , Klein NP . J Infect Dis 2023 BACKGROUND: The 2022-2023 United States influenza season had unusually early influenza activity with high hospitalization rates. Vaccine-matched A(H3N2) viruses predominated, with lower levels of A(H1N1)pdm09 activity also observed. METHODS: Using the test-negative design, we evaluated influenza vaccine effectiveness (VE) during the 2022-2023 season against influenza-A-associated emergency department/urgent care (ED/UC) visits and hospitalizations from October 2022-March 2023 among adults (age ≥18 years) with acute respiratory illness (ARI). VE was estimated by comparing odds of seasonal influenza vaccination among case-patients (influenza A test-positive by molecular assay) and controls (influenza test-negative), applying inverse-propensity-to-be-vaccinated weights. RESULTS: The analysis included 85,389 ED/UC ARI encounters (17.0% influenza-A-positive; 37.8% vaccinated overall) and 19,751 hospitalizations (9.5% influenza-A-positive; 52.8% vaccinated overall). VE against influenza-A-associated ED/UC encounters was 44% (95% confidence interval [95%CI]: 40-47%) overall and 45% and 41% among adults aged 18-64 and ≥65 years, respectively. VE against influenza-A-associated hospitalizations was 35% (95%CI: 27-43%) overall and 23% and 41% among adults aged 18-64 and ≥65 years, respectively. CONCLUSIONS: VE was moderate during the 2022-2023 influenza season, a season characterized with increased burden of influenza and co-circulation with other respiratory viruses. Vaccination is likely to substantially reduce morbidity, mortality, and strain on healthcare resources. |
Early serial echocardiographic and ultrasonographic findings in critically ill patients with COVID-19
Lanspa MJ , Dugar SP , Prigmore HL , Boyd JS , Rupp JD , Lindsell CJ , Rice TW , Qadir N , Lim GW , Shiloh AL , Dieiev V , Gong MN , Fox SW , Hirshberg EL , Khan A , Kornfield J , Schoeneck JH , Macklin N , Files DC , Gibbs KW , Prekker ME , Parsons-Moss D , Bown M , Olsen TD , Knox DB , Cirulis MM , Mehkri O , Duggal A , Tenforde MW , Patel MM , Self WH , Brown SM . CHEST Crit Care 2023 1 (1) 100002 BACKGROUND: Cardiac function of critically ill patients with COVID-19 generally has been reported from clinically obtained data. Echocardiographic deformation imaging can identify ventricular dysfunction missed by traditional echocardiographic assessment. RESEARCH QUESTION: What is the prevalence of ventricular dysfunction and what are its implications for the natural history of critical COVID-19? STUDY DESIGN AND METHODS: This is a multicenter prospective cohort of critically ill patients with COVID-19. We performed serial echocardiography and lower extremity vascular ultrasound on hospitalization days 1, 3, and 8. We defined left ventricular (LV) dysfunction as the absolute value of longitudinal strain of < 17% or left ventricle ejection fraction (LVEF) of < 50%. Primary clinical outcome was inpatient survival. RESULTS: We enrolled 110 patients. Thirty-nine (35.5%) died before hospital discharge. LV dysfunction was present at admission in 38 patients (34.5%) and in 21 patients (36.2%) on day 8 (P = .59). Median baseline LVEF was 62% (interquartile range [IQR], 52%-69%), whereas median absolute value of baseline LV strain was 16% (IQR, 14%-19%). Survivors and nonsurvivors did not differ statistically significantly with respect to day 1 LV strain (17.9% vs 14.4%; P = .12) or day 1 LVEF (60.5% vs 65%; P = .06). Nonsurvivors showed worse day 1 right ventricle (RV) strain than survivors (16.3% vs 21.2%; P = .04). INTERPRETATION: Among patients with critical COVID-19, LV and RV dysfunction is common, frequently identified only through deformation imaging, and early (day 1) RV dysfunction may be associated with clinical outcome. |
Communicating the value of influenza vaccines to patients: Translating vaccine effectiveness to acceptance
Tenforde MW , Dawood FS , Ellington SR , Grohskopf LA , Flannery B , Garg S , Reed C . Ann Intern Med 2023 176 (12) 1670-1671 Influenza vaccines have been routinely recommended in the United States for some groups since 1960 and for everyone 6 months of age or older for more than a decade. Yet, annual influenza vaccination coverage has rarely exceeded 50% in children and younger adults or 70% in adults aged 65 years or older (1). Long-standing barriers to influenza vaccine uptake include beliefs that influenza illness is mild or inconsequential and vaccines are not effective, concerns about safety and adverse effects, and distrust of the medical system and disparities in access to vaccines (1, 2). | | During the COVID-19 pandemic, influenza vaccination coverage rates remained low overall and declined in some groups (1, 3). Although the first year of the COVID-19 pandemic temporarily interrupted circulation of seasonal respiratory viruses, the United States experienced high levels of influenza virus, SARS-CoV-2, and respiratory syncytial virus co-circulation during the 2022 to 2023 influenza season, putting a strain on health care resources. As the 2023 to 2024 season begins, internal medicine physicians and other health care professionals play an important role in communicating the benefits of vaccinations against influenza and other respiratory viruses. A health care professional’s recommendation and offer of or referral for vaccination have been shown over many seasons to be one of the strongest factors associated with willingness to get vaccinated (2). |
Impact of accounting for correlation between COVID-19 and influenza vaccination in a COVID-19 vaccine effectiveness evaluation using a test-negative design
Payne AB , Ciesla AA , Rowley EAK , Weber ZA , Reese SE , Ong TC , Vazquez-Benitez G , Naleway AL , Klein NP , Embi PJ , Grannis SJ , Kharbanda AB , Gaglani M , Tenforde MW , Link-Gelles R . Vaccine 2023 41 (51) 7581-7586 Test-negative-design COVID-19 vaccine effectiveness (VE) studies use symptomatic SARS-CoV-2-positive individuals as cases and symptomatic SARS-CoV-2-negative individuals as controls to evaluate COVID-19 VE. To evaluate the potential bias introduced by the correlation of COVID-19 and influenza vaccination behaviors, we assessed changes in estimates of VE of bivalent vaccines against COVID-19-associated hospitalizations and emergency department/urgent care (ED/UC) encounters when considering influenza vaccination status or including or excluding influenza-positive controls using data from the multi-state VISION vaccine effectiveness network. Analyses included encounters during October 2022 - February 2023, a period of SARS-CoV-2 and influenza cocirculation. When considering influenza vaccination status or including or excluding influenza-positive controls, COVID-19 VE estimates were robust, with most VE estimates against COVID-19-associated hospitalization and ED/UC encounters changing less than 5 percentage points. Higher proportions of influenza-positive patients among controls, influenza vaccination coverage, or VE could impact these findings; the potential bias should continue to be assessed. |
Vaccine effectiveness against pediatric influenza-a-associated urgent care, emergency department, and hospital encounters during the 2022-2023 Season, VISION Network
Adams K , Weber ZA , Yang DH , Klein NP , DeSilva MB , Dascomb K , Irving SA , Naleway AL , Rao S , Gaglani M , Flannery B , Garg S , Kharbanda AB , Grannis SJ , Ong TC , Embi PJ , Natarajan K , Fireman B , Zerbo O , Goddard K , Timbol J , Hansen JR , Grisel N , Arndorfer J , Ball SW , Dunne MM , Kirshner L , Chung JR , Tenforde MW . Clin Infect Dis 2023 BACKGROUND: During the 2022-2023 influenza season, the United States experienced the highest influenza-associated pediatric hospitalization rate since 2010-2011. Influenza A/H3N2 infections were predominant. METHODS: We analyzed acute respiratory illness (ARI)-associated emergency department or urgent care (ED/UC) encounters or hospitalizations at three health systems among children and adolescents aged 6 months-17 years who had influenza molecular testing during October 2022-March 2023. We estimated influenza A vaccine effectiveness (VE) using a test-negative approach. The odds of vaccination among influenza-A-positive cases and influenza-negative controls were compared after adjusting for confounders and applying inverse-propensity-to-be-vaccinated weights. We developed overall and age-stratified VE models. RESULTS: Overall, 13,547 of 44,787 (30.2%) eligible ED/UC encounters and 263 of 1,862 (14.1%) hospitalizations were influenza-A-positive cases. Among ED/UC patients, 15.2% of influenza-positive versus 27.1% of influenza-negative patients were vaccinated; VE was 48% (95% confidence interval [CI], 44%-52%) overall, 53% (95% CI, 47%-58%) among children aged 6 months-4 years and 38% (95% CI, 30%-45%) among those aged 9-17 years. Among hospitalizations, 17.5% of influenza-positive versus 33.4% of influenza-negative patients were vaccinated; VE was 40% (95% CI, 6%-61%) overall, 56% (95% CI, 23%-75%) among children ages 6 months-4 years and 46% (95% CI, 2%-70%) among those 5-17 years. CONCLUSIONS: During the 2022-2023 influenza season, vaccination reduced the risk of influenza-associated ED/UC encounters and hospitalizations by almost half (overall VE 40-48%). Influenza vaccination is a critical tool to prevent moderate-to-severe influenza illness in children and adolescents. |
Effectiveness of the original monovalent coronavirus disease 2019 vaccines in preventing emergency department or urgent care encounters and hospitalizations among adults with disabilities: VISION Network, June 2021-September 2022
Patel P , Schrader KE , Rice CE , Rowley E , Cree RA , DeSilva MB , Embi PJ , Gaglani M , Grannis SJ , Ong TC , Stenehjem E , Naleway AL , Ball S , Natarajan K , Klein NP , Adams K , Kharbanda A , Ray C , Link-Gelles R , Tenforde MW . Open Forum Infect Dis 2023 10 (11) ofad474 Adults with disabilities are at increased risk for severe coronavirus disease 2019 (COVID-19). Using data across 9 states during Delta- and Omicron-predominant periods (June 2021-September 2022), we evaluated the effectiveness of the original monovalent COVID-19 messenger RNA vaccines among 521 206 emergency department/urgent care encounters (11 471 [2%] in patients with a documented disability) and 139 548 hospitalizations (16 569 [12%] in patients with a disability) for laboratory-confirmed COVID-19 illness in adults (aged ≥18 years). Across variant periods and for the primary series or booster doses, vaccine effectiveness was similar in those with and those without a disability. These findings highlight the importance of adults with disabilities staying up to date with COVID-19 vaccinations. |
Clinical epidemiology and risk factors for critical outcomes among vaccinated and unvaccinated adults hospitalized with COVID-19-VISION Network, 10 States, June 2021-March 2023
Griggs EP , Mitchell PK , Lazariu V , Gaglani M , McEvoy C , Klein NP , Valvi NR , Irving SA , Kojima N , Stenehjem E , Crane B , Rao S , Grannis SJ , Embi PJ , Kharbanda AB , Ong TC , Natarajan K , Dascomb K , Naleway AL , Bassett E , DeSilva MB , Dickerson M , Konatham D , Fireman B , Allen KS , Barron MA , Beaton M , Arndorfer J , Vazquez-Benitez G , Garg S , Murthy K , Goddard K , Dixon BE , Han J , Grisel N , Raiyani C , Lewis N , Fadel WF , Stockwell MS , Mamawala M , Hansen J , Zerbo O , Patel P , Link-Gelles R , Adams K , Tenforde MW . Clin Infect Dis 2023 BACKGROUND: The epidemiology of COVID-19 continues to develop with emerging variants, expanding population-level immunity, and advances in clinical care. We describe changes in the clinical epidemiology of hospitalized COVID-19 and risk factors for critical outcomes over time. METHODS: We included adults aged ≥18 years from 10 states hospitalized with COVID-19 June 2021-March 2023 when multiple SARS-CoV-2 variants or sub-lineages predominated. We evaluated changes in baseline demographic and clinical characteristics and critical outcomes (intensive care unit admission and/or death) and used regression models to evaluate critical outcomes risk factors (risk ratios) stratified by COVID-19 vaccination status. RESULTS: 60,488 COVID-19-associated hospitalizations were included in the analysis. Among those hospitalized, from Delta period (June-December 2021) to the Omicron post-BA.4/BA.5 period (September 2022-March 2023), median age increased from 60 to 75 years, proportion vaccinated increased from 18.2% to 70.1%, while critical outcomes declined from 24.8% to 19.4% (all p < 0.001). Compared to all hospitalization events, those with critical outcomes had a higher proportion of four or more categories of medical conditions categories assessed (32.8% critical versus 23.0% all hospitalized). Critical outcome risk factors were similar for unvaccinated and vaccinated populations; presence of ≥4 medical condition categories was most strongly associated with risk of critical outcomes regardless of vaccine status (unvaccinated aRR 2.27 [95% CI: 2.14-2.41]; vaccinated aRR 1.73 [95% CI: 1.56-1.92]) across periods. CONCLUSION: The proportion of adults hospitalized with COVID-19 who experienced critical outcomes decreased with time and median patient age increased with time. Multimorbidity was mostly strongly associated with critical outcomes. |
Effectiveness of monovalent and bivalent mRNA vaccines in preventing COVID-19-associated emergency department and urgent care encounters among children aged 6 months-5 years - VISION Network, United States, July 2022-June 2023
Link-Gelles R , Ciesla AA , Rowley EAK , Klein NP , Naleway AL , Payne AB , Kharbanda A , Natarajan K , DeSilva MB , Dascomb K , Irving SA , Zerbo O , Reese SE , Wiegand RE , Najdowski M , Ong TC , Rao S , Stockwell MS , Stephens A , Goddard K , Martinez YC , Weber ZA , Fireman B , Hansen J , Timbol J , Grannis SJ , Barron MA , Embi PJ , Ball SW , Gaglani M , Grisel N , Arndorfer J , Tenforde MW , Fleming-Dutra KE . MMWR Morb Mortal Wkly Rep 2023 72 (33) 886-892 On June 19, 2022, the original monovalent mRNA COVID-19 vaccines were approved as a primary series for children aged 6 months-4 years (Pfizer-BioNTech) and 6 months-5 years (Moderna) based on safety, immunobridging, and limited efficacy data from clinical trials. On December 9, 2022, CDC expanded recommendations for use of updated bivalent vaccines to children aged ≥6 months. mRNA COVID-19 vaccine effectiveness (VE) against emergency department or urgent care (ED/UC) encounters was evaluated within the VISION Network during July 4, 2022-June 17, 2023, among children with COVID-19-like illness aged 6 months-5 years. Among children aged 6 months-5 years who received molecular SARS-CoV-2 testing during August 1, 2022-June 17, 2023, VE of 2 monovalent Moderna doses against ED/UC encounters was 29% (95% CI = 12%-42%) ≥14 days after dose 2 (median = 100 days after dose 2; IQR = 63-155 days). Among children aged 6 months-4 years with a COVID-19-like illness who received molecular testing during September 19, 2022-June 17, 2023, VE of 3 monovalent Pfizer-BioNTech doses was 43% (95% CI = 17%-61%) ≥14 days after dose 3 (median = 75 days after dose 3; IQR = 40-139 days). Effectiveness of ≥1 bivalent dose, comparing children with at least a complete primary series and ≥1 bivalent dose to unvaccinated children, irrespective of vaccine manufacturer, was 80% (95% CI = 42%-96%) among children aged 6 months-5 years a median of 58 days (IQR = 32-83 days) after the dose. All children should stay up to date with recommended COVID-19 vaccines, including initiation of COVID-19 vaccination immediately when they are eligible. |
Theoretical framework for retrospective studies of the effectiveness of SARS-CoV-2 vaccines (preprint)
Lewnard JA , Patel MM , Jewell NP , Verani JR , Kobayashi M , Tenforde MW , Dean NE , Cowling BJ , Lopman BA . medRxiv 2021 2021.01.21.21250258 Observational studies of the effectiveness of vaccines to prevent COVID-19 are needed to inform real-world use. These are now in planning amid the ongoing rollout of SARS-CoV-2 vaccines globally. While traditional case-control (TCC) and test-negative design (TND) studies feature prominently among strategies used to assess vaccine effectiveness, such studies may encounter important threats to validity. Here we review the theoretical basis for estimation of vaccine direct effects under TCC and TND frameworks, addressing specific natural history parameters of SARS-CoV-2 infection and COVID-19 relevant to these designs. Bias may be introduced by misclassification of cases and controls, particularly when clinical case criteria include common, non-specific indicators of COVID-19. When using diagnostic assays with high analytical sensitivity for SARS-CoV-2 detection, individuals testing positive may be counted as cases even if their symptoms are due to other causes. The TCC may be particularly prone to confounding due to associations of vaccination with healthcare-seeking behavior or risk of infection. The TND reduces but may not eliminate this confounding, for instance if individuals who receive vaccination seek care or testing for less-severe infection. These circumstances indicate the two study designs cannot be applied naively to datasets gathered through public health surveillance or administrative sources. We suggest practical strategies to reduce bias in vaccine effectiveness estimates at the study design and analysis stages.Competing Interest StatementJAL has received grants and consulting fees from Pfizer, Inc. unrelated to this research.Funding StatementThis work was supported by grants R01-AI14812701 from the National Institute for Allergy and Infectious Diseases to NPJ and JAL, and R01-AI139761 from the National Institute for Allergy and Infectious Diseases to NED.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:N/AAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThis is a theoretical study without patient data; equations used to generate the figures appear in the manuscript. |
mRNA Vaccine Effectiveness against COVID-19 among Symptomatic Outpatients Aged ≥16 Years in the United States, February – May 2021 (preprint)
Kim SS , Chung JR , Belongia EA , McLean HQ , King JP , Nowalk MP , Zimmerman RK , Balasubramani GK , Martin ET , Monto AS , Lamerato LE , Gaglani M , Smith ME , Dunnigan KM , Jackson ML , Jackson LA , Tenforde MW , Verani JR , Kobayashi M , Schrag S , Patel MM , Flannery B . medRxiv 2021 2021.07.20.21260647 Evaluations of vaccine effectiveness (VE) are important to monitor as COVID-19 vaccines are introduced in the general population. Research staff enrolled symptomatic participants seeking outpatient medical care for COVID-19-like illness or SARS-CoV-2 testing from a multisite network. VE was evaluated using the test-negative design. Among 236 SARS-CoV-2 nucleic acid amplification test-positive and 576 test-negative participants aged ≥16 years, VE of mRNA vaccines against COVID-19 was 91% (95% CI: 83-95) for full vaccination and 75% (95% CI: 55-87) for partial vaccination. Vaccination was associated with prevention of most COVID-19 cases among people seeking outpatient medical care.Competing Interest StatementMPN reports grants from Merck & Co. outside the submitted work. RKZ reports grants from Sanofi Pasteur outside the submitted work. GKB reports grants from Merck & Co outside the submitted work and consulting fees from New World Medical, LLC. ETM reports grants from Merck & Co. outside the submitted work and consulting fees from Pfizer. ASM reports consulting fees from Sanofi Pasteur and Seqirus. LEL reports grants from Xcenda, Inc., eMAXHealth, AstraZeneca, Pfizer, Evidera outside the submitted work. MLJ reports grants from Sanofi Pasteur. All other authors report nothing to disclose.Funding StatementThis work was supported by the US Centers for Disease Control and Prevention through cooperative agreements U01IP001034-U01IP001039. At Pittsburgh, the project was also supported by the National Institutes of Health through grant ULTR001857.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Centers for Disease Control and Prevention IRB project determination numbers for included projects: 0900f3eb81c2e791, 0900f3eb81c52dc5; 0900f3eb81c52420, 0900f3eb81bc746b, 6238All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesDe-identified dataset can be made available upon request |
Effectiveness of SARS-CoV-2 mRNA Vaccines for Preventing Covid-19 Hospitalizations in the United States (preprint)
Tenforde MW , Patel MM , Ginde AA , Douin DJ , Talbot HK , Casey JD , Mohr NM , Zepeski A , Gaglani M , McNeal T , Ghamande S , Shapiro NI , Gibbs KW , Files DC , Hager DN , Shehu A , Prekker ME , Erickson HL , Exline MC , Gong MN , Mohamed A , Henning DJ , Steingrub JS , Peltan ID , Brown SM , Martin ET , Monto AS , Khan A , Hough CT , Busse L , Lohuis CCT , Duggal A , Wilson JG , Gordon AJ , Qadir N , Chang SY , Mallow C , Gershengorn HB , Babcock HM , Kwon JH , Halasa N , Chappell JD , Lauring AS , Grijalva CG , Rice TW , Jones ID , Stubblefield WB , Baughman A , Womack KN , Lindsell CJ , Hart KW , Zhu Y , Olson SM , Stephenson M , Schrag SJ , Kobayashi M , Verani JR , Self WH . medRxiv 2021 BACKGROUND: As SARS-CoV-2 vaccination coverage increases in the United States (US), there is a need to understand the real-world effectiveness against severe Covid-19 and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11 - May 5, 2021, we evaluated vaccine effectiveness to prevent Covid-19 hospitalizations by comparing odds of prior vaccination with an mRNA vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with Covid-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1210 participants, median age was 58 years, 22.8% were Black, 13.8% were Hispanic, and 20.6% had immunosuppression. SARS-CoV-2 lineage B.1.1.7 was most common variant (59.7% of sequenced viruses). Full vaccination (receipt of two vaccine doses ≥14 days before illness onset) had been received by 45/590 (7.6%) cases and 215/620 (34.7%) controls. Overall vaccine effectiveness was 86.9% (95% CI: 80.4 to 91.2%). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.3%; 95% CI: 78.9 to 99.7%). Among 45 patients with vaccine-breakthrough Covid hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (59.2%; 95% CI: 11.9 to 81.1%) than without immunosuppression (91.3%; 95% CI: 85.5 to 94.7%). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing Covid-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population. |
Differential neutralization and inhibition of SARS-CoV-2 variants by antibodies elicited by COVID-19 mRNA vaccines (preprint)
Wang L , Kainulainen MH , Jiang N , Di H , Bonenfant G , Mills L , Currier M , Shrivastava-Ranjan P , Calderon BM , Sheth M , Hossain J , Lin X , Lester S , Pusch E , Jones J , Cui D , Chatterjee P , Jenks HM , Morantz E , Larson G , Hatta M , Harcourt J , Tamin A , Li Y , Tao Y , Zhao K , Burroughs A , Wong T , Tong S , Barnes JR , Tenforde MW , Self WH , Shapiro NI , Exline MC , Files DC , Gibbs KW , Hager DN , Patel M , Laufer Halpin AS , Lee JS , Xie X , Shi PY , Davis CT , Spiropoulou CF , Thornburg NJ , Oberste MS , Dugan V , Wentworth DE , Zhou B , Batra D , Beck A , Caravas J , Cintron-Moret R , Cook PW , Gerhart J , Gulvik C , Hassell N , Howard D , Knipe K , Kondor RJ , Kovacs N , Lacek K , Mann BR , McMullan LK , Moser K , Paden CR , Martin BR , Schmerer M , Shepard S , Stanton R , Stark T , Sula E , Tymeckia K , Unoarumhi Y . bioRxiv 2021 30 The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of many new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccines. To ascertain and rank the risk of VOCs and VOIs, we analyzed their ability to escape from vaccine-induced antibodies. The variants showed differential reductions in neutralization and replication titers by post-vaccination sera. Although the Omicron variant showed the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retained moderate neutralizing activity against that variant. Therefore, vaccination remains the most effective strategy to combat the COVID-19 pandemic. |
Vaccine Effectiveness of Primary Series and Booster Doses against Omicron Variant COVID-19-Associated Hospitalization in the United States (preprint)
Adams K , Rhoads JP , Surie D , Gaglani M , Ginde AA , McNeal T , Ghamande S , Huynh D , Talbot HK , Casey JD , Mohr NM , Zepeski A , Shapiro NI , Gibbs KW , Files DC , Hicks M , Hager DN , Ali H , Prekker ME , Frosch AE , Exline MC , Gong MN , Mohamed A , Johnson NJ , Srinivasan V , Steingrub JS , Peltan ID , Brown SM , Martin ET , Monto AS , Lauring AS , Khan A , Hough CL , Busse LW , ten Lohuis CC , Duggal A , Wilson JG , Gordon AJ , Qadir N , Chang SY , Mallow C , Rivas C , Babcock HM , Kwon JH , Chappell JD , Halasa N , Grijalva CG , Rice TW , Stubblefield WB , Baughman A , Lindsell CJ , Hart KW , Lester SN , Thornburg NJ , Park S , McMorrow ML , Patel MM , Tenforde MW , Self WH . medRxiv 2022 14 Objectives: To compare the effectiveness of a primary COVID-19 vaccine series plus a booster dose with a primary series alone for the prevention of Omicron variant COVID-19 hospitalization. Design(s): Multicenter observational case-control study using the test-negative design to evaluate vaccine effectiveness (VE). Setting(s): Twenty-one hospitals in the United States (US). Participant(s): 3,181 adults hospitalized with an acute respiratory illness between December 26, 2021 and April 30, 2022, a period of SARS-CoV-2 Omicron variant (BA.1, BA.2) predominance. Participants included 1,572 (49%) case-patients with laboratory confirmed COVID-19 and 1,609 (51%) control patients who tested negative for SARS-CoV-2. Median age was 64 years, 48% were female, and 21% were immunocompromised; 798 (25%) were vaccinated with a primary series plus booster, 1,326 (42%) were vaccinated with a primary series alone, and 1,057 (33%) were unvaccinated. Main Outcome Measure(s): VE against COVID-19 hospitalization was calculated for a primary series plus a booster and a primary series alone by comparing the odds of being vaccinated with each of these regimens versus being unvaccinated among cases versus controls. VE analyses were stratified by immune status (immunocompetent; immunocompromised) because the recommended vaccine schedules are different for these groups. The primary analysis evaluated all COVID-19 vaccine types combined and secondary analyses evaluated specific vaccine products. Result(s): Among immunocompetent patients, VE against Omicron COVID-19 hospitalization for a primary series plus one booster of any vaccine product dose was 77% (95% CI: 71-82%), and for a primary series alone was 44% (95% CI: 31-54%) (p<0.001). VE was higher for a boosted regimen than a primary series alone for both mRNA vaccines used in the US (BNT162b2: primary series plus booster VE 80% (95% CI: 73-85%), primary series alone VE 46% (95% CI: 30-58%) [p<0.001]; mRNA-1273: primary series plus booster VE 77% (95% CI: 67-83%), primary series alone VE 47% (95% CI: 30-60%) [p<0.001]). Among immunocompromised patients, VE for a primary series of any vaccine product against Omicron COVID-19 hospitalization was 60% (95% CI: 41-73%). Insufficient sample size has accumulated to calculate effectiveness of boosted regimens for immunocompromised patients. Conclusion(s): Among immunocompetent people, a booster dose of COVID-19 vaccine provided additional benefit beyond a primary vaccine series alone for preventing COVID-19 hospitalization due to the Omicron variant. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. |
Neutralizing Antibody to Omicron BA.1, BA.2 and BA.5 in COVID-19 Patients (preprint)
Linderman SL , Lai L , Bocangel Gamarra EL , Mohr NM , Gibbs KW , Steingrub JS , Exline MC , Shapiro NI , Frosch AE , Qadir N , Edupuganti S , Surie D , Tenforde MW , Davis-Gardner ME , Chappell JD , Lau MSY , McElrath MJ , Lauring AS , Suthar MS , Patel MM , Self WH , Ahmed R . medRxiv 2022 22 Neutralizing antibody plays a key role in protective immunity against COVID-19. As increasingly distinct variants circulate, debate continues regarding the value of adding novel variants to SARS-CoV-2 vaccines. In this study, we have analyzed live virus neutralization titers against WA1, Delta, BA.1, BA.2, and BA.5 in 187 hospitalized patients infected with Delta or Omicron strains. This information will be useful in selection of the SARS-CoV-2 strains to include in an updated vaccine. Our results show that unvaccinated Delta infected patients made a highly biased neutralizing antibody response towards the infecting Delta strain with slightly lower responses against the WA1 strain, but with strikingly lower titers against BA.1, BA.2, and BA.5. Delta infected patients that had been previously vaccinated with the WA1 containing COVID vaccine made equivalent responses to WA1 and Delta strains, but still had very low neutralizing antibody responses to Omicron strains. In striking contrast, both unvaccinated and vaccinated Omicron patients exhibited a more balanced ratio of Omicron virus neutralization compared to neutralization of ancestral strains. Interestingly, Omicron patients infected with BA.1 or BA.2 had detectable neutralizing antibody titers to BA.5, but these titers were lower than neutralization titers to BA.1 and BA.2. Taken together, these results suggest that inclusion of the Omicron BA.5 strain in a SARS-CoV-2 vaccine would be beneficial in protection against the widely circulating BA.5 variant. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. |
Effectiveness of 2 and 3 mRNA COVID-19 Vaccines Doses against Omicron and Delta-Related Outpatient Illness among Adults, October 2021 - February 2022 (preprint)
Kim SS , Chung JR , Talbot HK , Grijalva CG , Wernli KJ , Martin ET , Monto AS , Belongia EA , McLean HQ , Gaglani M , Mamawala M , Nowalk MP , Geffel KM , Tartof SY , Florea A , Lee JS , Tenforde MW , Patel MM , Flannery B , Bentz ML , Burgin A , Burroughs M , Davis ML , Howard D , Lacek K , Madden JC , Nobles S , Padilla J , Sheth M , Arroliga A , Beeram M , Dunnigan K , Ettlinger J , Graves A , Hoffman E , Jatla M , McKillop A , Murthy K , Mutnal M , Priest E , Raiyani C , Rao A , Requenez L , Settele N , Smith M , Stone K , Thomas J , Volz M , Walker K , Zayed M , Annan E , Daley P , Kniss K , Merced-Morales A , Ayala E , Amundsen B , Aragones M , Calderon R , Hong V , Jimenez G , Kim J , Ku J , Lewin B , McDaniel A , Reyes A , Shaw S , Takhar H , Torres A , Burganowski R , Kiniry E , Moser KA , Nguyen M , Park S , Wellwood S , Wickersham B , Alvarado-Batres J , Benz S , Berger H , Bissonnette A , Blake J , Boese K , Botten E , Boyer J , Braun M , Breu B , Burbey G , Cravillion C , Delgadillo C , Donnerbauer A , Dziedzic T , Eddy J , Edgren H , Ermeling A , Ewert K , Fehrenbach C , Fernandez R , Frome W , Guzinski S , Heeren L , Herda D , Hertel M , Heuer G , Higdon E , Ivacic L , Jepsen L , Kaiser S , Karl J , Keffer B , King J , Koepel TK , Kohl S , Kohn S , Kohnhorst D , Kronholm E , Le T , Lemieux A , Marcis C , Maronde M , McCready I , McGreevey K , Meece J , Mehta N , Miesbauer D , Moon V , Moran J , Nikolai C , Olson B , Olstadt J , Ott L , Pan N , Pike C , Polacek D , Presson M , Price N , Rayburn C , Reardon C , Rotar M , Rottscheit C , Salzwedel J , Saucedo J , Scheffen K , Schug C , Seyfert K , Shrestha R , Slenczka A , Stefanski E , Strupp M , Tichenor M , Watkins L , Zachow A , Zimmerman B , Bauer S , Beney K , Cheng CK , Faraj N , Getz A , Grissom M , Groesbeck M , Harrison S , Henson K , Jermanus K , Johnson E , Kaniclides A , Kimberly A , Lamerato LE , Lauring A , Lehmann-Wandell R , McSpadden EJ , Nabors L , Truscon R , Balasubramani GK , Bear T , Bobeck J , Bowser E , Clarke K , Clarke LG , Dauer K , Deluca C , Dierks B , Haynes L , Hickey R , Johnson M , Jonsson A , Luosang N , McKown L , Peterson A , Phaturos D , Rectenwald A , Sax TM , Stiegler M , Susick M , Suyama J , Taylor L , Walters S , Weissman A , Williams JV , Blair M , Carter J , Chappell J , Copen E , Denney M , Graes K , Halasa N , Lindsell C , Liu Z , Longmire S , McHenry R , Short L , Tan HN , Vargas D , Wrenn J , Wyatt D , Zhu Y . medRxiv 2022 10 Background: We estimated SARS-CoV-2 Delta and Omicron-specific effectiveness of 2 and 3 mRNA COVID-19 vaccine doses in adults against symptomatic illness in US outpatient settings. Method(s): Between October 1, 2021, and February 12, 2022, research staff consented and enrolled eligible participants who had fever, cough, or loss of taste or smell and sought outpatient medical care or clinical SARS-CoV-2 testing within 10 days of illness onset. Using the test-negative design, we compared the odds of receiving 2 or 3 mRNA COVID-19 vaccine doses among SARS-CoV-2 cases versus controls using logistic regression. Regression models were adjusted for study site, age, onset week, and prior SARS-CoV-2 infection. Vaccine effectiveness (VE) was calculated as (1 - adjusted odds ratio) x 100%. Result(s): Among 3847 participants included for analysis, 574 (32%) of 1775 tested positive for SARS-CoV-2 during the Delta predominant period and 1006 (56%) of 1794 participants tested positive during the Omicron predominant period. When Delta predominated, VE against symptomatic illness in outpatient settings was 63% (95% CI: 51% to 72%) among mRNA 2-dose recipients and 96% (95% CI: 93% to 98%) for 3-dose recipients. When Omicron predominated, VE was 21% (95% CI: -6% to 41%) among 2-dose recipients and 62% (95% CI: 48% to 72%) among 3-dose recipients. Conclusion(s): In this adult population, 3 mRNA COVID-19 vaccine doses provided substantial protection against symptomatic illness in outpatient settings when the Omicron variant became the predominant cause of COVID-19 in the U.S. These findings support the recommendation for a 3rd mRNA COVID-19 vaccine dose. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure