Last data update: Apr 18, 2025. (Total: 49119 publications since 2009)
Records 1-3 (of 3 Records) |
Query Trace: Taylor AK[original query] |
---|
Building the Sierra Leone Ebola Database: organization and characteristics of data systematically collected during 2014-2015 Ebola epidemic
Agnihotri S , Alpren C , Bangura B , Bennett S , Gorina Y , Harding JD , Hersey S , Kamara AS , Kamara MAM , Klena JD , McLysaght F , Patel N , Presser L , Redd JT , Samba TT , Taylor AK , Vandi MA , Van Heest S . Ann Epidemiol 2021 60 35-44 BACKGROUND: During the 2014-2016 Ebola outbreak in West Africa, the Sierra Leone Ministry of Health and Sanitation (MoHS), the US Centers for Disease Control and Prevention, and responding partners under the coordination of the National Ebola Response Center (NERC) and the MoHS's Emergency Operation Center (EOC) systematically recorded information from the 117 Call Center system and district alert phone lines, case investigations, laboratory sample testing, clinical management, and safe and dignified burial records. Since 2017, CDC assisted MoHS in building and managing the Sierra Leone Ebola Database (SLED) to consolidate these major data sources. The primary objectives of the project were helping families to identify the location of graves of their loved ones who died at the time of the Ebola epidemic through the SLED Family Reunification Program and creating a data source for epidemiological research. The objective of this paper is to describe the process of consolidating epidemic records into a useful and accessible data collection and to summarize data characteristics, strength, and limitations of this unique information source for public health research. METHODS: Because of the unprecedented conditions during the epidemic, most of the records collected from responding organizations required extensive processing before they could be used as a data source for research or the humanitarian purpose of locating burial sites. This process required understanding how the data were collected and used during the outbreak. To manage the complexity of processing the data obtained from various sources, the Sierra Leone Ebola Database (SLED) Team used an organizational strategy that allowed tracking of the data provenance and lifecycle. RESULTS: The SLED project brought raw data into one consolidated data collection. It provides researchers with secure and ethical access to the SLED data and serves as a basis for the research capacity building in Sierra Leone. The SLED Family Reunification Program allowed Sierra Leonean families to identify location of the graves of loved ones who died during the Ebola epidemic. DISCUSSION: The SLED project consolidated and utilized epidemic data recorded during the Sierra Leone Ebola Virus Disease outbreak that were collected and contributed to SLED by national and international organizations. This project has provided a foundation for developing a method of ethical and secure SLED data access while preserving the host nation's data ownership. SLED serves as a data source for the SLED Family Reunification Program and for epidemiological research. It presents an opportunity for building research capacity in Sierra Leone and provides a foundation for developing a relational database. Large outbreak data systems such as SLED provide a unique opportunity for researchers to improve responses to epidemics and indicate the need to include data management preparedness in the plans for emergency response. |
Protein energy malnutrition decreases immunity and increases susceptibility to influenza infection in mice
Taylor AK , Cao W , Vora KP , Cruz Jde L , Shieh WJ , Zaki SR , Katz JM , Sambhara S , Gangappa S . J Infect Dis 2013 207 (3) 501-10 BACKGROUND: Protein energy malnutrition (PEM), a common cause of secondary immune deficiency in children, is associated with an increased risk of infections. Very few studies have addressed the relevance of PEM as a risk factor for influenza. METHODS: We investigated the influence of PEM on susceptibility to, and immune responses following, influenza virus infection using isocaloric diets providing either adequate protein (AP; 18%) or very low protein (VLP; 2%) in a mouse model. RESULTS: We found that mice maintained on the VLP diet, when compared to mice fed with the AP diet, exhibited more severe disease following influenza infection based on virus persistence, trafficking of inflammatory cell types to the lung tissue, and virus-induced mortality. Furthermore, groups of mice maintained on the VLP diet showed significantly lower virus-specific antibody response and a reduction in influenza nuclear protein-specific CD8(+) T cells compared with mice fed on the AP diet. Importantly, switching diets for the group maintained on the VLP diet to the AP diet improved virus clearance, as well as protective immunity to viral challenge. CONCLUSIONS: Our results highlight the impact of protein energy on immunity to influenza infection and suggest that balanced protein energy replenishment may be one strategy to boost immunity against influenza viral infections. |
Rapid differentiation of monocytes into type I IFN-producing myeloid dendritic cells as an antiviral strategy against influenza virus infection
Cao W , Taylor AK , Biber RE , Davis WG , Kim JH , Reber AJ , Chirkova T , De La Cruz JA , Pandey A , Ranjan P , Katz JM , Gangappa S , Sambhara S . J Immunol 2012 189 (5) 2257-65 ![]() Myeloid dendritic cells (mDCs) have long been thought to function as classical APCs for T cell responses. However, we demonstrate that influenza viruses induce rapid differentiation of human monocytes into mDCs. Unlike the classic mDCs, the virus-induced mDCs failed to upregulate DC maturation markers and were unable to induce allogeneic lymphoproliferation. Virus-induced mDCs secreted little, if any, proinflammatory cytokines; however, they secreted a substantial amount of chemoattractants for monocytes (MCP-1 and IP-10). Interestingly, the differentiated mDCs secreted type I IFN and upregulated the expression of IFN-stimulated genes (tetherin, IFITM3, and viperin), as well as cytosolic viral RNA sensors (RIG-I and MDA5). Additionally, culture supernatants from virus-induced mDCs suppressed the replication of virus in vitro. Furthermore, depletion of monocytes in a mouse model of influenza infection caused significant reduction of lung mDC numbers, as well as type I IFN production in the lung. Consequently, increased lung virus titer and higher mortality were observed. Taken together, our results demonstrate that the host responds to influenza virus infection by initiating rapid differentiation of circulating monocytes into IFN-producing mDCs, which contribute to innate antiviral immune responses. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Apr 18, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure