Last data update: Mar 17, 2025. (Total: 48910 publications since 2009)
Records 1-5 (of 5 Records) |
Query Trace: Tatusov RL[original query] |
---|
VPipe: an Automated Bioinformatics Platform for Assembly and Management of Viral Next-Generation Sequencing Data.
Wagner DD , Marine RL , Ramos E , Ng TFF , Castro CJ , Okomo-Adhiambo M , Harvey K , Doho G , Kelly R , Jain Y , Tatusov RL , Silva H , Rota PA , Khan AN , Oberste MS . Microbiol Spectr 2022 10 (2) e0256421 ![]() ![]() Next-generation sequencing (NGS) is a powerful tool for detecting and investigating viral pathogens; however, analysis and management of the enormous amounts of data generated from these technologies remains a challenge. Here, we present VPipe (the Viral NGS Analysis Pipeline and Data Management System), an automated bioinformatics pipeline optimized for whole-genome assembly of viral sequences and identification of diverse species. VPipe automates the data quality control, assembly, and contig identification steps typically performed when analyzing NGS data. Users access the pipeline through a secure web-based portal, which provides an easy-to-use interface with advanced search capabilities for reviewing results. In addition, VPipe provides a centralized system for storing and analyzing NGS data, eliminating common bottlenecks in bioinformatics analyses for public health laboratories with limited on-site computational infrastructure. The performance of VPipe was validated through the analysis of publicly available NGS data sets for viral pathogens, generating high-quality assemblies for 12 data sets. VPipe also generated assemblies with greater contiguity than similar pipelines for 41 human respiratory syncytial virus isolates and 23 SARS-CoV-2 specimens. IMPORTANCE Computational infrastructure and bioinformatics analysis are bottlenecks in the application of NGS to viral pathogens. As of September 2021, VPipe has been used by the U.S. Centers for Disease Control and Prevention (CDC) and 12 state public health laboratories to characterize >17,500 and 1,500 clinical specimens and isolates, respectively. VPipe automates genome assembly for a wide range of viruses, including high-consequence pathogens such as SARS-CoV-2. Such automated functionality expedites public health responses to viral outbreaks and pathogen surveillance. |
Human Calicivirus Typing tool: A web-based tool for genotyping human norovirus and sapovirus sequences.
Tatusov RL , Chhabra P , Diez-Valcarce M , Barclay L , Cannon JL , Vinjé J . J Clin Virol 2020 134 104718 ![]() ![]() BACKGROUND: The family Caliciviridae consists of a genetically diverse group of RNA viruses that infect a wide range of host species including noroviruses and sapoviruses which cause acute gastroenteritis in humans. Typing of these viruses relies on sequence-based approaches, and therefore there is a need for rapid and accurate web-based typing tools. OBJECTIVE: To develop and evaluate a web-based tool for rapid and accurate genotyping of noroviruses and sapoviruses. METHODS: The Human Calicivirus Typing (HuCaT) tool uses a set of curated reference sequences that are compared to query sequences using a k-mer (DNA substring) based algorithm. Outputs include alignments and phylogenetic trees of the 12 top matching reference sequences for each query. RESULTS: The HuCaT tool was validated with a set of 1310 norovirus and 239 sapovirus sequences covering all known human norovirus and sapovirus genotypes. HuCaT tool assigned genotypes to all queries with 100 % accuracy and was much faster (17 s) than BLAST (150 s) or phylogenetic analyses approaches. CONCLUSIONS: The web-based HuCaT tool supports rapid and accurate genotyping of human noroviruses and sapoviruses. |
Emerging Novel GII.P16 Noroviruses Associated with Multiple Capsid Genotypes.
Barclay L , Cannon JL , Wikswo ME , Phillips AR , Browne H , Montmayeur AM , Tatusov RL , Burke RM , Hall AJ , Vinje J . Viruses 2019 11 (6) ![]() ![]() Noroviruses evolve by antigenic drift and recombination, which occurs most frequently at the junction between the non-structural and structural protein coding genomic regions. In 2015, a novel GII.P16-GII.4 Sydney recombinant strain emerged, replacing the predominance of GII.Pe-GII.4 Sydney among US outbreaks. Distinct from GII.P16 polymerases detected since 2010, this novel GII.P16 was subsequently detected among GII.1, GII.2, GII.3, GII.10 and GII.12 viruses, prompting an investigation on the unique characteristics of these viruses. Norovirus positive samples (n = 1807) were dual-typed, of which a subset (n = 124) was sequenced to yield near-complete genomes. CaliciNet and National Outbreak Reporting System (NORS) records were matched to link outbreak characteristics and case outcomes to molecular data and GenBank was mined for contextualization. Recombination with the novel GII.P16 polymerase extended GII.4 Sydney predominance and increased the number of GII.2 outbreaks in the US. Introduction of the novel GII.P16 noroviruses occurred without unique amino acid changes in VP1, more severe case outcomes, or differences in affected population. However, unique changes were found among NS1/2, NS4 and VP2 proteins, which have immune antagonistic functions, and the RdRp. Multiple polymerase-capsid combinations were detected among GII viruses including 11 involving GII.P16. Molecular surveillance of protein sequences from norovirus genomes can inform the functional importance of amino acid changes in emerging recombinant viruses and aid in vaccine and antiviral formulation. |
High-Throughput Next Generation Sequencing of Polioviruses.
Montmayeur AM , Ng TF , Schmidt A , Zhao K , Magana L , Iber J , Castro CJ , Chen Q , Henderson E , Ramos E , Shaw J , Tatusov RL , Dybdahl-Sissoko N , Endegue-Zanga MC , Adeniji JA , Oberste MS , Burns CC . J Clin Microbiol 2016 55 (2) 606-615 ![]() Poliovirus (PV) is currently targeted for worldwide eradication and containment. Sanger-based sequencing of the VP1 capsid region is the current standard method for PV surveillance; however, the whole genome sequence is sometimes needed for higher resolution global surveillance. In this study, we optimized whole genome sequencing protocols for poliovirus isolates and FTA cards using NGS, aiming for high sequence coverage, efficiency, and throughput. We found that DNase treatment of poliovirus RNA followed by random RT, amplification, and the Nextera XT DNA Library Preparation Kit produced significantly better results than other preparations. Average viral reads per total reads, a measurement of efficiency, is as high as 84.2% +/- 15.6%; PV genomes covering >99-100% of the reference length were obtained and validated with Sanger sequencing. A total of 52 PV genomes were generated, multiplexing as many as 64 samples in a single Illumina MiSeq run. This high-throughput, sequence-independent NGS approach can facilitate the detection of a diverse range of PV, especially for those in vaccine-derived polioviruses (VDPV), circulating VDPV, or immunodeficiency-related VDPV. In contrast to previous studies on other viruses, our results showed that filtration and nuclease treatment did not produce discernable increases in sequencing efficiency of PV isolates. However, DNase treatment after nucleic acid extraction to remove host DNA significantly improved sequencing results. This NGS method has been successfully implemented to generate PV genomes for molecular epidemiology of the most recent PV isolates. Additionally, the ability to obtain full PV genomes from FTA cards will aid in facilitating global poliovirus surveillance. |
Finished Annotated Genome Sequence of Burkholderia pseudomallei Strain Bp1651, a Multidrug-Resistant Clinical Isolate.
Bugrysheva JV , Sue D , Hakovirta J , Loparev VN , Knipe K , Sammons SA , Ranganathan-Ganakammal S , Changayil S , Srinivasamoorthy G , Weil MR , Tatusov RL , Gee JE , Elrod MG , Hoffmaster AR , Weigel LM . Genome Announc 2015 3 (6) ![]() Burkholderia pseudomallei strain Bp1651, a human isolate, is resistant to all clinically relevant antibiotics. We report here on the finished genome sequence assembly and annotation of the two chromosomes of this strain. This genome sequence may assist in understanding the mechanisms of antimicrobial resistance for this pathogenic species. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 17, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure