Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-14 (of 14 Records) |
Query Trace: Tallaksen R[original query] |
---|
Challenges of COVID-19 case forecasting in the US, 2020-2021
Lopez VK , Cramer EY , Pagano R , Drake JM , O'Dea EB , Adee M , Ayer T , Chhatwal J , Dalgic OO , Ladd MA , Linas BP , Mueller PP , Xiao J , Bracher J , Castro Rivadeneira AJ , Gerding A , Gneiting T , Huang Y , Jayawardena D , Kanji AH , Le K , Mühlemann A , Niemi J , Ray EL , Stark A , Wang Y , Wattanachit N , Zorn MW , Pei S , Shaman J , Yamana TK , Tarasewicz SR , Wilson DJ , Baccam S , Gurung H , Stage S , Suchoski B , Gao L , Gu Z , Kim M , Li X , Wang G , Wang L , Wang Y , Yu S , Gardner L , Jindal S , Marshall M , Nixon K , Dent J , Hill AL , Kaminsky J , Lee EC , Lemaitre JC , Lessler J , Smith CP , Truelove S , Kinsey M , Mullany LC , Rainwater-Lovett K , Shin L , Tallaksen K , Wilson S , Karlen D , Castro L , Fairchild G , Michaud I , Osthus D , Bian J , Cao W , Gao Z , Lavista Ferres J , Li C , Liu TY , Xie X , Zhang S , Zheng S , Chinazzi M , Davis JT , Mu K , Pastore YPiontti A , Vespignani A , Xiong X , Walraven R , Chen J , Gu Q , Wang L , Xu P , Zhang W , Zou D , Gibson GC , Sheldon D , Srivastava A , Adiga A , Hurt B , Kaur G , Lewis B , Marathe M , Peddireddy AS , Porebski P , Venkatramanan S , Wang L , Prasad PV , Walker JW , Webber AE , Slayton RB , Biggerstaff M , Reich NG , Johansson MA . PLoS Comput Biol 2024 20 (5) e1011200 During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1-4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naïve baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making. |
Evaluation of the US COVID-19 Scenario Modeling Hub for informing pandemic response under uncertainty
Howerton E , Contamin L , Mullany LC , Qin M , Reich NG , Bents S , Borchering RK , Jung SM , Loo SL , Smith CP , Levander J , Kerr J , Espino J , van Panhuis WG , Hochheiser H , Galanti M , Yamana T , Pei S , Shaman J , Rainwater-Lovett K , Kinsey M , Tallaksen K , Wilson S , Shin L , Lemaitre JC , Kaminsky J , Hulse JD , Lee EC , McKee CD , Hill A , Karlen D , Chinazzi M , Davis JT , Mu K , Xiong X , Pastore YPiontti A , Vespignani A , Rosenstrom ET , Ivy JS , Mayorga ME , Swann JL , España G , Cavany S , Moore S , Perkins A , Hladish T , Pillai A , Ben Toh K , Longini I Jr , Chen S , Paul R , Janies D , Thill JC , Bouchnita A , Bi K , Lachmann M , Fox SJ , Meyers LA , Srivastava A , Porebski P , Venkatramanan S , Adiga A , Lewis B , Klahn B , Outten J , Hurt B , Chen J , Mortveit H , Wilson A , Marathe M , Hoops S , Bhattacharya P , Machi D , Cadwell BL , Healy JM , Slayton RB , Johansson MA , Biggerstaff M , Truelove S , Runge MC , Shea K , Viboud C , Lessler J . Nat Commun 2023 14 (1) 7260 Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections. |
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US (preprint)
Cramer EY , Ray EL , Lopez VK , Bracher J , Brennen A , Castro Rivadeneira AJ , Gerding A , Gneiting T , House KH , Huang Y , Jayawardena D , Kanji AH , Khandelwal A , Le K , Mühlemann A , Niemi J , Shah A , Stark A , Wang Y , Wattanachit N , Zorn MW , Gu Y , Jain S , Bannur N , Deva A , Kulkarni M , Merugu S , Raval A , Shingi S , Tiwari A , White J , Abernethy NF , Woody S , Dahan M , Fox S , Gaither K , Lachmann M , Meyers LA , Scott JG , Tec M , Srivastava A , George GE , Cegan JC , Dettwiller ID , England WP , Farthing MW , Hunter RH , Lafferty B , Linkov I , Mayo ML , Parno MD , Rowland MA , Trump BD , Zhang-James Y , Chen S , Faraone SV , Hess J , Morley CP , Salekin A , Wang D , Corsetti SM , Baer TM , Eisenberg MC , Falb K , Huang Y , Martin ET , McCauley E , Myers RL , Schwarz T , Sheldon D , Gibson GC , Yu R , Gao L , Ma Y , Wu D , Yan X , Jin X , Wang YX , Chen Y , Guo L , Zhao Y , Gu Q , Chen J , Wang L , Xu P , Zhang W , Zou D , Biegel H , Lega J , McConnell S , Nagraj VP , Guertin SL , Hulme-Lowe C , Turner SD , Shi Y , Ban X , Walraven R , Hong QJ , Kong S , van de Walle A , Turtle JA , Ben-Nun M , Riley S , Riley P , Koyluoglu U , DesRoches D , Forli P , Hamory B , Kyriakides C , Leis H , Milliken J , Moloney M , Morgan J , Nirgudkar N , Ozcan G , Piwonka N , Ravi M , Schrader C , Shakhnovich E , Siegel D , Spatz R , Stiefeling C , Wilkinson B , Wong A , Cavany S , España G , Moore S , Oidtman R , Perkins A , Kraus D , Kraus A , Gao Z , Bian J , Cao W , Lavista Ferres J , Li C , Liu TY , Xie X , Zhang S , Zheng S , Vespignani A , Chinazzi M , Davis JT , Mu K , Pastore YPiontti A , Xiong X , Zheng A , Baek J , Farias V , Georgescu A , Levi R , Sinha D , Wilde J , Perakis G , Bennouna MA , Nze-Ndong D , Singhvi D , Spantidakis I , Thayaparan L , Tsiourvas A , Sarker A , Jadbabaie A , Shah D , Della Penna N , Celi LA , Sundar S , Wolfinger R , Osthus D , Castro L , Fairchild G , Michaud I , Karlen D , Kinsey M , Mullany LC , Rainwater-Lovett K , Shin L , Tallaksen K , Wilson S , Lee EC , Dent J , Grantz KH , Hill AL , Kaminsky J , Kaminsky K , Keegan LT , Lauer SA , Lemaitre JC , Lessler J , Meredith HR , Perez-Saez J , Shah S , Smith CP , Truelove SA , Wills J , Marshall M , Gardner L , Nixon K , Burant JC , Wang L , Gao L , Gu Z , Kim M , Li X , Wang G , Wang Y , Yu S , Reiner RC , Barber R , Gakidou E , Hay SI , Lim S , Murray C , Pigott D , Gurung HL , Baccam P , Stage SA , Suchoski BT , Prakash BA , Adhikari B , Cui J , Rodríguez A , Tabassum A , Xie J , Keskinocak P , Asplund J , Baxter A , Oruc BE , Serban N , Arik SO , Dusenberry M , Epshteyn A , Kanal E , Le LT , Li CL , Pfister T , Sava D , Sinha R , Tsai T , Yoder N , Yoon J , Zhang L , Abbott S , Bosse NI , Funk S , Hellewell J , Meakin SR , Sherratt K , Zhou M , Kalantari R , Yamana TK , Pei S , Shaman J , Li ML , Bertsimas D , Skali Lami O , Soni S , Tazi Bouardi H , Ayer T , Adee M , Chhatwal J , Dalgic OO , Ladd MA , Linas BP , Mueller P , Xiao J , Wang Y , Wang Q , Xie S , Zeng D , Green A , Bien J , Brooks L , Hu AJ , Jahja M , McDonald D , Narasimhan B , Politsch C , Rajanala S , Rumack A , Simon N , Tibshirani RJ , Tibshirani R , Ventura V , Wasserman L , O'Dea EB , Drake JM , Pagano R , Tran QT , Ho LST , Huynh H , Walker JW , Slayton RB , Johansson MA , Biggerstaff M , Reich NG . medRxiv 2021 2021.02.03.21250974 Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. In 2020, the COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized hundreds of thousands of specific predictions from more than 50 different academic, industry, and independent research groups. This manuscript systematically evaluates 23 models that regularly submitted forecasts of reported weekly incident COVID-19 mortality counts in the US at the state and national level. One of these models was a multi-model ensemble that combined all available forecasts each week. The performance of individual models showed high variability across time, geospatial units, and forecast horizons. Half of the models evaluated showed better accuracy than a naïve baseline model. In combining the forecasts from all teams, the ensemble showed the best overall probabilistic accuracy of any model. Forecast accuracy degraded as models made predictions farther into the future, with probabilistic accuracy at a 20-week horizon more than 5 times worse than when predicting at a 1-week horizon. This project underscores the role that collaboration and active coordination between governmental public health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.Competing Interest StatementAV, MC, and APP report grants from Metabiota Inc outside the submitted work.Funding StatementFor teams that reported receiving funding for their work, we report the sources and disclosures below. CMU-TimeSeries: CDC Center of Excellence, gifts from Google and Facebook. CU-select: NSF DMS-2027369 and a gift from the Morris-Singer Foundation. COVIDhub: This work has been supported by the US Centers for Disease Control and Prevention (1U01IP001122) and the National Institutes of General Medical Sciences (R35GM119582). The content is solely the responsibility of the authors and does not necessarily represent the official views of CDC, NIGMS or the National Institutes of Health. Johannes Bracher was supported by the Helmholtz Foundation via the SIMCARD Information& Data Science Pilot Project. Tilmann Gneiting gratefully acknowledges support by the Klaus Tschira Foundation. DDS-NBDS: NSF III-1812699. EPIFORECASTS-ENSEMBLE1: Wellcome Trust (210758/Z/18/Z) GT_CHHS-COVID19: William W. George Endowment, Virginia C. and Joseph C. Mello Endowments, NSF DGE-1650044, NSF MRI 1828187, research cyberinfrastructure resources and services provided by the Partnership for an Advanced Computing Environment (PACE) at Georgia Tech, and the following benefactors at Georgia Tech: Andrea Laliberte, Joseph C. Mello, Richard Rick E. & Charlene Zalesky, and Claudia & Paul Raines GT-DeepCOVID: CDC MInD-Healthcare U01CK000531-Supplement. NSF (Expeditions CCF-1918770, CAREER IIS-2028586, RAPID IIS-2027862, Medium IIS-1955883, NRT DGE-1545362), CDC MInD program, ORNL and funds/computing resources from Georgia Tech and GTRI. IHME: This work was supported by the Bill & Melinda Gates Foundation, as well as funding from the state of Washington and the National Science Foundation (award no. FAIN: 2031096). IowaStateLW-STEM: Iowa State University Plant Sciences Institute Scholars Program, NSF DMS-1916204, NSF CCF-1934884, Laurence H. Baker Center for Bioinformatics and Biological Statistics. JHU_IDD-CovidSP: State of California, US Dept of Health and Human Services, US Dept of Homeland Security, US Office of Foreign Disaster Assistance, Johns Hopkins Health System, Office of the Dean at Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University Modeling and Policy Hub, Centers fo Disease Control and Prevention (5U01CK000538-03), University of Utah Immunology, Inflammation, & Infectious Disease Initiative (26798 Seed Grant). LANL-GrowthRate: LANL LDRD 20200700ER. MOBS-GLEAM_COVID: COVID Supplement CDC-HHS-6U01IP001137-01. NotreDame-mobility and NotreDame-FRED: NSF RAPID DEB 2027718 UA-EpiCovDA: NSF RAPID Grant # 2028401. UCSB-ACTS: NSF RAPID IIS 2029626. UCSD-NEU: Google Faculty Award, DARPA W31P4Q-21-C-0014, COVID Supplement CDC-HHS-6U01IP001137-01. UMass-MechBayes: NIGMS R35GM119582, NSF 1749854. UMich-RidgeTfReg: The University of Michigan Physics Department and the University of Michigan Office of Research.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:UMass-Amherst IRBAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data and code referred to in the manuscript are publicly available. https://github.com/reichlab/covid19-forecast-hub/ https://github.com/reichlab/covidEnsembles https://zoltardata.com/project/44 |
Projected resurgence of COVID-19 in the United States in July-December 2021 resulting from the increased transmissibility of the Delta variant and faltering vaccination (preprint)
Truelove S , Smith CP , Qin M , Mullany LC , Borchering RK , Lessler J , Shea K , Howerton E , Contamin L , Levander J , Salerno J , Hochheiser H , Kinsey M , Tallaksen K , Wilson S , Shin L , Rainwater-Lovett K , Lemaitre JC , Dent J , Kaminsky J , Lee EC , Perez-Saez J , Hill A , Karlen D , Chinazzi M , Davis JT , Mu K , Xiong X , Piontti APY , Vespignani A , Srivastava A , Porebski P , Venkatramanan S , Adiga A , Lewis B , Klahn B , Outten J , Schlitt J , Corbett P , Telionis PA , Wang L , Peddireddy AS , Hurt B , Chen J , Vullikanti A , Marathe M , Hoops S , Bhattacharya P , Machi D , Chen S , Paul R , Janies D , Thill JC , Galanti M , Yamana T , Pei S , Shaman J , Reich NG , Healy JM , Slayton RB , Biggerstaff M , Johansson MA , Runge MC , Viboud C . medRxiv 2021 WHAT IS ALREADY KNOWN ABOUT THIS TOPIC? The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July-December 2021. WHAT IS ADDED BY THIS REPORT? Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July-December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE? Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen. |
Impact of SARS-CoV-2 vaccination of children ages 5-11 years on COVID-19 disease burden and resilience to new variants in the United States, November 2021-March 2022: a multi-model study (preprint)
Borchering RK , Mullany LC , Howerton E , Chinazzi M , Smith CP , Qin M , Reich NG , Contamin L , Levander J , Kerr J , Espino J , Hochheiser H , Lovett K , Kinsey M , Tallaksen K , Wilson S , Shin L , Lemaitre JC , Hulse JD , Kaminsky J , Lee EC , Davis JT , Mu K , Xiong X , Pastore y Piontti A , Vespignani A , Srivastava A , Porebski P , Venkatramanan S , Adiga A , Lewis B , Klahn B , Outten J , Hurt B , Chen J , Mortveit H , Wilson A , Marathe M , Hoops S , Bhattacharya P , Machi D , Chen S , Paul R , Janies D , Thill JC , Galanti M , Yamana T , Pei S , Shaman J , Espana G , Cavany S , Moore S , Perkins A , Healy JM , Slayton RB , Johansson MA , Biggerstaff M , Shea K , Truelove SA , Runge MC , Viboud C , Lessler J . medRxiv 2022 10 Background SARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. Methods Nine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. Findings Absent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. Conclusions Results from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license. |
Impact of SARS-CoV-2 vaccination of children ages 5-11 years on COVID-19 disease burden and resilience to new variants in the United States, November 2021-March 2022: A multi-model study.
Borchering RK , Mullany LC , Howerton E , Chinazzi M , Smith CP , Qin M , Reich NG , Contamin L , Levander J , Kerr J , Espino J , Hochheiser H , Lovett K , Kinsey M , Tallaksen K , Wilson S , Shin L , Lemaitre JC , Hulse JD , Kaminsky J , Lee EC , Hill AL , Davis JT , Mu K , Xiong X , Pastore YPiontti A , Vespignani A , Srivastava A , Porebski P , Venkatramanan S , Adiga A , Lewis B , Klahn B , Outten J , Hurt B , Chen J , Mortveit H , Wilson A , Marathe M , Hoops S , Bhattacharya P , Machi D , Chen S , Paul R , Janies D , Thill JC , Galanti M , Yamana T , Pei S , Shaman J , España G , Cavany S , Moore S , Perkins A , Healy JM , Slayton RB , Johansson MA , Biggerstaff M , Shea K , Truelove SA , Runge MC , Viboud C , Lessler J . Lancet Reg Health Am 2023 17 100398 BACKGROUND: The COVID-19 Scenario Modeling Hub convened nine modeling teams to project the impact of expanding SARS-CoV-2 vaccination to children aged 5-11 years on COVID-19 burden and resilience against variant strains. METHODS: Teams contributed state- and national-level weekly projections of cases, hospitalizations, and deaths in the United States from September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of 1) vaccination (or not) of children aged 5-11 years (starting November 1, 2021), and 2) emergence (or not) of a variant more transmissible than the Delta variant (emerging November 15, 2021). Individual team projections were linearly pooled. The effect of childhood vaccination on overall and age-specific outcomes was estimated using meta-analyses. FINDINGS: Assuming that a new variant would not emerge, all-age COVID-19 outcomes were projected to decrease nationally through mid-March 2022. In this setting, vaccination of children 5-11 years old was associated with reductions in projections for all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios without childhood vaccination. Vaccine benefits increased for scenarios including a hypothesized more transmissible variant, assuming similar vaccine effectiveness. Projected relative reductions in cumulative outcomes were larger for children than for the entire population. State-level variation was observed. INTERPRETATION: Given the scenario assumptions (defined before the emergence of Omicron), expanding vaccination to children 5-11 years old would provide measurable direct benefits, as well as indirect benefits to the all-age U.S. population, including resilience to more transmissible variants. FUNDING: Various (see acknowledgments). |
Projected resurgence of COVID-19 in the United States in July-December 2021 resulting from the increased transmissibility of the Delta variant and faltering vaccination.
Truelove S , Smith CP , Qin M , Mullany LC , Borchering RK , Lessler J , Shea K , Howerton E , Contamin L , Levander J , Salerno J , Hochheiser H , Kinsey M , Tallaksen K , Wilson S , Shin L , Rainwater-Lovett K , Lemairtre JC , Dent Hulse J , Kaminsky J , Lee EC , Perez-Saez J , Hill A , Karlen D , Chinazzi M , Davis JT , Mu K , Xiong X , Pastore YPiontti A , Vespignani A , Srivastava A , Porebski P , Venkatramanan S , Adiga A , Lewis B , Klahn B , Outten J , Orr M , Harrison G , Hurt B , Chen J , Vullikanti A , Marathe M , Hoops S , Bhattacharya P , Machi D , Chen S , Paul R , Janies D , Thill JC , Galanti M , Yamana TK , Pei S , Shaman JL , Healy JM , Slayton RB , Biggerstaff M , Johansson MA , Runge MC , Viboud C . Elife 2022 11 In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-10 Scenario Modeling Hub, an ensemble of nine mechanistic models produced six-month scenario projections for July-December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July-December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July-December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, though may have had even greater impacts, considering the underestimated resurgence magnitude from the model. |
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States.
Cramer EY , Ray EL , Lopez VK , Bracher J , Brennen A , Castro Rivadeneira AJ , Gerding A , Gneiting T , House KH , Huang Y , Jayawardena D , Kanji AH , Khandelwal A , Le K , Mühlemann A , Niemi J , Shah A , Stark A , Wang Y , Wattanachit N , Zorn MW , Gu Y , Jain S , Bannur N , Deva A , Kulkarni M , Merugu S , Raval A , Shingi S , Tiwari A , White J , Abernethy NF , Woody S , Dahan M , Fox S , Gaither K , Lachmann M , Meyers LA , Scott JG , Tec M , Srivastava A , George GE , Cegan JC , Dettwiller ID , England WP , Farthing MW , Hunter RH , Lafferty B , Linkov I , Mayo ML , Parno MD , Rowland MA , Trump BD , Zhang-James Y , Chen S , Faraone SV , Hess J , Morley CP , Salekin A , Wang D , Corsetti SM , Baer TM , Eisenberg MC , Falb K , Huang Y , Martin ET , McCauley E , Myers RL , Schwarz T , Sheldon D , Gibson GC , Yu R , Gao L , Ma Y , Wu D , Yan X , Jin X , Wang YX , Chen Y , Guo L , Zhao Y , Gu Q , Chen J , Wang L , Xu P , Zhang W , Zou D , Biegel H , Lega J , McConnell S , Nagraj VP , Guertin SL , Hulme-Lowe C , Turner SD , Shi Y , Ban X , Walraven R , Hong QJ , Kong S , van de Walle A , Turtle JA , Ben-Nun M , Riley S , Riley P , Koyluoglu U , DesRoches D , Forli P , Hamory B , Kyriakides C , Leis H , Milliken J , Moloney M , Morgan J , Nirgudkar N , Ozcan G , Piwonka N , Ravi M , Schrader C , Shakhnovich E , Siegel D , Spatz R , Stiefeling C , Wilkinson B , Wong A , Cavany S , España G , Moore S , Oidtman R , Perkins A , Kraus D , Kraus A , Gao Z , Bian J , Cao W , Lavista Ferres J , Li C , Liu TY , Xie X , Zhang S , Zheng S , Vespignani A , Chinazzi M , Davis JT , Mu K , Pastore YPiontti A , Xiong X , Zheng A , Baek J , Farias V , Georgescu A , Levi R , Sinha D , Wilde J , Perakis G , Bennouna MA , Nze-Ndong D , Singhvi D , Spantidakis I , Thayaparan L , Tsiourvas A , Sarker A , Jadbabaie A , Shah D , Della Penna N , Celi LA , Sundar S , Wolfinger R , Osthus D , Castro L , Fairchild G , Michaud I , Karlen D , Kinsey M , Mullany LC , Rainwater-Lovett K , Shin L , Tallaksen K , Wilson S , Lee EC , Dent J , Grantz KH , Hill AL , Kaminsky J , Kaminsky K , Keegan LT , Lauer SA , Lemaitre JC , Lessler J , Meredith HR , Perez-Saez J , Shah S , Smith CP , Truelove SA , Wills J , Marshall M , Gardner L , Nixon K , Burant JC , Wang L , Gao L , Gu Z , Kim M , Li X , Wang G , Wang Y , Yu S , Reiner RC , Barber R , Gakidou E , Hay SI , Lim S , Murray C , Pigott D , Gurung HL , Baccam P , Stage SA , Suchoski BT , Prakash BA , Adhikari B , Cui J , Rodríguez A , Tabassum A , Xie J , Keskinocak P , Asplund J , Baxter A , Oruc BE , Serban N , Arik SO , Dusenberry M , Epshteyn A , Kanal E , Le LT , Li CL , Pfister T , Sava D , Sinha R , Tsai T , Yoder N , Yoon J , Zhang L , Abbott S , Bosse NI , Funk S , Hellewell J , Meakin SR , Sherratt K , Zhou M , Kalantari R , Yamana TK , Pei S , Shaman J , Li ML , Bertsimas D , Skali Lami O , Soni S , Tazi Bouardi H , Ayer T , Adee M , Chhatwal J , Dalgic OO , Ladd MA , Linas BP , Mueller P , Xiao J , Wang Y , Wang Q , Xie S , Zeng D , Green A , Bien J , Brooks L , Hu AJ , Jahja M , McDonald D , Narasimhan B , Politsch C , Rajanala S , Rumack A , Simon N , Tibshirani RJ , Tibshirani R , Ventura V , Wasserman L , O'Dea EB , Drake JM , Pagano R , Tran QT , Ho LST , Huynh H , Walker JW , Slayton RB , Johansson MA , Biggerstaff M , Reich NG . Proc Natl Acad Sci U S A 2022 119 (15) e2113561119 SignificanceThis paper compares the probabilistic accuracy of short-term forecasts of reported deaths due to COVID-19 during the first year and a half of the pandemic in the United States. Results show high variation in accuracy between and within stand-alone models and more consistent accuracy from an ensemble model that combined forecasts from all eligible models. This demonstrates that an ensemble model provided a reliable and comparatively accurate means of forecasting deaths during the COVID-19 pandemic that exceeded the performance of all of the models that contributed to it. This work strengthens the evidence base for synthesizing multiple models to support public-health action. |
Modeling of Future COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Rates and Nonpharmaceutical Intervention Scenarios - United States, April-September 2021.
Borchering RK , Viboud C , Howerton E , Smith CP , Truelove S , Runge MC , Reich NG , Contamin L , Levander J , Salerno J , van Panhuis W , Kinsey M , Tallaksen K , Obrecht RF , Asher L , Costello C , Kelbaugh M , Wilson S , Shin L , Gallagher ME , Mullany LC , Rainwater-Lovett K , Lemaitre JC , Dent J , Grantz KH , Kaminsky J , Lauer SA , Lee EC , Meredith HR , Perez-Saez J , Keegan LT , Karlen D , Chinazzi M , Davis JT , Mu K , Xiong X , Pastore YPiontti A , Vespignani A , Srivastava A , Porebski P , Venkatramanan S , Adiga A , Lewis B , Klahn B , Outten J , Schlitt J , Corbett P , Telionis PA , Wang L , Peddireddy AS , Hurt B , Chen J , Vullikanti A , Marathe M , Healy JM , Slayton RB , Biggerstaff M , Johansson MA , Shea K , Lessler J . MMWR Morb Mortal Wkly Rep 2021 70 (19) 719-724 After a period of rapidly declining U.S. COVID-19 incidence during January-March 2021, increases occurred in several jurisdictions (1,2) despite the rapid rollout of a large-scale vaccination program. This increase coincided with the spread of more transmissible variants of SARS-CoV-2, the virus that causes COVID-19, including B.1.1.7 (1,3) and relaxation of COVID-19 prevention strategies such as those for businesses, large-scale gatherings, and educational activities. To provide long-term projections of potential trends in COVID-19 cases, hospitalizations, and deaths, COVID-19 Scenario Modeling Hub teams used a multiple-model approach comprising six models to assess the potential course of COVID-19 in the United States across four scenarios with different vaccination coverage rates and effectiveness estimates and strength and implementation of nonpharmaceutical interventions (NPIs) (public health policies, such as physical distancing and masking) over a 6-month period (April-September 2021) using data available through March 27, 2021 (4). Among the four scenarios, an accelerated decline in NPI adherence (which encapsulates NPI mandates and population behavior) was shown to undermine vaccination-related gains over the subsequent 2-3 months and, in combination with increased transmissibility of new variants, could lead to surges in cases, hospitalizations, and deaths. A sharp decline in cases was projected by July 2021, with a faster decline in the high-vaccination scenarios. High vaccination rates and compliance with public health prevention measures are essential to control the COVID-19 pandemic and to prevent surges in hospitalizations and deaths in the coming months. |
Evidence for environmental-human microbiota transfer at a manufacturing facility with novel work-related respiratory disease
Wu BG , Kapoor B , Cummings KJ , Stanton ML , Nett RJ , Kreiss K , Abraham JL , Colby TV , Franko AD , Green FHY , Sanyal S , Clemente JC , Gao Z , Coffre M , Meyn P , Heguy A , Li Y , Sulaiman I , Borbet TC , Koralov SB , Tallaksen RJ , Wendland D , Bachelder VD , Boylstein RJ , Park JH , Cox-Ganser JM , Virji MA , Crawford JA , Edwards NT , Veillette M , Duchaine C , Warren K , Lundeen S , Blaser MJ , Segal LN . Am J Respir Crit Care Med 2020 202 (12) 1678-1688 INTRODUCTION: Workers' exposure to metalworking fluid (MWF) has been associated with respiratory disease. As part of a public health investigation of a manufacturing facility, we performed paired environmental and human sampling to evaluate cross-pollination of microbes between environment and host and possible effects on lung pathology present among workers. METHODS: Workplace environmental microbiota was evaluated in air and MWF samples. Human microbiota was evaluated in lung tissue samples from workers with respiratory symptoms found to have lymphocytic bronchiolitis and alveolar ductitis with B-cell follicles and emphysema, lung tissue controls, and in skin, nasal and oral samples from 302 workers from different areas of the facility. In vitro effects of MWF exposure on murine B-cells were assessed. RESULTS: Increased similarity of microbial composition was found between MWF samples and lung tissue samples of case workers compared to controls. Among workers in different locations within the facility, those that worked in machine shop area had skin, nasal and oral microbiota more closely related to the microbiota present in MWF samples. Lung samples from four index cases, and skin and nasal samples from workers in machine shop area were enriched with Pseudomonas, the dominant taxa in MWF. Exposure to used MWF stimulated murine B-cell proliferation in vitro, a hallmark cell subtype found in pathology of index cases. CONCLUSIONS: Evaluation of a manufacturing facility with a cluster of workers with respiratory disease supports cross-pollination of microbes from MWF to humans and suggests the potential for exposure to these microbes to be a health hazard. |
The NIOSH B Reader Certification Program-An Update Report (1987-2018) and Future Directions
Halldin CN , Hale J , Weissman D , Attfield M , Parker JE , Petsonk E , Cohen R , Markle T , Blackley D , Wolfe A , Tallaksen R , Laney AS . J Occup Environ Med 2019 61 (12) 1045-1051 OBJECTIVE: The NIOSH B Reader Program provides the opportunity for physicians to demonstrate proficiency in the International Labour Office (ILO) system for classifying radiographs of pneumoconioses. We summarize trends in participation and examinee attributes and performance during 1987-2018. METHODS: Since 1987, NIOSH has maintained details of examinees and examinations. Attributes of examinees and their examination performance were summarized. Simple linear regression was used in trend analysis of passing rates over time. RESULTS: The mean passing rate for certification and recertification for the study period was 40.4%, and 82.6%, respectively. Since the mid-1990 s, the number of B Readers has declined and the mean age and years certified has increased. CONCLUSIONS: To address the declining B Reader population, NIOSH is currently taking steps to modernize the program and offer more opportunities for training and testing. |
Severe lung disease characterized by lymphocytic bronchiolitis, alveolar ductitis, and emphysema (BADE) in industrial machine-manufacturing workers
Cummings KJ , Stanton ML , Nett RJ , Segal LN , Kreiss K , Abraham JL , Colby TV , Franko AD , Green FHY , Sanyal S , Tallaksen RJ , Wendland D , Bachelder VD , Boylstein RJ , Park JH , Cox-Ganser JM , Virji MA , Crawford JA , Green BJ , LeBouf RF , Blaser MJ , Weissman DN . Am J Ind Med 2019 62 (11) 927-937 BACKGROUND: A cluster of severe lung disease occurred at a manufacturing facility making industrial machines. We aimed to describe disease features and workplace exposures. METHODS: Clinical, functional, radiologic, and histopathologic features were characterized. Airborne concentrations of thoracic aerosol, metalworking fluid, endotoxin, metals, and volatile organic compounds were measured. Facility airflow was assessed using tracer gas. Process fluids were examined using culture, polymerase chain reaction, and 16S ribosomal RNA sequencing. RESULTS: Five previously healthy male never-smokers, ages 27 to 50, developed chest symptoms from 1995 to 2012 while working in the facility's production areas. Patients had an insidious onset of cough, wheeze, and exertional dyspnea; airflow obstruction (mean FEV1 = 44% predicted) and reduced diffusing capacity (mean = 53% predicted); and radiologic centrilobular emphysema. Lung tissue demonstrated a unique pattern of bronchiolitis and alveolar ductitis with B-cell follicles lacking germinal centers, and significant emphysema for never-smokers. All had chronic dyspnea, three had a progressive functional decline, and one underwent lung transplantation. Patients reported no unusual nonoccupational exposures. No cases were identified among nonproduction workers or in the community. Endotoxin concentrations were elevated in two air samples; otherwise, exposures were below occupational limits. Air flowed from areas where machining occurred to other production areas. Metalworking fluid primarily grew Pseudomonas pseudoalcaligenes and lacked mycobacterial DNA, but 16S analysis revealed more complex bacterial communities. CONCLUSION: This cluster indicates a previously unrecognized occupational lung disease of yet uncertain etiology that should be considered in manufacturing workers (particularly never-smokers) with airflow obstruction and centrilobular emphysema. Investigation of additional cases in other settings could clarify the cause and guide prevention. |
Indium lung disease
Cummings KJ , Nakano M , Omae K , Takeuchi K , Chonan T , Xiao YL , Harley RA , Roggli VL , Hebisawa A , Tallaksen RJ , Trapnell BC , Day GA , Saito R , Stanton ML , Suarthana E , Kreiss K . Chest 2011 141 (6) 1512-1521 BACKGROUND: Reports of pulmonary fibrosis, emphysema, and, more recently, pulmonary alveolar proteinosis (PAP) in indium workers suggested that workplace exposure to indium compounds caused several different lung diseases. METHODS: To better understand the pathogenesis and natural history of indium lung disease, a detailed, systematic, multidisciplinary analysis of clinical, histopathological, radiological, and epidemiologic data for all reported cases and workplaces was undertaken. RESULTS: Ten men (median age, 35 years) who produced, used, or reclaimed indium compounds were diagnosed with interstitial lung disease (ILD) 4-13 years after first exposure (n=7) or PAP 1-2 years after first exposure (n=3). Common pulmonary histopathological features in these patients included intraalveolar exudate typical of alveolar proteinosis (n=9), cholesterol clefts and granulomas (n=10), and fibrosis (n=9). Two patients with ILD had pneumothoraces. Lung disease progressed following cessation of exposure in most patients and was fatal in two. Radiographical data revealed that two patients with PAP subsequently developed fibrosis and one also developed emphysematous changes. Epidemiologic investigations demonstrated the potential for exposure to respirable particles and an excess of lung abnormalities among co-workers. CONCLUSIONS: Occupational exposure to indium compounds was associated with PAP, cholesterol ester crystals and granulomas, pulmonary fibrosis, emphysema, and pneumothoraces. The available evidence suggests exposure to indium compounds causes a novel lung disease that may begin with PAP and progress to include fibrosis and emphysema, and, in some cases, premature death. Prospective studies are needed to better define the natural history and prognosis of this emerging lung disease and identify effective prevention strategies. |
Association of chest radiographic abnormalities with tuberculosis disease in asymptomatic HIV-infected adults
Agizew T , Bachhuber MA , Nyirenda S , Makwaruzi VZ , Tedla Z , Tallaksen RJ , Parker JE , Mboya JJ , Samandari T . Int J Tuberc Lung Dis 2010 14 (3) 324-31 SETTING: Francistown and Gaborone, Botswana. OBJECTIVE: Chest radiography is used to screen for tuberculosis (TB) in asymptomatic persons living with the human immunodeficiency virus (PLWH) seeking isoniazid preventive therapy (IPT). We describe radiographic features in PLWH in a TB-endemic setting and identify features associated with TB disease. DESIGN: Asymptomatic PLWH seeking IPT under program conditions for a clinical trial between 2004 and 2006 received chest radiographs (CXRs) that were read using the standardized Chest Radiograph Reading and Recording System (CRRS). Clinical characteristics, including TB disease, were compared with the radiographic findings. RESULTS: From 2732 screening CXRs, 183 had one or more abnormalities and were scored using CRRS, with 42% having infiltrates (36% upper lobes), 35% parenchymal fibrosis and 32% adenopathy. TB disease status was determined in 129 (70%) PLWH, of whom 22 (17%) had TB disease. TB disease was associated with upper lobe infiltrates (relative risk [RR] 3.0, 95%CI 1.5-6.2) and mediastinal adenopathy (RR 3.9, 95%CI 1.8-8.4). The sensitivity and specificity of either upper lobe infiltrates or mediastinal lymphadenopathy for TB disease were respectively 64% and 82%. CONCLUSION: A combination of CXR features was useful for predicting TB disease in asymptomatic PLWH. CRRS should be used more frequently in similar studies. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure