Last data update: Jan 27, 2025. (Total: 48650 publications since 2009)
Records 1-3 (of 3 Records) |
Query Trace: Sukalac T[original query] |
---|
Privacy preserving record linkage for public health action: opportunities and challenges
Pathak A , Serrer L , Zapata D , King R , Mirel LB , Sukalac T , Srinivasan A , Baier P , Bhalla M , David-Ferdon C , Luxenberg S , Gundlapalli AV . J Am Med Inform Assoc 2024 OBJECTIVES: To understand the landscape of privacy preserving record linkage (PPRL) applications in public health, assess estimates of PPRL accuracy and privacy, and evaluate factors for PPRL adoption. MATERIALS AND METHODS: A literature scan examined the accuracy, data privacy, and scalability of PPRL in public health. Twelve interviews with subject matter experts were conducted and coded using an inductive approach to identify factors related to PPRL adoption. RESULTS: PPRL has a high level of linkage quality and accuracy. PPRL linkage quality was comparable to that of clear text linkage methods (requiring direct personally identifiable information [PII]) for linkage across various settings and research questions. Accuracy of PPRL depended on several components, such as PPRL technique, and the proportion of missingness and errors in underlying data. Strategies to increase adoption include increasing understanding of PPRL, improving data owner buy-in, establishing governance structure and oversight, and developing a public health implementation strategy for PPRL. DISCUSSION: PPRL protects privacy by eliminating the need to share PII for linkage, but the accuracy and linkage quality depend on factors including the choice of PPRL technique and specific PII used to create encrypted identifiers. Large-scale implementations of PPRL linking millions of observations-including PCORnet, National Institutes for Health N3C, and the Centers for Disease Control and Prevention COVID-19 project have demonstrated the scalability of PPRL for public health applications. CONCLUSIONS: Applications of PPRL in public health have demonstrated their value for the public health community. Although gaps must be addressed before wide implementation, PPRL is a promising solution to data linkage challenges faced by the public health ecosystem. |
GHOST: global hepatitis outbreak and surveillance technology.
Longmire AG , Sims S , Rytsareva I , Campo DS , Skums P , Dimitrova Z , Ramachandran S , Medrzycki M , Thai H , Ganova-Raeva L , Lin Y , Punkova LT , Sue A , Mirabito M , Wang S , Tracy R , Bolet V , Sukalac T , Lynberg C , Khudyakov Y . BMC Genomics 2017 18 916 ![]() BACKGROUND: Hepatitis C is a major public health problem in the United States and worldwide. Outbreaks of hepatitis C virus (HCV) infections associated with unsafe injection practices, drug diversion, and other exposures to blood are difficult to detect and investigate. Effective HCV outbreak investigation requires comprehensive surveillance and robust case investigation. We previously developed and validated a methodology for the rapid and cost-effective identification of HCV transmission clusters. Global Hepatitis Outbreak and Surveillance Technology (GHOST) is a cloud-based system enabling users, regardless of computational expertise, to analyze and visualize transmission clusters in an independent, accurate and reproducible way. RESULTS: We present and explore performance of several GHOST implemented algorithms using next-generation sequencing data experimentally obtained from hypervariable region 1 of genetically related and unrelated HCV strains. GHOST processes data from an entire MiSeq run in approximately 3 h. A panel of seven specimens was used for preparation of six repeats of MiSeq libraries. Testing sequence data from these libraries by GHOST showed a consistent transmission linkage detection, testifying to high reproducibility of the system. Lack of linkage among genetically unrelated HCV strains and constant detection of genetic linkage between HCV strains from known transmission pairs and from follow-up specimens at different levels of MiSeq-read sampling indicate high specificity and sensitivity of GHOST in accurate detection of HCV transmission. CONCLUSIONS: GHOST enables automatic extraction of timely and relevant public health information suitable for guiding effective intervention measures. It is designed as a virtual diagnostic system intended for use in molecular surveillance and outbreak investigations rather than in research. The system produces accurate and reproducible information on HCV transmission clusters for all users, irrespective of their level of bioinformatics expertise. Improvement in molecular detection capacity will contribute to increasing the rate of transmission detection, thus providing opportunity for rapid, accurate and effective response to outbreaks of hepatitis C. Although GHOST was originally developed for hepatitis C surveillance, its modular structure is readily applicable to other infectious diseases. Worldwide availability of GHOST for the detection of HCV transmissions will foster deeper involvement of public health researchers and practitioners in hepatitis C outbreak investigation. |
Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana
Thigpen MC , Kebaabetswe PM , Paxton LA , Smith DK , Rose CE , Segolodi TM , Henderson FL , Pathak SR , Soud FA , Chillag KL , Mutanhaurwa R , Chirwa LI , Kasonde M , Abebe D , Buliva E , Gvetadze RJ , Johnson S , Sukalac T , Thomas VT , Hart C , Johnson JA , Malotte CK , Hendrix CW , Brooks JT . N Engl J Med 2012 367 (5) 423-34 BACKGROUND: Preexposure prophylaxis with antiretroviral agents has been shown to reduce the transmission of human immunodeficiency virus (HIV) among men who have sex with men; however, the efficacy among heterosexuals is uncertain. METHODS: We randomly assigned HIV-seronegative men and women to receive either tenofovir disoproxil fumarate and emtricitabine (TDF-FTC) or matching placebo once daily. Monthly study visits were scheduled, and participants received a comprehensive package of prevention services, including HIV testing, counseling on adherence to medication, management of sexually transmitted infections, monitoring for adverse events, and individualized counseling on risk reduction; bone mineral density testing was performed semiannually in a subgroup of participants. RESULTS: A total of 1219 men and women underwent randomization (45.7% women) and were followed for 1563 person-years (median, 1.1 years; maximum, 3.7 years). Because of low retention and logistic limitations, we concluded the study early and followed enrolled participants through an orderly study closure rather than expanding enrollment. The TDF-FTC group had higher rates of nausea (18.5% vs. 7.1%, P<0.001), vomiting (11.3% vs. 7.1%, P=0.008), and dizziness (15.1% vs. 11.0%, P=0.03) than the placebo group, but the rates of serious adverse events were similar (P=0.90). Participants who received TDF-FTC, as compared with those who received placebo, had a significant decline in bone mineral density. K65R, M184V, and A62V resistance mutations developed in 1 participant in the TDF-FTC group who had had an unrecognized acute HIV infection at enrollment. In a modified intention-to-treat analysis that included the 33 participants who became infected during the study (9 in the TDF-FTC group and 24 in the placebo group; 1.2 and 3.1 infections per 100 person-years, respectively), the efficacy of TDF-FTC was 62.2% (95% confidence interval, 21.5 to 83.4; P=0.03). CONCLUSIONS: Daily TDF-FTC prophylaxis prevented HIV infection in sexually active heterosexual adults. The long-term safety of daily TDF-FTC prophylaxis, including the effect on bone mineral density, remains unknown. (Funded by the Centers for Disease Control and Prevention and the National Institutes of Health; TDF2 ClinicalTrials.gov number, NCT00448669 .). |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 27, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure