Last data update: Jan 27, 2025. (Total: 48650 publications since 2009)
Records 1-30 (of 138 Records) |
Query Trace: Steele B[original query] |
---|
Homelessness and birth outcomes in the Pregnancy Risk Assessment Monitoring System, 2016-2020
Meehan AA , Steele-Baser M , Machefsky AM , Cassell CH , Montgomery MP , Mosites E . Matern Child Health J 2025 OBJECTIVES: This study aimed to estimate the prevalence of homelessness shortly before or during pregnancy and describe differences in maternal characteristics and adverse birth outcomes between people reporting homelessness and not reporting homelessness. METHODS: We used 2016-2020 Pregnancy Risk Assessment Monitoring System (PRAMS) data from 31 sites to estimate the prevalence of self-reported homelessness during the 12 months before giving birth. We used logistic regression models to evaluate the association between homelessness and adverse birth outcomes, specifically small for gestational age (SGA), low birth weight (LBW), and preterm birth (PTB). RESULTS: Of 138,603 respondents, 4,045 reported homelessness, representing 2.4% of weighted respondents. Respondents reporting homelessness differed from respondents who did not report homelessness in maternal demographic characteristics, health conditions, behavioral and environmental risk factors, and adequacy of prenatal care. In unadjusted models, homelessness was associated with higher prevalences of SGA, LBW, and PTB (PR 1.38, 95% CI 1.21-1.57; PR 1.73, 95% CI 1.56-1.91; PR 1.42, 95% CI 1.25-1.61; respectively). After adjusting for maternal age, race and ethnicity, education, BMI, and cigarette smoking, prevalence ratios were attenuated and no longer significant. CONCLUSIONS FOR PRACTICE: Although homelessness was not independently associated with adverse birth outcomes in adjusted models, people reporting homelessness before or during pregnancy represent a group at increased risk of inadequate health care utilization and adverse birth outcomes due to other underlying demographic and social factors. Health care providers can play a critical role in identifying if patients may be experiencing homelessness and facilitating connections to social support. |
Intimate partner violence and pregnancy and infant health outcomes - Pregnancy Risk Assessment Monitoring System, nine U.S. Jurisdictions, 2016-2022
Steele-Baser M , Brown AL , D'Angelo DV , Basile KC , Lee RD , Nguyen AT , Cassell CH . MMWR Morb Mortal Wkly Rep 2024 73 (48) 1093-1098 Intimate partner violence (IPV) can include emotional, physical, or sexual violence. IPV during pregnancy is a preventable cause of injury and death with negative short- and long-term impacts for pregnant women, infants, and families. Using data from the 2016-2022 Pregnancy Risk Assessment Monitoring System in nine U.S. jurisdictions, CDC examined associations between IPV during pregnancy among women with a recent live birth and the following outcomes: prenatal care initiation, health conditions during pregnancy (gestational diabetes, pregnancy-related hypertension, and depression), substance use during pregnancy, and infant birth outcomes. Overall, 5.4% of women reported IPV during pregnancy. Emotional IPV was most prevalent (5.2%), followed by physical (1.5%) and sexual (1.0%) IPV. All types were associated with delayed or no prenatal care; depression during pregnancy; cigarette smoking, alcohol use, marijuana or illicit substance use during pregnancy; and having an infant with low birth weight. Physical, sexual, and any IPV were associated with having a preterm birth. Physical IPV was associated with pregnancy-related hypertension. Evidence-based prevention and intervention strategies that address multiple types of IPV are important for supporting healthy parents and families because they might reduce pregnancy complications, depression and substance use during pregnancy, and adverse infant outcomes. |
Extrapolating sentinel surveillance information to estimate national COVID hospital admission rates: A Bayesian modeling approach
Devine O , Pham H , Gunnels B , Reese HE , Steele M , Couture A , Iuliano D , Sachdev D , Alden NB , Meek J , Witt L , Ryan PA , Reeg L , Lynfield R , Ropp SL , Barney G , Tesini BL , Shiltz E , Sutton M , Talbot HK , Reyes I , Havers FP . Influenza Other Respir Viruses 2024 18 (10) e70026 ![]() The COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) was established in March 2020 to monitor trends in hospitalizations associated with SARS-CoV-2 infection. COVID-NET is a geographically diverse population-based surveillance system for laboratory-confirmed COVID-19-associated hospitalizations with a combined catchment area covering approximately 10% of the US population. Data collected in COVID-NET includes monthly counts of hospitalizations for persons with confirmed SARS-CoV-2 infection who reside within the defined catchment area. A Bayesian modeling approach is proposed to estimate US national COVID-associated hospital admission rates based on information reported in the COVID-NET system. A key component of the approach is the ability to estimate uncertainty resulting from extrapolation of hospitalization rates observed within COVID-NET to the US population. In addition, the proposed model enables estimation of other contributors to uncertainty including temporal dependence among reported COVID-NET admission counts, the impact of unmeasured site-specific factors, and the frequency and accuracy of testing for SARS-CoV-2 infection. Based on the proposed model, an estimated 6.3 million (95% uncertainty interval (UI) 5.4-7.3 million) COVID-19-associated hospital admissions occurred in the United States from September 2020 through December 2023. Between April 2020 and December 2023, model-based monthly admission rate estimates ranged from a minimum of 1 per 10,000 population (95% UI 0.7-1.2) in June of 2023 to a highest monthly level of 16 per 10,000 (95% UI 13-19) in January 2022. |
Understanding U.S. caregivers' perceptions of youth's sexting motivations and concerns about their children's sexting involvement: Fall Consumerstyles Survey, 2018 and 2019
Steele-Baser M , Allen CT , Mercado MC , Cooper AC , Wagner RL . Arch Sex Behav 2024 Sexting is associated with a range of negative outcomes among youth. While parents and caregivers can play a critical role in the prevention of youth risk behaviors, nationally representative research has yet to examine U.S. caregivers' perceptions of youth's sexting motivations to help inform sexting risk prevention efforts. Using 2018 and 2019 Fall ConsumerStyles online panel survey data (N = 1,034), this study estimated and examined U.S. caregivers' perceptions of youth's sexting motivations and the associations of such perceptions with concerns about their children (ages 10-17) getting and sharing sexts (sexual messages, photos, videos). Weighted percentages were calculated to describe caregivers' perceptions of youth's sexting motivations. Logistic regression analyses were performed to examine associations between caregivers' perceptions and concerns about youth's sexting. Results suggest that many caregivers perceive youth sext because they think it is harmless (72.79%), they want to be popular or boast (70.51%), they have low self-esteem (52.00%), and/or it is part of their sexual exploration process (49.05%). Fewer caregivers perceived that youth sext because they want revenge (21.80%) or to harm others (16.06%). Caregivers' concerns about their children getting and sharing sexts were related to perceiving that youth sext because of low self-esteem, sexual exploration processes, or to harm others. The perception that youth sext because they want to be popular or boast was related to concern about youth getting but not sharing sexts. Odds of concern were significantly higher among caregivers from some racial/ethnic subgroups. Findings can inform sexting prevention efforts that include caregivers. |
Novel NSP1 genotype characterised in an African camel G8P[11] rotavirus strain.
Jere KC , Esona MD , Ali YH , Peenze I , Roy S , Bowen MD , Saeed IK , Khalafalla AI , Nyaga MM , Mphahlele J , Steele D , Seheri ML . Infect Genet Evol 2014 21 58-66 ![]() Animal-human interspecies transmission is thought to play a significant role in influencing rotavirus strain diversity in humans. Proving this concept requires a better understanding of the complete genetic constellation of rotaviruses circulating in various animal species. However, very few whole genomes of animal rotaviruses, especially in developing countries, are available. In this study, complete genetic configuration of the first African camel rotavirus strain (RVA/Camel-wt/SDN/MRC-DPRU447/2002/G8P[11]) was assigned a unique G8-P[11]-I2-R2-C2-M2-A18-N2-T6-E2-H3 genotype constellation that has not been reported in other ruminants. It contained a novel NSP1 genotype (genotype A18). The evolutionary dynamics of the genome segments of strain MRC-DPRU447 were rather complex compared to those found in other camelids. Its genome segments 1, 3, 7-10 were closely related (>93% nucleotide identity) to those of human-animal reassortant strains like RVA/Human-tc/ITA/PA169/1988/G6P[14] and RVA/Human-wt/HUN/Hun5/1997/G6P[14], segments 4, 6 and 11 shared common ancestry (>95% nucleotide identity) with bovine rotaviruses like strains RVA/Cow-wt/CHN/DQ-75/2008/G10P[11] and RVA/Cow-wt/KOR/KJ19-2/XXXX/G6P[7], whereas segment 2 was closely related (94% nucleotide identity) to guanaco rotavirus strain RVA/Guanaco-wt/ARG/Rio_Negro/1998/G8P[1]. Its genetic backbone consisted of DS-1-like, AU-1-like, artiodactyl-like and a novel A18 genotype. This suggests that strain MRC-DPRU447 potentially emerged through multiple reassortment events between several mammalian rotaviruses of at least two genogroups or simply strain MRC-DPRU447 display a unique progenitor genotypes. Close relationship between some of the genome segments of strain MRC-DPRU447 to human rotaviruses suggests previous occurrence of reassortment processes combined with interspecies transmission between humans and camels. The whole genome data for strain MRC-DPRU447 adds to the much needed animal rotavirus data from Africa which is limited at the moment. |
Effectiveness of a bivalent mRNA vaccine dose against symptomatic SARS-CoV-2 infection among U.S. Healthcare personnel, September 2022-May 2023
Plumb ID , Briggs Hagen M , Wiegand R , Dumyati G , Myers C , Harland KK , Krishnadasan A , James Gist J , Abedi G , Fleming-Dutra KE , Chea N , Lee JE , Kellogg M , Edmundson A , Britton A , Wilson LE , Lovett SA , Ocampo V , Markus TM , Smithline HA , Hou PC , Lee LC , Mower W , Rwamwejo F , Steele MT , Lim SC , Schrading WA , Chinnock B , Beiser DG , Faine B , Haran JP , Nandi U , Chipman AK , LoVecchio F , Eucker S , Femling J , Fuller M , Rothman RE , Curlin ME , Talan DA , Mohr NM . Vaccine 2023 ![]() ![]() BACKGROUND: Bivalent mRNA vaccines were recommended since September 2022. However, coverage with a recent vaccine dose has been limited, and there are few robust estimates of bivalent VE against symptomatic SARS-CoV-2 infection (COVID-19). We estimated VE of a bivalent mRNA vaccine dose against COVID-19 among eligible U.S. healthcare personnel who had previously received monovalent mRNA vaccine doses. METHODS: We conducted a case-control study in 22 U.S. states, and enrolled healthcare personnel with COVID-19 (case-participants) or without COVID-19 (control-participants) during September 2022-May 2023. Participants were considered eligible for a bivalent mRNA dose if they had received 2-4 monovalent (ancestral-strain) mRNA vaccine doses, and were ≥67 days after the most recent vaccine dose. We estimated VE of a bivalent mRNA dose using conditional logistic regression, accounting for matching by region and four-week calendar period. We adjusted estimates for age group, sex, race and ethnicity, educational level, underlying health conditions, community COVID-19 exposure, prior SARS-CoV-2 infection, and days since the last monovalent mRNA dose. RESULTS: Among 3,647 healthcare personnel, 1,528 were included as case-participants and 2,119 as control-participants. Participants received their last monovalent mRNA dose a median of 404 days previously; 1,234 (33.8%) also received a bivalent mRNA dose a median of 93 days previously. Overall, VE of a bivalent dose was 34.1% (95% CI, 22.6%-43.9%) against COVID-19 and was similar by product, days since last monovalent dose, number of prior doses, age group, and presence of underlying health conditions. However, VE declined from 54.8% (95% CI, 40.7%-65.6%) after 7-59 days to 21.6% (95% CI 5.6%-34.9%) after ≥60 days. CONCLUSIONS: Bivalent mRNA COVID-19 vaccines initially conferred approximately 55% protection against COVID-19 among U.S. healthcare personnel. However, protection waned after two months. These findings indicate moderate initial protection against symptomatic SARS-CoV-2 infection by remaining up-to-date with COVID-19 vaccines. |
Effectiveness of a messenger RNA vaccine booster dose against coronavirus disease 2019 among US healthcare personnel, October 2021-July 2022
Plumb ID , Mohr NM , Hagen M , Wiegand R , Dumyati G , Harland KK , Krishnadasan A , Gist JJ , Abedi G , Fleming-Dutra KE , Chea N , Lee J , Barter D , Brackney M , Fridkin SK , Wilson LE , Lovett SA , Ocampo V , Phipps EC , Marcus TM , Smithline HA , Hou PC , Lee LC , Moran GJ , Krebs E , Steele MT , Lim SC , Schrading WA , Chinnock B , Beiser DG , Faine B , Haran JP , Nandi U , Chipman AK , LoVecchio F , Talan DA , Pilishvili T . Open Forum Infect Dis 2023 10 (10) ofad457 ![]() ![]() BACKGROUND: Protection against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (coronavirus disease 2019 [COVID-19]) can limit transmission and the risk of post-COVID conditions, and is particularly important among healthcare personnel. However, lower vaccine effectiveness (VE) has been reported since predominance of the Omicron SARS-CoV-2 variant. METHODS: We evaluated the VE of a monovalent messenger RNA (mRNA) booster dose against COVID-19 from October 2021 to June 2022 among US healthcare personnel. After matching case-participants with COVID-19 to control-participants by 2-week period and site, we used conditional logistic regression to estimate the VE of a booster dose compared with completing only 2 mRNA doses >150 days previously, adjusted for multiple covariates. RESULTS: Among 3279 case-participants and 3998 control-participants who had completed 2 mRNA doses, we estimated that the VE of a booster dose against COVID-19 declined from 86% (95% confidence interval, 81%-90%) during Delta predominance to 65% (58%-70%) during Omicron predominance. During Omicron predominance, VE declined from 73% (95% confidence interval, 67%-79%) 14-60 days after the booster dose, to 32% (4%-52%) ≥120 days after a booster dose. We found that VE was similar by age group, presence of underlying health conditions, and pregnancy status on the test date, as well as among immunocompromised participants. CONCLUSIONS: A booster dose conferred substantial protection against COVID-19 among healthcare personnel. However, VE was lower during Omicron predominance, and waning effectiveness was observed 4 months after booster dose receipt during this period. Our findings support recommendations to stay up to date on recommended doses of COVID-19 vaccines for all those eligible. |
Modeling effectiveness of testing strategies to prevent COVID-19 in nursing homes —United States, 2020 (preprint)
See I , Paul P , Slayton RB , Steele MK , Stuckey MJ , Duca L , Srinivasan A , Stone N , Jernigan JA , Reddy SC . medRxiv 2021 2020.12.18.20248255 Background SARS-CoV-2 outbreaks in nursing homes can be large with high case fatality. Identifying asymptomatic individuals early through serial testing is recommended to control COVID-19 in nursing homes, both in response to an outbreak (“outbreak testing” of residents and healthcare personnel) and in facilities without outbreaks (“non-outbreak testing” of healthcare personnel). The effectiveness of outbreak testing and isolation with or without non-outbreak testing was evaluated.Methods Using published SARS-CoV-2 transmission parameters, the fraction of SARS-CoV-2 transmissions prevented through serial testing (weekly, every three days, or daily) and isolation of asymptomatic persons compared to symptom-based testing and isolation was evaluated through mathematical modeling using a Reed-Frost model to estimate the percentage of cases prevented (i.e., “effectiveness”) through either outbreak testing alone or outbreak plus non-outbreak testing. The potential effect of simultaneous decreases (by 10%) in the effectiveness of isolating infected individuals when instituting testing strategies was also evaluated.Results Modeling suggests that outbreak testing could prevent 54% (weekly testing with 48-hour test turnaround) to 92% (daily testing with immediate results and 50% relative sensitivity) of SARS-CoV-2 infections. Adding non-outbreak testing could prevent up to an additional 8% of SARS-CoV-2 infections (depending on test frequency and turnaround time). However, added benefits of non-outbreak testing were mostly negated if accompanied by decreases in infection control practice.Conclusions When combined with high-quality infection control practices, outbreak testing could be an effective approach to preventing COVID-19 in nursing homes, particularly if optimized through increased test frequency and use of tests with rapid turnaround.Summary Mathematical modeling evaluated the effectiveness of serially testing asymptomatic persons in a nursing home in response to a SARS-CoV-2 outbreak with or without serial testing of asymptomatic staff in the absence of known SARS-CoV-2 infections.Competing Interest StatementThe authors have declared no competing interest.Funding StatementNo external funding was received. All work was conducted as part of government duties.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This activity was reviewed by CDC and was conducted consistent with applicable federal law and CDC policy (see e.g., 45 C.F.R. part 46, 21 C.F.R. part 56; 42 U.S.C. 241(d); 5 U.S.C 552a; 44 U.S.C. 351 et seq.).All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData provided in supplemental materials or publicly available through links in the manuscript. https://github.com/cdcepi/Nursing-home-SARS-CoV-2-testing-model/ |
Estimating COVID-19 Hospitalizations in the United States with surveillance data using a Bayesian Hierarchical model (preprint)
Couture A , Iuliano D , Chang H , Patel N , Gilmer M , Steele M , Havers F , Whitaker M , Reed C . medRxiv 2021 2021.10.14.21264992 ![]() Introduction In the United States, COVID-19 is a nationally notifiable disease, cases and hospitalizations are reported to the CDC by states. Identifying and reporting every case from every facility in the United States may not be feasible in the long term. Creating sustainable methods for estimating burden of COVID-19 from established sentinel surveillance systems is becoming more important. We aimed to provide a method leveraging surveillance data to create a long-term solution to estimate monthly rates of hospitalizations for COVID-19.Methods We estimated monthly hospitalization rates for COVID-19 from May 2020 through April 2021 for the 50 states using surveillance data from COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) and a Bayesian hierarchical model for extrapolation. We created a model for six age groups (0-17, 18-49, 50-64, 65-74, 75-84, and ≥85 years), separately. We identified covariates from multiple data sources that varied by age, state, and/or month, and performed covariate selection for each age group based on two methods, Least Absolute Shrinkage and Selection Operator (LASSO) and Spike and Slab selection methods. We validated our method by checking sensitivity of model estimates to covariate selection and model extrapolation as well as comparing our results to external data.Results We estimated 3,569,500 (90% Credible Interval:3,238,000 – 3,934,700) hospitalizations for a cumulative incidence of 1,089.8 (988.6 – 1,201.3) hospitalizations per 100,000 population with COVID-19 in the United States from May 2020 through April 2021. Cumulative incidence varied from 352 – 1,821per 100,000 between states. The age group with the highest cumulative incidence was aged ≥85 years (5,583.1; 5,061.0 – 6,157.5). The monthly hospitalization rate was highest in December (183.8; 154.5 – 218.0). Our monthly estimates by state showed variations in magnitudes of peak rates, number of peaks and timing of peaks between states.Conclusions Our novel approach to estimate COVID-19 hospitalizations has potential to provide sustainable estimates for monitoring COVID-19 burden, as well as a flexible framework leveraging surveillance data.Competing Interest StatementThe authors have declared no competing interest.Funding StatementFunding for this work was supported by CDC (Atlanta, Georgia). The authors received no financial support for the research, authorship, or publication of these data.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesI confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData will not be made available online.BRFSSBehavioral Risk Factor Surveillance SystemCDCCenters for Disease Control and PreventionCKDchronic kidney diseaseCOPDchronic obstructive pulmonary diseaseCOVID-19Coronavirus Disease 2019COVID-NETCoronavirus Disease 2019-Associated Hospitalization Surveillance NetworkCrICredible IntervalFluSurv-NETInfluenza Hospitalization Surveillance NetworkHHSDepartment of Health and Human ServicesICUintensive care unitLASSO east Absolute Shrinkage and Selection OperatorMCMCMarkov chain Monte CarloNCHSNational Center for Health StatisticsNNDSSNational Notifiable Disease Surveillance SystemNVSSNational Vital Statistics SystemSARS-CoV-2Severe Acute Respiratory Syndrome Coronavirus 2 |
Presence of Symptoms 6 Weeks After COVID-19 Among Vaccinated and Unvaccinated U.S. Healthcare Personnel (preprint)
Mohr NM , Plumb ID , Harland KK , Pilishvili T , Fleming-Dutra KE , Krishnadasan A , Hoth KF , Saydah SH , Mankoff Z , Haran JP , Leon ES , Talan DA , Smithline HA , Hou PC , Lee LC , Lim SC , Moran GJ , Steele MT , Beiser DG , Faine B , Nandi U , Schrading WA , Chinnock B , Chipman A , Fuentes M , LoVecchio F , Clinansmith B , Landers S , Horcher A , Wallace K , Uribe L , Pathmarajah K , Poronsky KE , Hashimoto DM , Bahamon M , Romain MSt , Kean E , Krebs E , Stubbs A , Roy S , Volturo G , Higgins A , Galbraith J , Crosby JC , Mulrow M , Gonzalez E , Gierke R , Farrar JL , Xing W , Chung Y , Yousaf A , Okaro JO , Briggs-Hagen M , Abedi GR , Nyanseor S , Watts CK . medRxiv 2022 25 Importance: Although COVID-19 vaccines protect against infection and severe disease, the role of vaccination in preventing prolonged symptoms in those with subsequent infection is unclear. Objective(s): To determine differences in symptoms stratified by prior vaccination reported by healthcare personnel (HCP) 6 weeks after onset of COVID-19, and whether there were differences in timing of return to work. Design(s): Nested cohort study within a multicenter vaccine effectiveness study. HCP with COVID-19 between December 2020 and August 2021 were followed up 6 weeks after illness onset. Setting(s): Health systems in 12 U.S. states. Participant(s): HCP participating in a vaccine effectiveness study were eligible for inclusion if they had confirmed COVID-19 with either verified mRNA vaccination (symptom onset =14 days after two doses) or no prior COVID-19 vaccination. Among 681 eligible participants, 419 (61%) completed a follow-up survey approximately 6 weeks after illness onset. Exposures: Two doses of a COVID-19 mRNA vaccine compared with no COVID-19 vaccine. Main Outcomes and Measures: Presence of symptoms 6 weeks after onset of COVID-19 illness and days to return to work after COVID-19 illness. Result(s): Among 419 HCP with confirmed COVID-19, 298 (71%) reported one or more COVID-like symptoms 6 weeks after illness onset, with a lower prevalence among vaccinated participants (60.6%) compared with unvaccinated participants (60.6% vs. 79.1%; aRR 0.70, 95% CI 0.58-0.84). Vaccinated HCP returned to work a median 2.0 days (95% CI 1.0-3.0) sooner than unvaccinated HCP (aHR 1.37; 95% CI, 1.04-1.79). Conclusion(s): A history of two doses of COVID-19 mRNA vaccine among HCP with COVID-19 illness was associated with decreased risk of COVID-like symptoms at 6 weeks and earlier to return to work. Vaccination is associated with improved recovery from COVID-19, in addition to preventing symptomatic infection. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. |
Multimodeling approach to evaluating the efficacy of layering pharmaceutical and nonpharmaceutical interventions for influenza pandemics
Prasad PV , Steele MK , Reed C , Meyers LA , Du Z , Pasco R , Alfaro-Murillo JA , Lewis B , Venkatramanan S , Schlitt J , Chen J , Orr M , Wilson ML , Eubank S , Wang L , Chinazzi M , Pastore YPiontti A , Davis JT , Halloran ME , Longini I , Vespignani A , Pei S , Galanti M , Kandula S , Shaman J , Haw DJ , Arinaminpathy N , Biggerstaff M . Proc Natl Acad Sci U S A 2023 120 (28) e2300590120 When an influenza pandemic emerges, temporary school closures and antiviral treatment may slow virus spread, reduce the overall disease burden, and provide time for vaccine development, distribution, and administration while keeping a larger portion of the general population infection free. The impact of such measures will depend on the transmissibility and severity of the virus and the timing and extent of their implementation. To provide robust assessments of layered pandemic intervention strategies, the Centers for Disease Control and Prevention (CDC) funded a network of academic groups to build a framework for the development and comparison of multiple pandemic influenza models. Research teams from Columbia University, Imperial College London/Princeton University, Northeastern University, the University of Texas at Austin/Yale University, and the University of Virginia independently modeled three prescribed sets of pandemic influenza scenarios developed collaboratively by the CDC and network members. Results provided by the groups were aggregated into a mean-based ensemble. The ensemble and most component models agreed on the ranking of the most and least effective intervention strategies by impact but not on the magnitude of those impacts. In the scenarios evaluated, vaccination alone, due to the time needed for development, approval, and deployment, would not be expected to substantially reduce the numbers of illnesses, hospitalizations, and deaths that would occur. Only strategies that included early implementation of school closure were found to substantially mitigate early spread and allow time for vaccines to be developed and administered, especially under a highly transmissible pandemic scenario. |
Report of the Science Community Workshop on the proposed first sample depot for the Mars sample return campaign
Czaja AD , Zorzano MP , Kminek G , Meyer MA , Beaty DW , Sefton-Nash E , Carrier BL , Thiessen F , Haltigin T , Bouvier A , Dauphas N , French KL , Hallis LJ , Harris RL , Hauber E , Rodriguez LE , Schwenzer SP , Steele A , Tait KT , Thorpe MT , Usui T , Vanhomwegen J , Velbel MA , Edwin S , Farley KA , Glavin DP , Harrington AD , Hays LE , Hutzler A , Wadhwa M . Meteorit Planet Sci 2023 The Mars 2020/Mars Sample Return (MSR) Sample Depot Science Community Workshop was held on September 28 and 30, 2022, to assess the Scientifically-Return Worthy (SRW) value of the full collection of samples acquired by the rover Perseverance at Jezero Crater, and of a proposed subset of samples to be left as a First Depot at a location within Jezero Crater called Three Forks. The primary outcome of the workshop was that the community is in consensus on the following statement: The proposed set of ten sample tubes that includes seven rock samples, one regolith sample, one atmospheric sample, and one witness tube constitutes a SRW collection that: (1) represents the diversity of the explored region around the landing site, (2) covers partially or fully, in a balanced way, all of the International MSR Objectives and Samples Team scientific objectives that are applicable to Jezero Crater, and (3) the analyses of samples in this First Depot on Earth would be of fundamental importance, providing a substantial improvement in our understanding of Mars. At the conclusion of the meeting, there was overall community support for forming the First Depot as described at the workshop and placing it at the Three Forks site. The community also recognized that the diversity of the Rover Cache (the sample collection that remains on the rover after placing the First Depot) will significantly improve with the samples that are planned to be obtained in the future by the Perseverance rover and that the Rover Cache is the primary target for MSR to return to Earth. © 2023 His Majesty the King in Right of Canada, Royal Ontario Museum, Jet Propulsion Laboratory, California Institute of Technology and The Authors. Government sponsorship acknowledged. Meteoritics & Planetary Science published by Wiley Periodicals LLC on behalf of The Meteoritical Society. Reproduced with the permission of the Minister of Canadian Space Agency. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. |
Erratum: Vol. 71, No. 6.
Lambrou AS , Shirk P , Steele MK , Paul P , Paden CR , Cadwell B , Reese HE , Aoki Y , Hassell N , Caravas J , Kovacs NA , Gerhart JG , Ng HJ , Zheng XY , Beck A , Chau R , Cintron R , Cook PW , Gulvik CA , Howard D , Jang Y , Knipe K , Lacek KA , Moser KA , Paskey AC , Rambo-Martin BL , Nagilla RR , Rethchless AC , Schmerer MW , Seby S , Shephard SS , Stanton RA , Stark TJ , Uehara A , Unoarumhi Y , Bentz ML , Burhgin A , Burroughs M , Davis ML , Keller MW , Keong LM , Le SS , Lee JS , Madden Jr JC , Nobles S , Owouor DC , Padilla J , Sheth M , Wilson MM , Talarico S , Chen JC , Oberste MS , Batra D , McMullan LK , Halpin AL , Galloway SE , MacCannell DR , Kondor R , Barnes J , MacNeil A , Silk BJ , Dugan VG , Scobie HM , Wentworth DE . MMWR Morb Mortal Wkly Rep 2022 71 (14) 528 The report “Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants — United States, June 2021–January 2022” contained several errors. |
Associations between ultra- or minimally processed food intake and three adiposity indicators among US adults: NHANES 2011 to 2016
Zhang Z , Kahn HS , Jackson SL , Steele EM , Gillespie C , Yang Q . Obesity (Silver Spring) 2022 30 (9) 1887-1897 OBJECTIVE: Ultraprocessed food (UPF) intake is associated with BMI, but effects on regional adipose depots or related to minimally processed food (MPF) intake are unknown. METHODS: Data included 12,297 adults in the National Health and Nutrition Examination Survey (NHANES), 2011 to 2016. This study analyzed associations between usual percentage of kilocalories from UPFs and MPFs and three adiposity indicators: supine sagittal abdominal diametertoheight ratio (SADHtR, estimates visceral adiposity); waist circumferencetoheight ratio (WHtR, estimates abdominal adiposity); and BMI, using linear and multinomial logistic regression. RESULTS: Standardized coefficients per 10% increase in UPF intake were 0.0926, 0.0846, and 0.0791 for SADHtR, WHtR, and BMI, respectively (all p<0.001; p>0.26 for pairwise differences). For MPF intake, the coefficients were-0.0901, -0.0806, and-0.0688 (all p<0.001; p>0.18 pairwise). Adjusted odds ratios (95% CI) for adiposity tertile 3 versus tertile 1 (comparing UPF intake quartiles 2, 3, and 4 to quartile 1) were 1.33 (1.22-1.45), 1.67 (1.43-1.95), and 2.24 (1.76-2.86), respectively, for SADHtR; 1.31 (1.19-1.44), 1.62 (1.37-1.91), and 2.13 (1.63-2.78), respectively, for WHtR; and 1.27 (1.16-1.39), 1.53 (1.31-1.79), and 1.96 (1.53-2.51), respectively, for BMI. MPF intake showed inverse associations with similar trends in association strength. CONCLUSIONS: Among US adults, abdominal and visceral adiposity indictors were positively associated with UPFs and inversely associated with MPFs. |
Point Prevalence Estimates of Activity-Limiting Long-Term Symptoms among U.S. Adults ≥1 Month After Reported SARS-CoV-2 Infection, November 1, 2021.
Tenforde MW , Devine OJ , Reese HE , Silk BJ , Iuliano AD , Threlkel R , Vu QM , Plumb ID , Cadwell BL , Rose C , Steele MK , Briggs-Hagen M , Ayoubkhani D , Pawelek P , Nafilyan V , Saydah SH , Bertolli J . J Infect Dis 2023 227 (7) 855-863 BACKGROUND: Although most adults infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) fully recover, a proportion have ongoing symptoms, or post-COVID conditions (PCC), after infection. The objective of this analysis was to estimate the number of United States (US) adults with activity-limiting PCC on 1 November 2021. METHODS: We modeled the prevalence of PCC using reported infections occurring from 1 February 2020 to 30 September 2021, and population-based, household survey data on new activity-limiting symptoms ≥1 month following SARS-CoV-2 infection. From these data sources, we estimated the number and proportion of US adults with activity-limiting PCC on 1 November 2021 as 95% uncertainty intervals, stratified by sex and age. Sensitivity analyses adjusted for underascertainment of infections and uncertainty about symptom duration. RESULTS: On 1 November 2021, at least 3.0-5.0 million US adults, or 1.2%-1.9% of the US adult population, were estimated to have activity-limiting PCC of ≥1 month's duration. Population prevalence was higher in females (1.4%-2.2%) than males. The estimated prevalence after adjusting for underascertainment of infections was 1.7%-3.8%. CONCLUSIONS: Millions of US adults were estimated to have activity-limiting PCC. These estimates can support future efforts to address the impact of PCC on the US population. |
Estimated Number of COVID-19 Infections, Hospitalizations, and Deaths Prevented Among Vaccinated Persons in the US, December 2020 to September 2021.
Steele MK , Couture A , Reed C , Iuliano D , Whitaker M , Fast H , Hall AJ , MacNeil A , Cadwell B , Marks KJ , Silk BJ . JAMA Netw Open 2022 5 (7) e2220385 IMPORTANCE: The number of SARS-CoV-2 infections and COVID-19-associated hospitalizations and deaths prevented among vaccinated persons, independent of the effect of reduced transmission, is a key measure of vaccine impact. OBJECTIVE: To estimate the number of SARS-CoV-2 infections and COVID-19-associated hospitalizations and deaths prevented among vaccinated adults in the US. DESIGN, SETTING, AND PARTICIPANTS: In this modeling study, a multiplier model was used to extrapolate the number of SARS-CoV-2 infections and COVID-19-associated deaths from data on the number of COVID-19-associated hospitalizations stratified by state, month, and age group (18-49, 50-64, and ≥65 years) in the US from December 1, 2020, to September 30, 2021. These estimates were combined with data on vaccine coverage and effectiveness to estimate the risks of infections, hospitalizations, and deaths. Risks were applied to the US population 18 years or older to estimate the expected burden in that population without vaccination. The estimated burden in the US population 18 years or older given observed levels of vaccination was subtracted from the expected burden in the US population 18 years or older without vaccination (ie, counterfactual) to estimate the impact of vaccination among vaccinated persons. EXPOSURES: Completion of the COVID-19 vaccination course, defined as 2 doses of messenger RNA (BNT162b2 or mRNA-1273) vaccines or 1 dose of JNJ-78436735 vaccine. MAIN OUTCOMES AND MEASURES: Monthly numbers and percentages of SARS-CoV-2 infections and COVID-19-associated hospitalizations and deaths prevented were estimated among those who have been vaccinated in the US. RESULTS: COVID-19 vaccination was estimated to prevent approximately 27 million (95% uncertainty interval [UI], 22 million to 34 million) infections, 1.6 million (95% UI, 1.4 million to 1.8 million) hospitalizations, and 235 000 (95% UI, 175 000-305 000) deaths in the US from December 1, 2020, to September 30, 2021, among vaccinated adults 18 years or older. From September 1 to September 30, 2021, vaccination was estimated to prevent 52% (95% UI, 45%-62%) of expected infections, 56% (95% UI, 52%-62%) of expected hospitalizations, and 58% (95% UI, 53%-63%) of expected deaths in adults 18 years or older. CONCLUSIONS AND RELEVANCE: These findings indicate that the US COVID-19 vaccination program prevented a substantial burden of morbidity and mortality through direct protection of vaccinated individuals. |
Estimating COVID-19 Hospitalizations in the United States with Surveillance Data Using a Bayesian Hierarchical Model: A Modeling Study.
Couture A , Iuliano D , Chang H , Patel N , Gilmer M , Steele M , Havers F , Whitaker M , Reed C . JMIR Public Health Surveill 2022 8 (6) e34296 ![]() ![]() BACKGROUND: In the United States, COVID-19 is a nationally notifiable disease, meaning cases and hospitalizations are reported to the CDC by states. Identifying and reporting every case from every facility in the United States may not be feasible in the long term. Creating sustainable methods for estimating burden of COVID-19 from established sentinel surveillance systems is becoming more important. OBJECTIVE: We aimed to provide a method leveraging surveillance data to create a long-term solution to estimate monthly rates of hospitalizations for COVID-19. METHODS: We estimated monthly hospitalization rates for COVID-19 from May 2020 through April 2021 for the 50 states using surveillance data from COVID-19-Associated Hospitalization Surveillance Network (COVID-NET) and a Bayesian hierarchical model for extrapolation. Hospitalization rates are calculated from patients hospitalized with a lab confirmed SARS-CoV-2 test during or within 14 days before admission. We created a model for six age groups (0-17, 18-49, 50-64, 65-74, 75-84, and ≥85 years), separately. We identified covariates from multiple data sources that varied by age, state, and/or month, and performed covariate selection for each age group based on two methods, Least Absolute Shrinkage and Selection Operator (LASSO) and Spike and Slab selection methods. We validated our method by checking sensitivity of model estimates to covariate selection and model extrapolation as well as comparing our results to external data. RESULTS: We estimated 3,583,100 (90% Credible Interval:3,250,500 - 3,945,400) hospitalizations for a cumulative incidence of 1,093.9 (992.4 - 1,204.6) hospitalizations per 100,000 population with COVID-19 in the United States from May 2020 through April 2021. Cumulative incidence varied from 359 - 1,856 per 100,000 between states. The age group with the highest cumulative incidence was aged ≥85 years (5,575.6; 5,066.4 - 6,133.7). The monthly hospitalization rate was highest in December (183.7; 154.3 - 217.4). Our monthly estimates by state showed variations in magnitudes of peak rates, number of peaks and timing of peaks between states. CONCLUSIONS: Our novel approach to estimate hospitalizations with COVID-19 has potential to provide sustainable estimates for monitoring COVID-19 burden, as well as a flexible framework leveraging surveillance data. |
Modeling strategies for the allocation of SARS-CoV-2 vaccines in the United States.
Walker J , Paul P , Dooling K , Oliver S , Prasad P , Steele M , Gastañaduy PA , Johansson MA , Biggerstaff M , Slayton RB . Vaccine 2022 40 (14) 2134-2139 The Advisory Committee on Immunization Practices (ACIP) recommended phased allocation of SARS-CoV-2 vaccines in December 2020. To support the development of this guidance, we used a mathematical model of SARS-CoV-2 transmission to evaluate the relative impact of three vaccine allocation strategies on infections, hospitalizations, and deaths. All three strategies initially prioritized healthcare personnel (HCP) for vaccination. Strategies of subsequently prioritizing adults aged ≥65 years, or a combination of essential workers and adults aged ≥75 years, prevented the most deaths. Meanwhile, prioritizing adults with high-risk medical conditions immediately after HCP prevented the most infections. All three strategies prevented a similar fraction of hospitalizations. While no model is capable of fully capturing the complex social dynamics which shape epidemics, exercises such as this one can be a useful way for policy makers to formalize their assumptions and explore the key features of a problem before making decisions. |
HIV-1 drug resistance mutations among individuals with low-level viraemia while taking combination ART in Botswana.
Bareng OT , Moyo S , Zahralban-Steele M , Maruapula D , Ditlhako T , Mokaleng B , Mokgethi P , Choga WT , Moraka NO , Pretorius-Holme M , Mine MO , Raizes E , Molebatsi K , Motswaledi MS , Gobe I , Mohammed T , Gaolathe T , Shapiro R , Mmalane M , Makhema JM , Lockman S , Essex M , Novitsky V , Gaseitsiwe S . J Antimicrob Chemother 2022 77 (5) 1385-1395 ![]() OBJECTIVES: To assess whether a single instance of low-level viraemia (LLV) is associated with the presence of drug resistance mutations (DRMs) and predicts subsequent virological failure (VF) in adults receiving ART in 30 communities participating in the Botswana Combination Prevention Project. METHODS: A total of 6078 HIV-1 C pol sequences were generated and analysed using the Stanford HIV drug resistance database. LLV was defined as plasma VL = 51-999 copies/mL and VF was defined as plasma VL ≥ 1000 copies/mL. RESULTS: Among 6078 people with HIV (PWH), 4443 (73%) were on ART for at least 6 months. Of the 332 persons on ART with VL > 50 copies/mL, 175 (4%) had VL ≥ 1000 copies/mL and 157 (4%) had LLV at baseline. The prevalence of any DRM was 57 (36%) and 78 (45%) in persons with LLV and VL ≥ 1000 copies/mL, respectively. Major DRMs were found in 31 (20%) with LLV and 53 (30%) with VL ≥ 1000 copies/mL (P = 0.04). Among the 135 PWH with at least one DRM, 17% had NRTI-, 35% NNRTI-, 6% PI- and 3% INSTI-associated mutations. Among the 3596 participants who were followed up, 1709 (48%) were on ART for ≥6 months at entry and had at least one subsequent VL measurement (median 29 months), 43 (3%) of whom had LLV. The OR of experiencing VF in persons with LLV at entry was 36-fold higher than in the virally suppressed group. CONCLUSIONS: A single LLV measurement while on ART strongly predicted the risk of future VF, suggesting the use of VL > 50 copies/mL as an indication for more intensive adherence support with more frequent VL monitoring. |
Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants - United States, June 2021-January 2022.
Lambrou AS , Shirk P , Steele MK , Paul P , Paden CR , Cadwell B , Reese HE , Aoki Y , Hassell N , Caravas J , Kovacs NA , Gerhart JG , Ng HJ , Zheng XY , Beck A , Chau R , Cintron R , Cook PW , Gulvik CA , Howard D , Jang Y , Knipe K , Lacek KA , Moser KA , Paskey AC , Rambo-Martin BL , Nagilla RR , Rethchless AC , Schmerer MW , Seby S , Shephard SS , Stanton RA , Stark TJ , Uehara A , Unoarumhi Y , Bentz ML , Burhgin A , Burroughs M , Davis ML , Keller MW , Keong LM , Le SS , Lee JS , Madden Jr JC , Nobles S , Owouor DC , Padilla J , Sheth M , Wilson MM , Talarico S , Chen JC , Oberste MS , Batra D , McMullan LK , Halpin AL , Galloway SE , MacCannell DR , Kondor R , Barnes J , MacNeil A , Silk BJ , Dugan VG , Scobie HM , Wentworth DE . MMWR Morb Mortal Wkly Rep 2022 71 (6) 206-211 ![]() ![]() Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.(†) The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice. |
COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence - 25 U.S. Jurisdictions, April 4-December 25, 2021.
Johnson AG , Amin AB , Ali AR , Hoots B , Cadwell BL , Arora S , Avoundjian T , Awofeso AO , Barnes J , Bayoumi NS , Busen K , Chang C , Cima M , Crockett M , Cronquist A , Davidson S , Davis E , Delgadillo J , Dorabawila V , Drenzek C , Eisenstein L , Fast HE , Gent A , Hand J , Hoefer D , Holtzman C , Jara A , Jones A , Kamal-Ahmed I , Kangas S , Kanishka F , Kaur R , Khan S , King J , Kirkendall S , Klioueva A , Kocharian A , Kwon FY , Logan J , Lyons BC , Lyons S , May A , McCormick D , Mendoza E , Milroy L , O'Donnell A , Pike M , Pogosjans S , Saupe A , Sell J , Smith E , Sosin DM , Stanislawski E , Steele MK , Stephenson M , Stout A , Strand K , Tilakaratne BP , Turner K , Vest H , Warner S , Wiedeman C , Zaldivar A , Silk BJ , Scobie HM . MMWR Morb Mortal Wkly Rep 2022 71 (4) 132-138 Previous reports of COVID-19 case, hospitalization, and death rates by vaccination status() indicate that vaccine protection against infection, as well as serious COVID-19 illness for some groups, declined with the emergence of the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, and waning of vaccine-induced immunity (1-4). During August-November 2021, CDC recommended() additional primary COVID-19 vaccine doses among immunocompromised persons and booster doses among persons aged 18 years (5). The SARS-CoV-2 B.1.1.529 (Omicron) variant emerged in the United States during December 2021 (6) and by December 25 accounted for 72% of sequenced lineages (7). To assess the impact of full vaccination with additional and booster doses (booster doses),() case and death rates and incidence rate ratios (IRRs) were estimated among unvaccinated and fully vaccinated adults by receipt of booster doses during pre-Delta (April-May 2021), Delta emergence (June 2021), Delta predominance (July-November 2021), and Omicron emergence (December 2021) periods in the United States. During 2021, averaged weekly, age-standardized case IRRs among unvaccinated persons compared with fully vaccinated persons decreased from 13.9 pre-Delta to 8.7 as Delta emerged, and to 5.1 during the period of Delta predominance. During October-November, unvaccinated persons had 13.9 and 53.2 times the risks for infection and COVID-19-associated death, respectively, compared with fully vaccinated persons who received booster doses, and 4.0 and 12.7 times the risks compared with fully vaccinated persons without booster doses. When the Omicron variant emerged during December 2021, case IRRs decreased to 4.9 for fully vaccinated persons with booster doses and 2.8 for those without booster doses, relative to October-November 2021. The highest impact of booster doses against infection and death compared with full vaccination without booster doses was recorded among persons aged 50-64 and 65 years. Eligible persons should stay up to date with COVID-19 vaccinations. |
Cost assessment of a program for laboratory testing of plasma trans-fatty acids in Thailand
Datta BK , Aekplakorn W , Chittamma A , Meemeaw P , Vesper H , Kuiper HC , Steele L , Cobb LK , Li C , Husain MJ , Ketgudee L , Kostova D , Richter P . Public Health Pract (Oxf) 2021 2 100199 Objectives: Intake of trans fatty acids (TFA) increases the risk of cardiovascular disease. Assessment of TFA exposure in the population is key for determining TFA burden and monitoring change over time. One approach for TFA monitoring is measurement of TFA levels in plasma. Understanding costs associated with this approach can facilitate program planning, implementation and scale-up. This report provides an assessment of costs associated with a pilot program to measure plasma TFA levels in Thailand. Study design: Cost analysis in a laboratory facility in Thailand. Methods: We defined three broad cost modules: laboratory, personnel, and facility costs, which were further classified into sub-components and into fixed and variable categories. Costs were estimated based on the number of processed plasma samples (100–2700 in increments of 50) per year over a certain number of years (1–5), in both USD and Thai Baht. Total cost and average costs per sample were estimated across a range of samples processed. Results: The average cost per sample of analyzing 900 samples annually over 5 years was estimated at USD186. Laboratory, personnel, and facility costs constitute 67%, 23%, and 10% of costs, respectively. The breakdown across fixed costs, such as laboratory instruments and personnel, and variable costs, such as chemical supplies, was 60% and 40%, respectively. Average costs decline as more samples are processed: the cost per sample for analyzing 100, 500, 1500, and 2500 samples per year over 5 years is USD1351, USD301, USD195; and USD177, respectively. Conclusions: Laboratory analysis of plasma TFA levels has high potential for economies of scale, encouraging a long-term approach to TFA monitoring initiatives, particularly in countries that already maintain national biometric repositories. © 2021 The Authors |
Relationship Between Ultraprocessed Food Intake and Cardiovascular Health Among U.S. Adolescents: Results From the National Health and Nutrition Examination Survey 2007-2018
Zhang Z , Jackson SL , Steele EM , Gillespie C , Yang Q . J Adolesc Health 2021 70 (2) 249-257 PURPOSE: Studies of the association between ultraprocessed foods (UPF) and cardiovascular disease risk factors have been mainly focused on the adult population. This study examined the association between usual percentage of calories (%kcal) from UPF and the American Heart Association's seven cardiovascular health (CVH) metrics among U.S. adolescents aged 12-19 years. METHODS: We used data from the National Health and Nutrition Examination Survey 2007-2018 (n = 5,565). The NOVA food system was used to classify UPF according to the extent and purpose of food processing. Each CVH metric was given a score of 0, 1, or 2 (poor, intermediate, or ideal health, respectively). Scores of six metrics were summed (excluding diet) to categorize CVH as low (0-7), moderate (8-10), or high (11-12). The National Cancer Institute's methods were used to estimate usual %kcal from UPF. Multivariable linear regression and multinomial logistic regression were used to evaluate the association between UPF and CVH. RESULTS: Among youth, 12.1% had low CVH, 56.3% moderate, and 31.6% high. The mean usual %kcal from UPF was 65.7%. Every 5% increase in calories from UPF was associated with .13 points lower CVH scores (p < .001). Comparing Q2, Q3, and Q4 to Q1 of UPF intake, the adjusted odds ratios for low versus high CVH were 1.43 (95% confidence interval 1.16-1.76), 1.86 (1.29-2.66), and 2.59 (1.49-4.55), respectively. The pattern of association was largely consistent across subgroups. CONCLUSIONS: U.S. adolescents consume about two thirds of daily calorie from UPF. There was a graded inverse association between %kcal from UPF and CVH score. |
Effectiveness of mRNA Covid-19 Vaccine among U.S. Health Care Personnel.
Pilishvili T , Gierke R , Fleming-Dutra KE , Farrar JL , Mohr NM , Talan DA , Krishnadasan A , Harland KK , Smithline HA , Hou PC , Lee LC , Lim SC , Moran GJ , Krebs E , Steele MT , Beiser DG , Faine B , Haran JP , Nandi U , Schrading WA , Chinnock B , Henning DJ , Lovecchio F , Lee J , Barter D , Brackney M , Fridkin SK , Marceaux-Galli K , Lim S , Phipps EC , Dumyati G , Pierce R , Markus TM , Anderson DJ , Debes AK , Lin MY , Mayer J , Kwon JH , Safdar N , Fischer M , Singleton R , Chea N , Magill SS , Verani JR , Schrag SJ . N Engl J Med 2021 385 (25) e90 BACKGROUND: The prioritization of U.S. health care personnel for early receipt of messenger RNA (mRNA) vaccines against severe acute respiratory disease coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), allowed for the evaluation of the effectiveness of these new vaccines in a real-world setting. METHODS: We conducted a test-negative case-control study involving health care personnel across 25 U.S. states. Cases were defined on the basis of a positive polymerase-chain-reaction (PCR) or antigen-based test for SARS-CoV-2 and at least one Covid-19-like symptom. Controls were defined on the basis of a negative PCR test for SARS-CoV-2, regardless of symptoms, and were matched to cases according to the week of the test date and site. Using conditional logistic regression with adjustment for age, race and ethnic group, underlying conditions, and exposures to persons with Covid-19, we estimated vaccine effectiveness for partial vaccination (assessed 14 days after receipt of the first dose through 6 days after receipt of the second dose) and complete vaccination (assessed ≥7 days after receipt of the second dose). RESULTS: The study included 1482 case participants and 3449 control participants. Vaccine effectiveness for partial vaccination was 77.6% (95% confidence interval [CI], 70.9 to 82.7) with the BNT162b2 vaccine (Pfizer-BioNTech) and 88.9% (95% CI, 78.7 to 94.2) with the mRNA-1273 vaccine (Moderna); for complete vaccination, vaccine effectiveness was 88.8% (95% CI, 84.6 to 91.8) and 96.3% (95% CI, 91.3 to 98.4), respectively. Vaccine effectiveness was similar in subgroups defined according to age (<50 years or ≥50 years), race and ethnic group, presence of underlying conditions, and level of patient contact. Estimates of vaccine effectiveness were lower during weeks 9 through 14 than during weeks 3 through 8 after receipt of the second dose, but confidence intervals overlapped widely. CONCLUSIONS: The BNT162b2 and mRNA-1273 vaccines were highly effective under real-world conditions in preventing symptomatic Covid-19 in health care personnel, including those at risk for severe Covid-19 and those in racial and ethnic groups that have been disproportionately affected by the pandemic. (Funded by the Centers for Disease Control and Prevention.). |
Boston biorepository, recruitment and integrative network (BBRAIN): A resource for the Gulf War Illness scientific community.
Keating D , Zundel CG , Abreu M , Krengel M , Aenlle K , Nichols D , Toomey R , Chao LL , Golier J , Abdullah L , Quinn E , Heeren T , Groh JR , Koo BB , Killiany R , Loggia ML , Younger J , Baraniuk J , Janulewicz P , Ajama J , Quay M , Baas PW , Qiang L , Conboy L , Kokkotou E , O'Callaghan JP , Steele L , Klimas N , Sullivan K . Life Sci 2021 284 119903 ![]() ![]() AIMS: Gulf War Illness (GWI), a chronic debilitating disorder characterized by fatigue, joint pain, cognitive, gastrointestinal, respiratory, and skin problems, is currently diagnosed by self-reported symptoms. The Boston Biorepository, Recruitment, and Integrative Network (BBRAIN) is the collaborative effort of expert Gulf War Illness (GWI) researchers who are creating objective diagnostic and pathobiological markers and recommend common data elements for GWI research. MAIN METHODS: BBRAIN is recruiting 300 GWI cases and 200 GW veteran controls for the prospective study. Key data and biological samples from prior GWI studies are being merged and combined into retrospective datasets. They will be made available for data mining by the BBRAIN network and the GWI research community. Prospective questionnaire data include general health and chronic symptoms, demographics, measures of pain, fatigue, medical conditions, deployment and exposure histories. Available repository biospecimens include blood, plasma, serum, saliva, stool, urine, human induced pluripotent stem cells and cerebrospinal fluid. KEY FINDINGS: To date, multiple datasets have been merged and combined from 15 participating study sites. These data and samples have been collated and an online request form for repository requests as well as recommended common data elements have been created. Data and biospecimen sample requests are reviewed by the BBRAIN steering committee members for approval as they are received. SIGNIFICANCE: The BBRAIN repository network serves as a much needed resource for GWI researchers to utilize for identification and validation of objective diagnostic and pathobiological markers of the illness. |
Estimating Under-recognized COVID-19 Deaths, United States, March 2020-May 2021 using an Excess Mortality Modelling Approach.
Iuliano AD , Chang HH , Patel NN , Threlkel R , Kniss K , Reich J , Steele M , Hall AJ , Fry AM , Reed C . Lancet Reg Health Am 2021 1 100019 ![]() BACKGROUND: In the United States, Coronavirus Disease 2019 (COVID-19) deaths are captured through the National Notifiable Disease Surveillance System and death certificates reported to the National Vital Statistics System (NVSS). However, not all COVID-19 deaths are recognized and reported because of limitations in testing, exacerbation of chronic health conditions that are listed as the cause of death, or delays in reporting. Estimating deaths may provide a more comprehensive understanding of total COVID-19-attributable deaths. METHODS: We estimated COVID-19 unrecognized attributable deaths, from March 2020-April 2021, using all-cause deaths reported to NVSS by week and six age groups (0-17, 18-49, 50-64, 65-74, 75-84, and ≥85 years) for 50 states, New York City, and the District of Columbia using a linear time series regression model. Reported COVID-19 deaths were subtracted from all-cause deaths before applying the model. Weekly expected deaths, assuming no SARS-CoV-2 circulation and predicted all-cause deaths using SARS-CoV-2 weekly percent positive as a covariate were modelled by age group and including state as a random intercept. COVID-19-attributable unrecognized deaths were calculated for each state and age group by subtracting the expected all-cause deaths from the predicted deaths. FINDINGS: We estimated that 766,611 deaths attributable to COVID-19 occurred in the United States from March 8, 2020-May 29, 2021. Of these, 184,477 (24%) deaths were not documented on death certificates. Eighty-two percent of unrecognized deaths were among persons aged ≥65 years; the proportion of unrecognized deaths were 0•24-0•31 times lower among those 0-17 years relative to all other age groups. More COVID-19-attributable deaths were not captured during the early months of the pandemic (March-May 2020) and during increases in SARS-CoV-2 activity (July 2020, November 2020-February 2021). DISCUSSION: Estimating COVID-19-attributable unrecognized deaths provides a better understanding of the COVID-19 mortality burden and may better quantify the severity of the COVID-19 pandemic. FUNDING: None. |
Genomic Surveillance for SARS-CoV-2 Variants Circulating in the United States, December 2020-May 2021.
Paul P , France AM , Aoki Y , Batra D , Biggerstaff M , Dugan V , Galloway S , Hall AJ , Johansson MA , Kondor RJ , Halpin AL , Lee B , Lee JS , Limbago B , MacNeil A , MacCannell D , Paden CR , Queen K , Reese HE , Retchless AC , Slayton RB , Steele M , Tong S , Walters MS , Wentworth DE , Silk BJ . MMWR Morb Mortal Wkly Rep 2021 70 (23) 846-850 ![]() SARS-CoV-2, the virus that causes COVID-19, is constantly mutating, leading to new variants (1). Variants have the potential to affect transmission, disease severity, diagnostics, therapeutics, and natural and vaccine-induced immunity. In November 2020, CDC established national surveillance for SARS-CoV-2 variants using genomic sequencing. As of May 6, 2021, sequences from 177,044 SARS-CoV-2-positive specimens collected during December 20, 2020-May 6, 2021, from 55 U.S. jurisdictions had been generated by or reported to CDC. These included 3,275 sequences for the 2-week period ending January 2, 2021, compared with 25,000 sequences for the 2-week period ending April 24, 2021 (0.1% and 3.1% of reported positive SARS-CoV-2 tests, respectively). Because sequences might be generated by multiple laboratories and sequence availability varies both geographically and over time, CDC developed statistical weighting and variance estimation methods to generate population-based estimates of the proportions of identified variants among SARS-CoV-2 infections circulating nationwide and in each of the 10 U.S. Department of Health and Human Services (HHS) geographic regions.* During the 2-week period ending April 24, 2021, the B.1.1.7 and P.1 variants represented an estimated 66.0% and 5.0% of U.S. SARS-CoV-2 infections, respectively, demonstrating the rise to predominance of the B.1.1.7 variant of concern(†) (VOC) and emergence of the P.1 VOC in the United States. Using SARS-CoV-2 genomic surveillance methods to analyze surveillance data produces timely population-based estimates of the proportions of variants circulating nationally and regionally. Surveillance findings demonstrate the potential for new variants to emerge and become predominant, and the importance of robust genomic surveillance. Along with efforts to characterize the clinical and public health impact of SARS-CoV-2 variants, surveillance can help guide interventions to control the COVID-19 pandemic in the United States. |
Adaptation of an electronic dashboard to monitor HIV viral load testing in Cte d'Ivoire
Kirk M , Assoa PH , Iiams-Hauser C , Kouabenan YR , Antilla J , Steele-Lane C , Rossum G , Komena P , Ngatchou PS , Abiola N , Kouakou A , Pongathie A , Koffi JB , Adje C , Perrone LA . Afr J Lab Med 2021 10 (1) 1284 Background: The Ministère de le Santé et de l'Hygiène Publique in Côte d'Ivoire and the international community have invested in health information systems in Côte d'Ivoire since 2009, including electronic laboratory information systems. These systems have been implemented in more than 80 laboratories to date and capture all test results produced from these laboratories, including HIV viral load (VL) testing. In 2018 the national HIV programme in Côte d'Ivoire requested international support to develop real-time tools such as dashboards to aggregate and display test-specific data such as HIV VL testing to support the country's programmatic response to HIV. Intervention: The VL dashboard was adapted in 2018 using source software code obtained from the Kenyan Ministry of Health and modified for the Ivorian context. The dashboard enables users to assess relevant clinical data from all Ivoirians living with HIV who undergo VL testing through dashboard data visualisations, including the number of VL tests, kinds of samples tested, and VL levels stratified by demographics and geographic location. Lessons learnt: The VL dashboard enables rapid analysis of VL testing data from across the country and enables the national HIV programme, donors and partners to respond rapidly to issues pertaining to access, turn-around times and others. Recommendations: Adapting existing open-source software is an effective and efficient way to implement transformative tools such as dashboards. The VL dashboard will likely be an essential tool for Côte d'Ivoire to meet the United Nations Programme on HIV/AIDS 90-90-90 targets. |
Interim Estimates of Vaccine Effectiveness of Pfizer-BioNTech and Moderna COVID-19 Vaccines Among Health Care Personnel - 33 U.S. Sites, January-March 2021.
Pilishvili T , Fleming-Dutra KE , Farrar JL , Gierke R , Mohr NM , Talan DA , Krishnadasan A , Harland KK , Smithline HA , Hou PC , Lee LC , Lim SC , Moran GJ , Krebs E , Steele M , Beiser DG , Faine B , Haran JP , Nandi U , Schrading WA , Chinnock B , Henning DJ , LoVecchio F , Nadle J , Barter D , Brackney M , Britton A , Marceaux-Galli K , Lim S , Phipps EC , Dumyati G , Pierce R , Markus TM , Anderson DJ , Debes AK , Lin M , Mayer J , Babcock HM , Safdar N , Fischer M , Singleton R , Chea N , Magill SS , Verani J , Schrag S . MMWR Morb Mortal Wkly Rep 2021 70 (20) 753-758 Throughout the COVID-19 pandemic, health care personnel (HCP) have been at high risk for exposure to SARS-CoV-2, the virus that causes COVID-19, through patient interactions and community exposure (1). The Advisory Committee on Immunization Practices recommended prioritization of HCP for COVID-19 vaccination to maintain provision of critical services and reduce spread of infection in health care settings (2). Early distribution of two mRNA COVID-19 vaccines (Pfizer-BioNTech and Moderna) to HCP allowed assessment of the effectiveness of these vaccines in a real-world setting. A test-negative case-control study is underway to evaluate mRNA COVID-19 vaccine effectiveness (VE) against symptomatic illness among HCP at 33 U.S. sites across 25 U.S. states. Interim analyses indicated that the VE of a single dose (measured 14 days after the first dose through 6 days after the second dose) was 82% (95% confidence interval [CI] = 74%-87%), adjusted for age, race/ethnicity, and underlying medical conditions. The adjusted VE of 2 doses (measured ≥7 days after the second dose) was 94% (95% CI = 87%-97%). VE of partial (1-dose) and complete (2-dose) vaccination in this population is comparable to that reported from clinical trials and recent observational studies, supporting the effectiveness of mRNA COVID-19 vaccines against symptomatic disease in adults, with strong 2-dose protection. |
Cost-effectiveness of pediatric norovirus vaccination in daycare settings
Steimle LN , Havumaki J , Eisenberg MC , Eisenberg JNS , Prosser LA , Pike J , Ortega-Sanchez IR , Mattison CP , Hall AJ , Steele MK , Lopman BA , Hutton DW . Vaccine 2021 39 (15) 2133-2145 OBJECTIVE: Noroviruses are the leading cause of acute gastroenteritis in the United States and outbreaks frequently occur in daycare settings. Results of norovirus vaccine trials have been promising, however there are open questions as to whether vaccination of daycare children would be cost-effective. We investigated the incremental cost-effectiveness of a hypothetical norovirus vaccination for children in daycare settings compared to no vaccination. METHODS: We conducted a model-based cost-effectiveness analysis using a disease transmission model of children attending daycare. Vaccination with a 90% coverage rate in addition to the observed standard of care (exclusion of symptomatic children from daycare) was compared to the observed standard of care. The main outcomes measures were infections and deaths averted, quality-adjusted life years (QALYs), costs, and incremental cost-effectiveness ratio (ICER). Cost-effectiveness was analyzed from a societal perspective, including medical costs to children as well as productivity losses of parents, over a two-year time horizon. Data sources included outbreak surveillance data and published literature. RESULTS: A 50% efficacious norovirus vaccine averts 571.83 norovirus cases and 0.003 norovirus-related deaths per 10,000 children compared to the observed standard of care. A $200 norovirus vaccine that is 50% efficacious has a net cost increase of $178.10 per child and 0.025 more QALYs, resulting in an ICER of $7,028/QALY. Based on the probabilistic sensitivity analysis, we estimated that a $200 vaccination with 50% efficacy was 94.0% likely to be cost-effective at a willingness-to-pay of $100,000/QALY threshold and 95.3% likely at a $150,000/QALY threshold. CONCLUSION: Due to the large disease burden associated with norovirus, it is likely that vaccinating children in daycares could be cost-effective, even with modest vaccine efficacy and a high per-child cost of vaccination. Norovirus vaccination of children in daycare has a cost-effectiveness ratio similar to other commonly recommended childhood vaccines. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jan 27, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure