Last data update: Oct 15, 2024. (Total: 47902 publications since 2009)
Records 1-30 (of 128 Records) |
Query Trace: Steel J[original query] |
---|
Absence of lung tumor promotion with reduced tumor size in mice after inhalation of copper welding fumes
Zeidler-Erdely PC , Kodali V , Falcone LM , Mercer R , Leonard SS , Stefaniak AB , Grose L , Salmen R , Trainor-DeArmitt T , Battelli LA , McKinney W , Stone S , Meighan TG , Betler E , Friend S , Hobbie KR , Service S , Kashon M , Antonini JM , Erdely A . Carcinogenesis 2024 Welding fumes are a Group 1 (carcinogenic to humans) carcinogen as classified by the International Agency for Research on Cancer. The process of welding creates inhalable fumes rich in iron (Fe) that may also contain known carcinogenic metals such as chromium (Cr) and nickel (Ni). Epidemiological evidence has shown that both mild-steel (Fe-rich) and stainless steel (Fe-rich + Cr + Ni) welding fume exposure increase lung cancer risk, and experimental animal data support these findings. Copper-nickel (CuNi) welding processes have not been investigated in the context of lung cancer. Cu is intriguing, however, given the role of Cu in carcinogenesis and cancer therapeutics. This study examines the potential for a CuNi fume to induce mechanistic key characteristics of carcinogenesis in vitro and to promote lung tumorigenesis, using a two-stage mouse bioassay, in vivo. Male A/J mice, initiated with 3-methylcholanthrene (MCA; 10 µg/g), were exposed to CuNi fumes or air by whole-body inhalation for nine weeks (low-deposition-LD and high deposition-HD) then sacrificed at 30 weeks. In BEAS-2B cells, the CuNi fume induced micronuclei and caused DNA damage as measured by γ-H2AX. The fume exhibited high reactivity and a dose response in cytotoxicity and oxidative stress. In vivo, MCA/CuNi HD and LD significantly decreased lung tumor size and adenomas. MCA/CuNi HD exposure significantly decreased gross-evaluated tumor number. In summary, the CuNi fume in vitro exhibited characteristics of a carcinogen, but in vivo the exposure resulted in smaller tumors, fewer adenomas, less hyperplasia severity, and with the HD exposure, less overall lung lesion/tumors. |
Multicountry spread of influenza A(H1N1)pdm09 viruses with reduced oseltamivir inhibition, May 2023-February 2024
Patel MC , Nguyen HT , Pascua PNQ , Gao R , Steel J , Kondor RJ , Gubareva LV . Emerg Infect Dis 2024 30 (7) 1410-1415 Since May 2023, a novel combination of neuraminidase mutations, I223V + S247N, has been detected in influenza A(H1N1)pdm09 viruses collected in countries spanning 5 continents, mostly in Europe (67/101). The viruses belong to 2 phylogenetically distinct groups and display ≈13-fold reduced inhibition by oseltamivir while retaining normal susceptibility to other antiviral drugs. |
Size Separation of Amosite by Filtration and Shaking Methods
Lee T , Walker R , Hummer J , Ashley E , Mischler S . Asbestos Other Elongate Miner Part (2021) 12/28/2021 1632 265-280 The objectives of this study are (1) to separate fibrous grunerite (amosite) by its length using filtration and shaking techniques utilized in a previous study and (2) to create two distinct length groups (short and long) of the amosite with higher output in a cost-effective way. The shaking system included an electrodynamic exciter, a linear power amplifier, and an audio-frequency signal generator and was attached to a cowl sampler as a funnel loaded with a polycarbonate filter. A suspension of amosite was passed through the 10-μm pore size polycarbonate filter in the shaking system and was transferred to a filtration system through five different pore sizes of polycarbonate membrane filters in series from the top: 10-, 5-, 2-, 1-, and 0.2-μm pore sizes. Each polycarbonate filter was tightly clamped with two conductive 25-mm spacers with a 25-mm stainless steel support screen to prevent leakage. The amosite length and diameter were manually measured with images from a field emission scanning electron microscope (FESEM). A sequence of fields was selected at random locations, and an image of each field was acquired. The length and width of approximately 500 fibers for each sample were measured with ImageJ software. Two significantly different length groups (short and long) of amosite were collected (p <0.05). Approximately 95% of separated amosite (n = 499) using the filtration system were shorter than 5 μm (short fiber group), and approximately 80% of separated amosite (n = 503) using the shaking system were longer than 5 μm (long fiber group). |
TERT-independent telomere elongation and shelterin dysregulation after pulmonary exposure to stainless-steel welding fume in-vivo
Shoeb M , Meighan T , Kodali VK , Abadin H , Faroon O , Zarus GM , Erdely A , Antonini JM . Environ Res 2024 118515 Telomeres are inert DNA sequences (TTAGGG) at the end of chromosomes that protect genetic information and maintain DNA integrity. Emerging evidence has demonstrated that telomere alteration can be closely related to occupational exposure and the development of various disease conditions, including cancer. However, the functions and underlying molecular mechanisms of telomere alteration and shelterin dysregulation after welding fume exposures have not been broadly defined. In this study, we analyzed telomere length and shelterin complex proteins in peripheral blood mononuclear cells (PBMCs) and in lung tissue recovered from male Sprague-Dawley rats following exposure by intratracheal instillation (ITI) to 2 mg/rat of manual metal arc-stainless steel (MMA-SS) welding fume particulate or saline (vehicle control). PBMCs and lung tissue were harvested at 30 d after instillation. Our study identified telomere elongation and shelterin dysregulation in PBMCs and lung tissue after welding fume exposure. Mechanistically, telomere elongation was independent of telomerase reverse transcriptase (TERT) activation. Collectively, our findings demonstrated that welding fume-induced telomere elongation was (a) TERT-independent and (b) associated with shelterin complex dysregulation. It is possible that an alteration of telomere length and its regulatory proteins may be utilized as predictive biomarkers for various disease conditions after welding fume exposure. This needs further investigation. |
An impedance-loaded surface acoustic wave corrosion sensor for infrastructure monitoring
Devkota J , Greve DW , Diemler N , Pingree R , Wright R . Sensors (Basel) 2024 24 (3) Passive surface acoustic wave (SAW) devices are attractive candidates for continuous wireless monitoring of corrosion in large infrastructures. However, acoustic loss in the aqueous medium and limited read range usually create challenges in their widespread use for monitoring large systems such as oil and gas (O&G) pipelines, aircraft, and processing plants. This paper presents the investigation of impedance-loaded reflective delay line (IL-RDL) SAW devices for monitoring metal corrosion under O&G pipeline-relevant conditions. Specifically, we studied the effect of change in resistivity of a reflector on the backscattered signal of an RDL and investigated an optimal range through simulation. This was followed by the experimental demonstrations of real-time monitoring of Fe film corrosion in pressurized (550 psi) humid CO(2) conditions. Additionally, remote monitoring of Fe film corrosion in an acidic solution inside a 70 m carbon steel pipe was demonstrated using guided waves. This paper also suggests potential ways to improve the sensing response of IL-RDLs. |
Lung toxicity, deposition, and clearance of thermal spray coating particles with different metal profiles after inhalation in rats
Antonini JM , Kodali V , Meighan TG , McKinney W , Cumpston JL , Leonard HD , Cumpston JB , Friend S , Leonard SS , Andrews R , Zeidler-Erdely PC , Erdely A , Lee EG , Afshari AA . Nanotoxicology 2023 1-18 Thermal spray coating is a process in which molten metal is sprayed onto a surface. Little is known about the health effects associated with these aerosols. Sprague-Dawley rats were exposed to aerosols (25 mg/m(3) × 4 hr/d × 4 d) generated during thermal spray coating using different consumables [i.e. stainless-steel wire (PMET731), Ni-based wire (PMET885), Zn-based wire (PMET540)]. Control animals received air. Bronchoalveolar lavage was performed at 4 and 30 d post-exposure to assess lung toxicity. The particles were chain-like agglomerates and similar in size (310-378 nm). Inhalation of PMET885 aerosol caused a significant increase in lung injury and inflammation at both time points. Inhalation of PMET540 aerosol caused a slight but significant increase in lung toxicity at 4 but not 30 d. Exposure to PMET731 aerosol had no effect on lung toxicity. Overall, the lung responses were in the order: PMET885≫PMET540 >PMT731. Following a shorter exposure (25 mg/m(3) × 4 h/d × 1d), lung burdens of metals from the different aerosols were determined by ICP-AES at 0, 1, 4 and 30 d post-exposure. Zn was cleared from the lungs at the fastest rate with complete clearance by 4 d post-exposure. Ni, Cr, and Mn had similar rates of clearance as nearly half of the deposited metal was cleared by 4 d. A small but significant percentage of each of these metals persisted in the lungs at 30 d. The pulmonary clearance of Fe was difficult to assess because of inherently high levels of Fe in control lungs. |
Structural basis of the American mink ACE2 binding by Y453F trimeric spike glycoproteins of SARS-CoV-2
Ahn H , Calderon BM , Fan X , Gao Y , Horgan NL , Jiang N , Blohm DS , Hossain J , Rayyan NWK , Osman SH , Lin X , Currier M , Steel J , Wentworth DE , Zhou B , Liang B . J Med Virol 2023 95 (10) e29163 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) enters the host cell by binding to angiotensin-converting enzyme 2 (ACE2). While evolutionarily conserved, ACE2 receptors differ across various species and differential interactions with Spike (S) glycoproteins of SARS-CoV-2 viruses impact species specificity. Reverse zoonoses led to SARS-CoV-2 outbreaks on multiple American mink (Mustela vison) farms during the pandemic and gave rise to mink-associated S substitutions known for transmissibility between mink and zoonotic transmission to humans. In this study, we used bio-layer interferometry (BLI) to discern the differences in binding affinity between multiple human and mink-derived S glycoproteins of SARS-CoV-2 and their respective ACE2 receptors. Further, we conducted a structural analysis of a mink variant S glycoprotein and American mink ACE2 (mvACE2) using cryo-electron microscopy (cryo-EM), revealing four distinct conformations. We discovered a novel intermediary conformation where the mvACE2 receptor is bound to the receptor-binding domain (RBD) of the S glycoprotein in a "down" position, approximately 34° lower than previously reported "up" RBD. Finally, we compared residue interactions in the S-ACE2 complex interface of S glycoprotein conformations with varying RBD orientations. These findings provide valuable insights into the molecular mechanisms of SARS-CoV-2 entry. |
Incomplete influenza A virus genomes are abundant but readily complemented during spatially structured viral spread (preprint)
Jacobs NT , Onuoha NO , Antia A , Antia R , Steel J , Antia R , Lowen AC . bioRxiv 2019 529065 Viral genomes comprising multiple distinct RNA segments can undergo genetic exchange through reassortment, a process that facilitates viral evolution and can have major epidemiological consequences. Segmentation also allows the replication of incomplete viral genomes (IVGs), however, and evidence suggests that IVGs occur frequently for influenza A viruses. Here we quantified the frequency of IVGs using a novel single cell assay and then examined their implications for viral fitness. We found that each segment of influenza A/Panama/2007/99 (H3N2) virus has only a 58% probability of being present in a cell infected with a single virion. These observed frequencies accurately account for the abundant reassortment seen in co-infection, and suggest that an average of 3.7 particles are required for replication of a full viral genome in a cell. This dependence on multiple infection is predicted to decrease infectivity and to slow viral propagation in a well-mixed system. Importantly, however, modeling of spatially structured viral growth predicted that the need for complementation is met more readily when secondary spread occurs locally. This expectation was supported by experimental infections in which the level spatial structure was manipulated. Furthermore, a virus engineered to be entirely dependent on co-infection to replicate in vivo was found to grow robustly in guinea pigs, suggesting that coinfection is sufficiently common in vivo to support propagation of IVGs. The infectivity of this mutant virus was, however, reduced 815-fold relative wild-type and the mutant virus did not transmit to contacts. Thus, while incomplete genomes augment reassortment and contribute to within-host spread, the existence of rare complete IAV genomes may be critical for transmission to new hosts. |
A projectile concussive impact model produces neuroinflammation in both mild and moderate-severe traumatic brain injury
Michalovicz Lindsay T , Kelly Kimberly A , Craddock Travis JA , O’Callaghan James P . Brain Sci 2023 13 (4) 623 Traumatic brain injury (TBI) is a major cause of death and disability and is experienced by nearly 3 million people annually as a result of falls, vehicular accidents, or from being struck by or against an object. While TBIs can range in severity, the majority of injuries are considered to be mild. However, TBI of any severity has the potential to have long-lasting neurological effects, including headaches, cognitive/memory impairments, mood dysfunction, and fatigue as a result of neural damage and neuroinflammation. Here, we modified a projectile concussive impact (PCI) model of TBI to deliver a closed-head impact with variable severity dependent on the material of the ball-bearing projectile. Adult male Sprague Dawley rats were evaluated for neurobehavioral, neuroinflammatory, and neural damage endpoints both acutely and longer-term (up to 72 h) post-TBI following impact with either an aluminum or stainless-steel projectile. Animals that received TBI using the stainless-steel projectile exhibited outcomes strongly correlated to moderate-severe TBI, such as prolonged unconsciousness, impaired neurobehavior, increased risk for hematoma and death, as well as significant neuronal degeneration and neuroinflammation throughout the cortex, hippocampus, thalamus, and cerebellum. In contrast, rats that received TBI with the aluminum projectile exhibited characteristics more congruous with mild TBI, such as a trend for longer periods of unconsciousness in the absence of neurobehavioral deficits, a lack of neurodegeneration, and mild neuroinflammation. Moreover, alignment of cytokine mRNA expression from the cortex of these rats with a computational model of neuron–glia interaction found that the moderate-severe TBI produced by the stainless-steel projectile strongly associated with the neuroinflammatory state, while the mild TBI existed in a state between normal and inflammatory neuron–glia interactions. Thus, these modified PCI protocols are capable of producing TBIs that model the clinical and experimental manifestations associated with both moderate-severe and mild TBI producing relevant models for the evaluation of the potential underlying roles of neuroinflammation and other chronic pathophysiology in the long-term outcomes associated with TBI. |
Incomplete influenza A virus genomes occur frequently but are readily complemented during localized viral spread.
Jacobs NT , Onuoha NO , Antia A , Steel J , Antia R , Lowen AC . Nat Commun 2019 10 (1) 3526 Segmentation of viral genomes into multiple RNAs creates the potential for replication of incomplete viral genomes (IVGs). Here we use a single-cell approach to quantify influenza A virus IVGs and examine their fitness implications. We find that each segment of influenza A/Panama/2007/99 (H3N2) virus has a 58% probability of being replicated in a cell infected with a single virion. Theoretical methods predict that IVGs carry high costs in a well-mixed system, as 3.6 virions are required for replication of a full genome. Spatial structure is predicted to mitigate these costs, however, and experimental manipulations of spatial structure indicate that local spread facilitates complementation. A virus entirely dependent on co-infection was used to assess relevance of IVGs in vivo. This virus grows robustly in guinea pigs, but is less infectious and does not transmit. Thus, co-infection allows IVGs to contribute to within-host spread, but complete genomes may be critical for transmission. |
Changes in influenza and other respiratory virus activity during the COVID-19 pandemic-United States, 2020-2021.
Olsen SJ , Winn AK , Budd AP , Prill MM , Steel J , Midgley CM , Kniss K , Burns E , Rowe T , Foust A , Jasso G , Merced-Morales A , Davis CT , Jang Y , Jones J , Daly P , Gubareva L , Barnes J , Kondor R , Sessions W , Smith C , Wentworth DE , Garg S , Havers FP , Fry AM , Hall AJ , Brammer L , Silk BJ . Am J Transplant 2021 21 (10) 3481-3486 The COVID-19 pandemic and subsequent implementation of nonpharmaceutical interventions (e.g., cessation of global travel, mask use, physical distancing, and staying home) reduced the transmission of some viral respiratory pathogens.1 In the United States, influenza activity decreased in March 2020, was historically low through the summer of 2020,2 and remained low during October 2020–May 2021 (<0.4% of respiratory specimens with positive test results for each week of the season). Circulation of other respiratory pathogens, including respiratory syncytial virus (RSV), common human coronaviruses (HCoVs) types OC43, NL63, 229E, and HKU1, and parainfluenza viruses (PIVs) types 1–4 also decreased in early 2020 and did not increase until spring 2021. Human metapneumovirus (HMPV) circulation decreased in March 2020 and remained low through May 2021. Respiratory adenovirus (RAdV) circulated at lower levels throughout 2020 and as of early May 2021. Rhinovirus and enterovirus (RV/EV) circulation decreased in March 2020, remained low until May 2020, and then increased to near prepandemic seasonal levels. Circulation of respiratory viruses could resume at prepandemic levels after COVID-19 mitigation practices become less stringent. Clinicians should be aware of increases in some respiratory virus activity and remain vigilant for off-season increases. In addition to the use of everyday preventive actions, fall influenza vaccination campaigns are an important component of prevention as COVID-19 mitigation measures are relaxed and schools and workplaces resume in-person activities. |
An optimized cell-based assay to assess influenza virus replication by measuring neuraminidase activity and its applications for virological surveillance
Patel MC , Flanigan D , Feng C , Chesnokov A , Nguyen HT , Elal AA , Steel J , Kondor RJ , Wentworth DE , Gubareva LV , Mishin VP . Antiviral Res 2022 208 105457 Year-round virological characterization of circulating epidemic influenza viruses is conducted worldwide to detect the emergence of viruses that may escape pre-existing immunity or acquire resistance to antivirals. High throughput phenotypic assays are needed to complement the sequence-based analysis of circulating viruses and improve pandemic preparedness. The recent entry of a polymerase inhibitor, baloxavir, into the global market further highlighted this need. Here, we optimized a cell-based assay that considerably streamlines antiviral and antigenic testing by replacing lengthy immunostaining and imaging procedures used in current assay with measuring the enzymatic activity of nascent neuraminidase (NA) molecules expressed on the surface of virus-infected cells. For convenience, this new assay was named IRINA (Influenza Replication Inhibition Neuraminidase-based Assay). IRINA was successfully validated to assess inhibitory activity of baloxavir on virus replication by testing a large set (>150) of influenza A and B viruses, including drug resistant strains and viruses collected during 2017-2022. To test its versatility, IRINA was utilized to evaluate neutralization activity of a broadly reactive human anti-HA monoclonal antibody, FI6, and post-infection ferret antisera, as well as the inhibition of NA enzyme activity by NA inhibitors. Performance of IRINA was tested in parallel using respective conventional assays. IRINA offers an attractive alternative to current phenotypic assays, while maintaining reproducibility and high throughput capacity. Additionally, the improved turnaround time may prove to be advantageous when conducting time sensitive studies, such as investigating a new virus outbreak. This assay can meet the needs of surveillance laboratories by providing a streamlined and cost-effective approach for virus characterization. |
Analysis of steel prop supports subjected to vertical and lateral loading
Mohamed K , Batchler T . Min Metall Explor 2022 39 (5) 2001-2010 Standing supports have been used in coal mines for decades to enhance roof support capability. Sometimes standing supports are used as a tool to resist the lateral movement of spalled ribs. Researchers from the National Institute for Occupational Safety and Health (NIOSH) are conducting a testing program for different types of standing supports (steel and timber) to investigate the effect of lateral loading on their vertical loading capacities and the factors affecting their lateral loading capacities. In this paper, the mine roof simulator (MRS), at the NIOSH Pittsburgh research facility, was used to determine the response of steel props to vertical and horizontal loadings. Finite element models (FEMs) were developed and verified using the tested steel props. To justify the testing program for testing standing supports with end-conditions of rock-like materials, the verified prop models were used to study the effect of a wide range of roof and floor materials (gray shale, shale, and claystone) on the critical buckling loads of the steel props. Also, several lateral loading scenarios were evaluated in which the steel props were laterally loaded at different heights. The critical buckling load for steel props setting up against a claystone roof and floor was found to be one-half of that shown by the MRS test where roof and floor platens are made of steel. Minimum prop performance was observed when the lateral load was applied at the mid-height of the steel prop, especially at small lateral displacement (less than 2 in). 2022, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. |
Case studies of robots and automation as health/safety interventions in small manufacturing enterprises
Lowe BD , Hayden M , Albers J , Naber S . Hum Factors Ergon Manuf 2022 33 (1) 69-103 This article reviews the experiences of 63 case studies of small businesses (<250 employees) with manufacturing automation equipment acquired through a health/safety intervention grant program. The review scope included equipment technologies classified as industrial robots (n = 17), computer numerical control (CNC) machining (n = 29), or other programmable automation systems (n = 17). Descriptions of workers' compensation (WC) claim injuries and identified risk factors that motivated the acquisition of the equipment were extracted from grant applications. Other aspects of the employer experiences, including qualitative and quantitative assessment of effects on risk factors for musculoskeletal disorders (MSD), effects on productivity, and employee acceptance of the intervention were summarized from the case study reports. Case studies associated with a combination of large reduction in risk factors, lower cost per affected employee, and reported increases in productivity wereCNC stone cutting system, CNC/vertical machining system, automated system for bottling, CNC/routing system for plastics products manufacturing, and a CNC/Cutting system for vinyl/carpet. Six case studies of industrial robots reported quantitative reductions in MSD risk factors in these diverse manufacturing industries: snack foods; photographic film, paper, plate, and chemical; machine shops; leather goods and allied products; plastic products; and iron and steel forging. This review of health/safety intervention case studies indicates that advanced (programmable) manufacturing automation, including industrial robots, reduced workplace musculoskeletal risk factors, and improved process productivity in most cases. 2022 Wiley Periodicals LLC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. |
Hot surface ignition of liquid fuels under ventilation
Tang W , Bahrami D , Yuan L , Thomas R , Soles J . Min Metall Explor 2022 39 (3) 961-968 Mine equipment fires remain as one of the most concerning safety issues in the mining industry, and most equipment fires were caused by hot surface ignitions. Detailed experimental investigations were conducted at the NIOSH Pittsburgh Mining Research Division on hot surface ignition of liquid fuels under ventilation in a mining environment. Three types of metal surface materials (stainless steel, cast iron, carbon steel), three types of liquids (diesel fuel, hydraulic fluid, engine oil), four air ventilation speeds (0, 0.5, 1.5, 3 m/s) were used to study the hot surface ignition probability under these conditions. Visual observation and thermocouples attached on the metal surface were used to indicate the hot surface ignition from the measured temperatures. Results show that the type of metal has a noticeable effect on the hot surface ignition, while ventilation speed has a mixed influence on ignition. Different types of liquid fuels also show different ranges of ignition temperatures. Results from this work can be used to help understand equipment mine fires and develop mitigation strategies. |
In vivo and in vitro toxicity of a stainless-steel aerosol generated during thermal spray coating
Kodali V , Afshari A , Meighan T , McKinney W , Mazumder MHH , Majumder N , Cumpston JL , Leonard HD , Cumpston JB , Friend S , Leonard SS , Erdely A , Zeidler-Erdely PC , Hussain S , Lee EG , Antonini JM . Arch Toxicol 2022 96 (12) 3201-3217 Thermal spray coating is an industrial process in which molten metal is sprayed at high velocity onto a surface as a protective coating. An automated electric arc wire thermal spray coating aerosol generator and inhalation exposure system was developed to simulate an occupational exposure and, using this system, male Sprague-Dawley rats were exposed to stainless steel PMET720 aerosols at 25 mg/m(3) × 4 h/day × 9 day. Lung injury, inflammation, and cytokine alteration were determined. Resolution was assessed by evaluating these parameters at 1, 7, 14 and 28 d after exposure. The aerosols generated were also collected and characterized. Macrophages were exposed in vitro over a wide dose range (0-200 µg/ml) to determine cytotoxicity and to screen for known mechanisms of toxicity. Welding fumes were used as comparative particulate controls. In vivo lung damage, inflammation and alteration in cytokines were observed 1 day post exposure and this response resolved by day 7. Alveolar macrophages retained the particulates even after 28 day post-exposure. In line with the pulmonary toxicity findings, in vitro cytotoxicity and membrane damage in macrophages were observed only at the higher doses. Electron paramagnetic resonance showed in an acellular environment the particulate generated free radicals and a dose-dependent increase in intracellular oxidative stress and NF-kB/AP-1 activity was observed. PMET720 particles were internalized via clathrin and caveolar mediated endocytosis as well as actin-dependent pinocytosis/phagocytosis. The results suggest that compared to stainless steel welding fumes, the PMET 720 aerosols were not as overtly toxic, and the animals recovered from the acute pulmonary injury by 7 days. |
Lung toxicity profile of inhaled copper-nickel welding fume in A/J mice
Zeidler-Erdely PC , Erdely A , Kodali V , Andrews R , Antonini J , Trainor-DeArmitt T , Salmen R , Battelli L , Grose L , Kashon M , Service S , McKinney W , Stone S , Falcone L . Inhal Toxicol 2022 34 1-12 Objective: Stainless steel welding creates fumes rich in carcinogenic metals such as chromium (Cr). Welding consumables devoid of Cr are being produced in an attempt to limit worker exposures to toxic and carcinogenic metals. The study objective was to characterize a copper-nickel (Cu-Ni) fume generated using gas metal arc welding (GMAW) and determine the pulmonary deposition and toxicity of the fume in mice exposed by inhalation. Materials and Methods: Male A/J mice (6-8 weeks of age) were exposed to air or Cu-Ni welding fumes for 2 (low deposition) or 4 (high deposition) hours/day for 10 days. Mice were sacrificed, and bronchoalveolar lavage (BAL), macrophage function, and histopathological analyses were performed at different timepoints post-exposure to evaluate resolution. Results and Discussion: Characterization of the fume indicated that most of the particles were between 0.1 and 1 µm in diameter, with a mass median aerodynamic diameter of 0.43 µm. Metal content of the fume was Cu (∼76%) and Ni (∼12%). Post-exposure, BAL macrophages had a reduced ability to phagocytose E. coli, and lung cytotoxicity was evident and significant (>12%-19% fold change). Loss of body weight was also significant at the early timepoints. Lung inflammation, the predominant finding identified by histopathology, was observed as a subacute response early that progressively resolved by 28 days with only macrophage aggregates remaining late (84 days). Conclusions: Overall, there was high acute lung toxicity with a resolution of the response in mice which suggests that the Cu-Ni fume may not be ideal for reducing toxic and inflammatory lung effects. |
Surface area matters: An evaluation of swabs and surface area for environmental surface sampling of healthcare pathogens
West RM , Shams AM , Chan MY , Rose LJ , Noble-Wang JA . Infect Control Hosp Epidemiol 2022 44 (5) 1-3 Flocked and foam swabs were used to sample five healthcare pathogens from three sizes of steel and plastic coupons; 26 cm(2), 323 cm(2), and 645 cm(2). As surface area increased, 1-2 log(10) decrease in recovered organisms (P < .05) was observed. Sampling 26-cm(2) yielded the optimal median percent of pathogens recovered. |
A comprehensive roof bolter drilling control algorithm for enhancing energy efficiency and reducing respirable dust
Jiang H , Luo Y . Min Metall Explor 2022 39 (2) 241-249 In underground coal mines, the drilling process in roof bolting operation could generate excessive amount of respirable coal and quartz dusts. Improper drilling control might also pose safety hazard and interrupt production. Therefore, an automated, high-efficiency drilling control system with safety features can be beneficial to the bolter personnel. In this research, a comprehensive drilling control algorithm has been developed to reduce the generation of respirable dust and to increase the drilling energy efficiency based on laboratory drilling test results and safety considerations. Specific energy is used to evaluate the energy efficiency. In addition, the ratio between specific energy and rock uniaxial compressive strength can be used as a basis for determining the rational drilling bite depthtypically a determined high one permissible by the driller power and drill steel. The test results show that to achieve and maintain a desired drilling bite depth for good drilling performance, a combination of relatively low rotational rate and a rationally high penetration is preferred. By monitoring the drilling rate, the system is able to evaluate the bit wear condition and improve drilling safety. In this paper, the developed drilling control algorithm for achieving a rational drilling bite depth is demonstrated. By adapting this drilling control algorithm, the drilling efficiency and bit condition can be monitored in real time, so the system can maintain a relatively high energy efficiency, generate less respirable dust, and avoid drilling failure. 2022, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply. |
Development of a thermal spray coating aerosol generator and inhalation exposure system
Afshari AA , McKinney W , Cumpston JL , Leonard HD , Cumpston JB , Meighan TG , Jackson M , Friend S , Kodali V , Lee EG , Antonini JM . Toxicol Rep 2022 9 126-135 Thermal spray coating involves spraying a product (oftentimes metal) that is melted by extremely high temperatures and then applied under pressure onto a surface. Large amounts of a complex metal aerosol (e.g., Fe, Cr, Ni, Zn) are formed during the process, presenting a potentially serious risk to the operator. Information about the health effects associated with exposure to these aerosols is lacking. Even less is known about the chemical and physical properties of these aerosols. The goal was to develop and test an automated thermal spray coating aerosol generator and inhalation exposure system that would simulate workplace exposures. An electric arc wire-thermal spray coating aerosol generator and exposure system was designed and separated into two areas: (1) an enclosed room where the spray coating occurs; (2) an exposure chamber with different measurement devices and controllers. The physicochemical properties of aerosols generated during electric arc wire-thermal spray coating using five different consumable wires were examined. The metal composition of each was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), including two stainless-steel wires [PMET720 (82 % Fe, 13 % Cr); PMET731(66 % Fe, 26 % Cr)], two Ni-based wires [PMET876 (55 % Ni, 17 % Cr); PMET885 (97 % Ni)], and one Zn-based wire [PMET540 (99 % Zn)]. The particles generated regardless of composition were poorly soluble, complex metal oxides and mostly arranged as chain-like agglomerates and similar in size distribution as determined by micro-orifice uniform deposit impactor (MOUDI) and electrical low-pressure impactor (ELPI). To allow for continuous, sequential spray coating during a 4-hr exposure period, a motor rotated the metal pipe to be coated in a circular and up-and-down direction. In a pilot animal study, male Sprague-Dawley rats were exposed to aerosols (25mg/m(3) 4h/d 9 d) generated from electric arc wire- thermal spray coating using the stainless-steel PMET720 consumable wire. The targeted exposure chamber concentration was achieved and maintained during a 4-hr period. At 1 d after exposure, lung injury and inflammation were significantly elevated in the group exposed to the thermal spray coating aerosol compared to the air control group. The system was designed and constructed for future animal exposure studies to generate continuous metal spray coating aerosols at a targeted concentration for extended periods of time without interruption. |
Factors influencing environmental sampling recovery of healthcare pathogens from non-porous surfaces with cellulose sponges
Rose LJ , Houston H , Martinez-Smith M , Lyons AK , Whitworth C , Reddy SC , Noble-Wang J . PLoS One 2022 17 (1) e0261588 Results from sampling healthcare surfaces for pathogens are difficult to interpret without understanding the factors that influence pathogen detection. We investigated the recovery of four healthcare-associated pathogens from three common surface materials, and how a body fluid simulant (artificial test soil, ATS), deposition method, and contamination levels influence the percent of organisms recovered (%R). Known quantities of carbapenemase-producing KPC+ Klebsiella pneumoniae (KPC), Acinetobacter baumannii, vancomycin-resistant Enterococcus faecalis, and Clostridioides difficile spores (CD) were suspended in Butterfield's buffer or ATS, deposited on 323cm2 steel, plastic, and laminate surfaces, allowed to dry 1h, then sampled with a cellulose sponge wipe. Bacteria were eluted, cultured, CFU counted and %R determined relative to the inoculum. The %R varied by organism, from <1% (KPC) to almost 60% (CD) and was more dependent upon the organism's characteristics and presence of ATS than on surface type. KPC persistence as determined by culture also declined by >1 log10 within the 60 min drying time. For all organisms, the %R was significantly greater if suspended in ATS than if suspended in Butterfield's buffer (p<0.05), and for most organisms the %R was not significantly different when sampled from any of the three surfaces. Organisms deposited in multiple droplets were recovered at equal or higher %R than if spread evenly on the surface. This work assists in interpreting data collected while investigating a healthcare infection outbreak or while conducting infection intervention studies. |
Changes in Influenza and Other Respiratory Virus Activity During the COVID-19 Pandemic - United States, 2020-2021.
Olsen SJ , Winn AK , Budd AP , Prill MM , Steel J , Midgley CM , Kniss K , Burns E , Rowe T , Foust A , Jasso G , Merced-Morales A , Davis CT , Jang Y , Jones J , Daly P , Gubareva L , Barnes J , Kondor R , Sessions W , Smith C , Wentworth DE , Garg S , Havers FP , Fry AM , Hall AJ , Brammer L , Silk BJ . MMWR Morb Mortal Wkly Rep 2021 70 (29) 1013-1019 The COVID-19 pandemic and subsequent implementation of nonpharmaceutical interventions (e.g., cessation of global travel, mask use, physical distancing, and staying home) reduced transmission of some viral respiratory pathogens (1). In the United States, influenza activity decreased in March 2020, was historically low through the summer of 2020 (2), and remained low during October 2020-May 2021 (<0.4% of respiratory specimens with positive test results for each week of the season). Circulation of other respiratory pathogens, including respiratory syncytial virus (RSV), common human coronaviruses (HCoVs) types OC43, NL63, 229E, and HKU1, and parainfluenza viruses (PIVs) types 1-4 also decreased in early 2020 and did not increase until spring 2021. Human metapneumovirus (HMPV) circulation decreased in March 2020 and remained low through May 2021. Respiratory adenovirus (RAdV) circulated at lower levels throughout 2020 and as of early May 2021. Rhinovirus and enterovirus (RV/EV) circulation decreased in March 2020, remained low until May 2020, and then increased to near prepandemic seasonal levels. Circulation of respiratory viruses could resume at prepandemic levels after COVID-19 mitigation practices become less stringent. Clinicians should be aware of increases in some respiratory virus activity and remain vigilant for off-season increases. In addition to the use of everyday preventive actions, fall influenza vaccination campaigns are an important component of prevention as COVID-19 mitigation measures are relaxed and schools and workplaces resume in-person activities. |
Sampling efficiency of Candida auris from healthcare surfaces: culture and nonculture detection methods
Furin WA , Tran LH , Chan MY , Lyons AK , Noble-Wang J , Rose LJ . Infect Control Hosp Epidemiol 2021 43 (10) 1-3 Sponges and swabs were evaluated for their ability to recover Candida auris dried 1 hour on steel and plastic surfaces. Culture recovery ranged from <0.1% (sponges) to 8.4% (swabs), and cells detected with an esterase activity assay revealed >50% recovery (swabs), indicating that cells may enter a viable but nonculturable state. |
Limited Genetic Diversity Detected in Middle East Respiratory Syndrome-Related Coronavirus Variants Circulating in Dromedary Camels in Jordan.
Seifert SN , Schulz JE , Ricklefs S , Letko M , Yabba E , Hijazeen ZS , Holloway P , Al-Omari B , Talafha HA , Tibbo M , Adney DR , Guitian J , Amarin N , Richt JA , McDowell C , Steel J , Abu-Basha EA , Al-Majali AM , van Doremalen N , Munster VJ . Viruses 2021 13 (4) Middle East respiratory syndrome-related coronavirus (MERS-CoV) is a persistent zoonotic pathogen with frequent spillover from dromedary camels to humans in the Arabian Peninsula, resulting in limited outbreaks of MERS with a high case-fatality rate. Full genome sequence data from camel-derived MERS-CoV variants show diverse lineages circulating in domestic camels with frequent recombination. More than 90% of the available full MERS-CoV genome sequences derived from camels are from just two countries, the Kingdom of Saudi Arabia (KSA) and United Arab Emirates (UAE). In this study, we employ a novel method to amplify and sequence the partial MERS-CoV genome with high sensitivity from nasal swabs of infected camels. We recovered more than 99% of the MERS-CoV genome from field-collected samples with greater than 500 TCID(50) equivalent per nasal swab from camel herds sampled in Jordan in May 2016. Our subsequent analyses of 14 camel-derived MERS-CoV genomes show a striking lack of genetic diversity circulating in Jordan camels relative to MERS-CoV genome sequences derived from large camel markets in KSA and UAE. The low genetic diversity detected in Jordan camels during our study is consistent with a lack of endemic circulation in these camel herds and reflective of data from MERS outbreaks in humans dominated by nosocomial transmission following a single introduction as reported during the 2015 MERS outbreak in South Korea. Our data suggest transmission of MERS-CoV among two camel herds in Jordan in 2016 following a single introduction event. |
Colonization of carbapenem-resistant Klebsiella pneumoniae in a sink-drain model biofilm system
Burgos-Garay M , Ganim C , de Man TJB , Davy T , Mathers AJ , Kotay S , Daniels J , Perry KA , Breaker E , Donlan RM . Infect Control Hosp Epidemiol 2020 42 (6) 1-9 BACKGROUND: Sink drains in healthcare facilities may provide an environment for antimicrobial-resistant microorganisms, including carbapenemase-producing Klebsiella pneumoniae (CPKP). METHODS: We investigated the colonization of a biofilm consortia by CPKP in a model system simulating a sink-drain P-trap. Centers for Disease Control (CDC) biofilm reactors (CBRs) were inoculated with microbial consortia originally recovered from 2 P-traps collected from separate patient rooms (designated rooms A and B) in a hospital. Biofilms were grown on stainless steel (SS) or polyvinyl chloride (PVC) coupons in autoclaved municipal drinking water (ATW) for 7 or 28 days. RESULTS: Microbial communities in model systems (designated CBR-A or CBR-B) were less diverse than communities in respective P-traps A and B, and they were primarily composed of β and γ Proteobacteria, as determined using 16S rRNA community analysis. Following biofilm development CBRs were inoculated with either K. pneumoniae ST45 (ie, strain CAV1016) or K. pneumoniae ST258 KPC+ (ie, strain 258), and samples were collected over 21 days. Under most conditions tested (CBR-A: SS, 7-day biofilm; CBR-A: PVC, 28-day biofilm; CBR-B: SS, 7-day and 28-day biofilm; CBR-B: PVC, 28-day biofilm) significantly higher numbers of CAV1016 were observed compared to 258. CAV1016 showed no significant difference in quantity or persistence based on biofilm age (7 days vs 28 days) or substratum type (SS vs PVC). However, counts of 258 were significantly higher on 28-day biofilms and on SS. CONCLUSIONS: These results suggest that CPKP persistence in P-trap biofilms may be strain specific or may be related to the type of P-trap material or age of the biofilm. |
Tumorigenic response in lung tumor susceptible A/J mice after sub-chronic exposure to calcium chromate or iron (III) oxide
Zeidler-Erdely PC , Falcone LM , Antonini JM , Fraser K , Kashon ML , Battelli LA , Salmen R , Trainor T , Grose L , Friend S , Yang C , Erdely A . Toxicol Lett 2020 334 60-65 Iron oxides are Group 3 (not classifiable as to its carcinogenicity to humans) according to the International Agency for Research on Cancer (IARC). Occupational exposures during iron and steel founding and hematite underground mining as well as other iron predominant exposures such as welding are Group 1 (carcinogenic to humans). The objective of this study was to investigate the potential of iron as iron (III) oxide (Fe(2)O(3)) to initiate lung tumors in A/J mice, a lung tumor susceptible strain. Male A/J mice were exposed by oropharyngeal aspiration to suspensions of Fe(2)O(3) (1 mg) or calcium chromate (CaCrO(4); 100 µg; positive control) for 26 weeks (once per week). Shams were exposed to 50 µL phosphate buffered saline (PBS; vehicle). Mice were euthanized 70 weeks after the first exposure and lung nodules were enumerated. Both CaCrO(4) and Fe(2)O(3) significantly increased gross-observed lung tumor multiplicity in A/J mice (9.63 ± 0.55 and 3.35 ± 0.30, respectively) compared to sham (2.31 ± 0.19). Histopathological analysis showed that bronchiolo-alveolar adenomas (BAA) and carcinomas (BAC) were the primary lung tumor types in all groups and were increased in the exposed groups compared to sham. BAC were significantly increased (146 %) in the CaCrO(4) group and neared significance in the Fe(2)O(3) group (100 % increase; p = 0.085). BAA and other histopathological indices of toxicity followed the same pattern with exposed groups increased compared to sham control. In conclusion, evidence from this study, in combination with our previous studies, demonstrate that exposure to iron alone may be a potential risk factor for lung carcinogenesis. |
Effects of metatarsal work boots on gait during level and inclined walking
Kocher LM , Pollard JP , Whitson AE , Nasarwanji MF . J Appl Biomech 2020 1-8 Footwear plays an important role in worker safety. Work boots with safety toes are often utilized at mine sites to protect workers from hazards. Increasingly, mining operations require metatarsal guards in addition to safety toe protection in boots. While these guards provide additional protection, the impact of metatarsal guards on gait are unknown. This study aimed to measure the effects of 4 safety work boots, steel toe, and steel toe with metatarsal protection in wader- and hiker-style boots, on level and inclined walking gait characteristics, during ascent and descent. A total of 10 participants completed this study. A motion capture system measured kinematics that allowed for the calculation of key gait parameters. Results indicated that gait parameters changed due to incline, similar to previous literature. Wader-style work boots reduced ankle range of motion when ascending an incline. Hip, knee, and ankle ranges of motion were also reduced during descent for this style of boot. Wader-style boots with metatarsal guards led to the smallest ankle range of motion when descending an inclined walkway. From these results, it is likely that boot style affects gait parameters and may impact a miner's risk for slips, trips, or falls. |
Estimation of the critical external heat leading to the failure of lithium-ion batteries
Tang W , Tam WC , Yuan L , Dubaniewicz T , Thomas R , Soles J . Appl Therm Eng 2020 179 A detailed experimental investigation on the critical external heat leading to the failure of lithium-ion (Li-ion) batteries was conducted using an Accelerating Rate Calorimeter (ARC) at the National Institute for Occupational Safety and Health (NIOSH). Several types of commercial Li-ion batteries were selected for the study, including an iron phosphate Li-ion battery (LFP), a lithium-titanate battery (LTO), and a lithium-nickel-manganese-cobalt-oxide battery (NMC). Each battery was placed in a specially designed sealed steel canister and heated in the ARC. Battery voltage throughout the test was monitored and used to indicate the time to a battery failure. Three thermocouples, one attached to the battery surface, one measuring air temperature inside the canister, and one attached to the canister's internal surface, were used to record temperature changes during the heating tests. Different thermal behaviors were observed for the various battery types. An analytical model was developed to estimate the total external heat received by the battery using the measured temperatures. Experimental data ranked the batteries tested in terms of the heat to failure as: LFP 26,650 (11 kJ) > LFP 18650 (4.3 kJ) > NMC 18650 MH1 (3.6 kJ) ≈ LTO 18650 (3.6 kJ) > NMC 18650 HG2 (3 kJ). Total heat normalized to the battery nominal energy capacity was also calculated and ranked as: LTO 18650 ≈ LFP 26650 ≈ LFP 18650 > NMC 18650 MH1 ≈ NMC 18650 HG2. The test and analysis method developed can be extended to other types of batteries with a cylindrical shape. Results from this work provide insights to the thermal safety of Li-ion batteries and can help enhance battery thermal design and management. |
Manganese fractionation using a sequential extraction method to evaluate welders flux core arc welding exposures in a shipyard, structural steel and custom parts manufacturers
Hanley KW , Andrews RN , Bertke S , Carter T , Navarro K , Ashley K . Gefahrst Reinhalt Luft 2020 80 (5) 185-193 The National Institute for Occupational Safety and Health (NIOSH) has conducted an occupational exposure assessment study of manganese (Mn) in flux core arc welding fume at three facilities. The objective of this study was to evaluate exposures to different Mn fractions using a sequential extraction procedure. Sixty-seven worker-days were monitored for either total or respirable Mn. The samples were analyzed using an experimental method to separate four Mn fractions based on chemical solubility: soluble Mn in a mild ammonium acetate solution; Mn0,2+ in 25% acetic acid; Mn3+,4+ in hydroxylamine hydrochloride in 25% acetic acid; and insoluble Mn fractions in hydrochloric/nitric acid. The full-shift total particle size Mn time-weighted average (TWA) breathing zone concentrations ranged from 0.51 to 43; 2.9 to 850; 1.7 to 620; and 0.56 to 331 gm-3, for the different Mn fractions, respectively. The summation of all the total particulate Mn fractions yielded results that ranged from 16 to 1,530 g m-3. The ranges of respirable size Mn TWA concentrations were 0.27 to 75 for soluble Mn; 1.6 to 690 for Mn0,2+; 1.3 to 740 for Mn3+,4+; 0.52 to 570 for insoluble Mn; and 3.8 to 1,800 gm-3 for Mn (sum of fractions). Total particulate TWA GM concentrations of the Mn(sum) were 56 (GSD = 4.0), 380 (GSD = 2.7), and 176 (GSD = 3.3) gm-3 for the shipyard, structural steel and custom parts facilities. Although most of the workers exposures measured were below the NIOSH Recommended Exposure Limit for Mn (1,000 gm-3), 44 welders exposures exceeded the ACGIH Threshold Limit Values for total Mn (100 gm-3) and 46 exceeded the new respirable Mn TLV (20 gm-3). This study shows that a welding fume exposure control and management program is warranted for Mn, which includes improved exhaust ventilation and may necessitate the use of respiratory protection, especially for welding in enclosed or confined spaces. |
Persistence of Bacteriophage Phi 6 on Porous and Nonporous Surfaces and the Potential for Its Use as an Ebola Virus or Coronavirus Surrogate.
Whitworth C , Mu Y , Houston H , Martinez-Smith M , Noble-Wang J , Coulliette-Salmond A , Rose L . Appl Environ Microbiol 2020 86 (17) The infection of healthcare workers during the 2013 -2016 Ebola outbreak raised concerns about fomite transmission. In the wake of the Coronavirus Disease 2019 (COVID-19) pandemic, investigations are ongoing to determine the role of fomites in coronavirus transmission as well. The bacteriophage Phi 6 has a phospholipid envelope and is commonly used in environmental studies as a surrogate for human enveloped viruses. The persistence of Phi 6 was evaluated as a surrogate for EBOV and coronaviruses on porous and nonporous hospital surfaces. Phi 6 was suspended in a body fluid simulant and inoculated onto 1 cm(2) coupons of steel, plastic, and two fabric curtain types. The coupons were placed at two controlled absolute humidity (AH) levels; a low AH of 3.0 g/m(3) and a high AH of 14.4 g/m(3) Phi 6 declined at a slower rate on all materials under low AH conditions with a decay rate of 0.06 log10PFU/d to 0.11 log10PFU/d, as compared to the higher AH conditions with a decay rate of 0.65 log10PFU/h to 1.42 log10PFU/d. There was a significant difference in decay rates between porous and non-porous surfaces at both low AH (P < 0.0001) and high AH (P < 0.0001). Under these laboratory-simulated conditions, Phi 6 was found to be a conservative surrogate for EBOV under low AH conditions, in that it persisted longer than Ebola virus in similar AH conditions. Additionally, some coronaviruses persist longer than phi6 under similar conditions, therefore Phi6 may not be a suitable surrogate for coronaviruses.IMPORTANCE Understanding the persistence of enveloped viruses helps inform infection control practices and procedures in healthcare facilities and community settings. These data convey to public health investigators that enveloped viruses can persist and remain infective on surfaces, thus demonstrating a potential risk for transmission. Under these laboratory-simulated western indoor hospital conditions, Phi 6 was used to assess suitability as a surrogate for environmental persistence research related to enveloped viruses, including EBOV and coronaviruses. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Oct 15, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure