Last data update: Jun 20, 2025. (Total: 49421 publications since 2009)
Records 1-16 (of 16 Records) |
Query Trace: Sorvillo TE[original query] |
---|
Effect of temperature and time on RNA detection by RT-qPCR in rodent tissue and blood samples stored in MagMAX(TM) Lysis/Binding Solution Concentrate: considerations for viral RNA detection in specimens collected or stored under suboptimal conditions
Davies KA , Welch SR , Sorvillo TE , Coleman-McCray JD , Spiropoulou CF , Spengler JR . J Virol Methods 2025 115175 ![]() For detection of viral RNA in blood or tissue, samples are often collected into lysis buffers prior to downstream molecular analysis. Immediate sample processing and cold storage are not always possible during large-scale or field studies, or in facilities lacking a stable electrical supply. Additionally, samples may need to be transported significant distances before processing. Here, using Peptidylprolyl Isomerase A (Ppia), a stably expressed gene in rodent tissues, we investigate the long-term stability and detection of RNA in guinea pig tissues stored for up to 52 weeks and in hamster blood stored for up to 12 weeks in MagMAX Lysis/Binding Solution Concentrate at -80°C, 4°C, 21°C, and 32°C. |
Crimean-Congo hemorrhagic fever virus replicon particle vaccine is safe and elicits functional, non-neutralizing anti-nucleoprotein antibodies and T cell activation in rhesus macaques
Kleymann A , Karaaslan E , Scholte FEM , Sorvillo TE , Welch SR , Bergeron É , Elser S , Almanzar-Jordan MR , Velazquez E , Genzer SC , Jean SM , Spiropoulou CF , Spengler JR . Antiviral Res 2024 106045 Advancement of vaccine candidates that demonstrate protective efficacy in screening studies necessitates detailed safety and immunogenicity investigations in pre-clinical models. A non-spreading Crimean-Congo hemorrhagic fever virus (CCHFV) viral replicon particle (VRP) vaccine was developed for single-dose administration to protect against disease. To date, several studies have supported safety, immunogenicity, and efficacy of the CCHF VRP in multiple highly sensitive murine models of lethal disease, but the VRP had yet to be evaluated in large animals. Here, we performed studies in non-human primates to further evaluate clinical utility of the VRP vaccine. Twelve adult male and female rhesus macaques were vaccinated intramuscularly and followed daily for clinical monitoring. At 3, 7, 14, 21, and 28 days post vaccination, animals were sedated for more detailed clinical assessment; for quantification of vaccine presence in blood and mucosal samples; and for evaluation of hematology, plasma inflammatory markers, and immunity. Consistent with findings in mice, vaccination was well tolerated, with no clinical alterations nor indication of vaccine spread or shedding. In addition, vaccination induced both humoral and cell-mediated responses, with immune profile and kinetics also corroborating data from small animal models. These studies provide key data in non-human primates further supporting development of the VRP for human clinical use. |
Delayed low-dose oral administration of 4'-fluorouridine inhibits pathogenic arenaviruses in animal models of lethal disease
Welch SR , Spengler JR , Westover JB , Bailey KW , Davies KA , Aida-Ficken V , Bluemling GR , Boardman KM , Wasson SR , Mao S , Kuiper DL , Hager MW , Saindane MT , Andrews MK , Krueger RE , Sticher ZM , Jung KH , Chatterjee P , Shrivastava-Ranjan P , Lo MK , Coleman-McCray JD , Sorvillo TE , Genzer SC , Scholte FEM , Kelly JA , Jenks MH , McMullan LK , Albariño CG , Montgomery JM , Painter GR , Natchus MG , Kolykhalov AA , Gowen BB , Spiropoulou CF , Flint M . Sci Transl Med 2024 16 (774) eado7034 Development of broad-spectrum antiviral therapies is critical for outbreak and pandemic preparedness against emerging and reemerging viruses. Viruses inducing hemorrhagic fevers cause high morbidity and mortality in humans and are associated with several recent international outbreaks, but approved therapies for treating most of these pathogens are lacking. Here, we show that 4'-fluorouridine (4'-FlU; EIDD-2749), an orally available ribonucleoside analog, has antiviral activity against multiple hemorrhagic fever viruses in cell culture, including Nipah virus, Crimean-Congo hemorrhagic fever virus, orthohantaviruses, and arenaviruses. We performed preclinical in vivo evaluation of oral 4'-FlU against two arenaviruses, Old World Lassa virus (LASV) and New World Junín virus (JUNV), in guinea pig models of lethal disease. 4'-FlU demonstrated both advantageous pharmacokinetic characteristics and high efficacy in both of these lethal disease guinea pig models. Additional experiments supported protection of the infected animals even when 4'-FlU delivery was reduced to a low dose of 0.5 milligram per kilogram. To demonstrate clinical utility, 4'-FlU treatment was evaluated when initiated late in the course of infection (12 or 9 days after infection for LASV and JUNV, respectively). Delayed treatment resulted in rapid resolution of clinical signs, demonstrating an extended window for therapeutic intervention. These data support the use of 4'-FlU as a potent and efficacious treatment against highly pathogenic arenaviruses of public health concern with a virus inhibition profile suggesting broad-spectrum utility as an orally available antiviral drug against a wide variety of viral pathogens. |
Inflammation associated with monocyte/macrophage activation and recruitment corresponds with lethal outcome in a mouse model of Crimean-Congo hemorrhagic fever
Sorvillo TE , Ritter JM , Welch SR , Coleman-McCray JD , Davies KA , Hayes HM , Pegan SD , Montgomery JM , Bergeron É , Spiropoulou CF , Spengler JR . Emerg Microbes Infect 2024 2427782 Crimean-Congo hemorrhagic fever virus (CCHFV) causes human disease ranging from subclinical to a fatal hemorrhagic syndrome. Determinants of CCHF pathogenesis are largely unknown and animal models that recapitulate human disease are limited. A recently described mouse model uses a monoclonal antibody (mAb 5A3) targeting the interferon (IFN) alpha/beta receptor to suppress type I IFN responses, making animals transiently susceptible to infection. To advance utility of this model, we investigated effects of challenge route, timing of 5A3 delivery, mouse sex and age, and virus strain on clinical course and outcome. C57BL/6J mice received mAb 5A3 -1, 0, or -1/+1 days post-infection (dpi). Subsets were challenged with CCHFV strain Turkey04 or IbAr10200 subcutaneously or intraperitoneally, and serially euthanized 3- and 7-dpi, when meeting euthanasia criteria or at study completion (14 dpi). CCHFV-IbAr10200-infected mice almost uniformly succumbed to infection, whereas CCHFV-Turkey04-infected mice transiently lost weight but survived. These results were consistent regardless of mAb timing or route of challenge. Viral replication and dissemination were comparable between the two strains at 3 dpi. However, in the plasma and livers of non-survivors, expression of proinflammatory cytokines/chemokines that correspond with macrophage activation and recruitment were significantly elevated. Lethal disease was also associated with elevated levels of macrophage activation marker CD163 in plasma. Further, mouse macrophages were more permissive to IbAr1200 infection in vitro, suggesting tropism for these cells may influence pathogenesis. Our data suggest that early inflammation may be a critical determinant of CCHF outcome and therapeutics to control inflammation may be worthwhile targets for future investigation. |
Optimization of Bangladesh and Malaysian genotype recombinant reporter Nipah viruses for in vitro antiviral screening and in vivo disease modeling
Lo MK , Jain S , Davies KA , Sorvillo TE , Welch SR , Coleman-McCray JD , Chatterjee P , Hotard AL , O'Neal T , Flint M , Ai H , Albariño CG , Spengler JR , Montgomery JM , Spiropoulou CF . Antiviral Res 2024 231 106013 ![]() ![]() Nipah virus (NiV) causes near-annual outbreaks of fatal encephalitis and respiratory disease in South Asia with a high mortality rate (∼70%). Since there are no approved therapeutics for NiV disease in humans, the WHO has designated NiV and henipaviral diseases priority pathogens for research and development. We generated a new recombinant green fluorescent reporter NiV of the circulating Bangladesh genotype (rNiV-B-ZsG) and optimized it alongside our previously generated Malaysian genotype reporter counterpart (rNiV-M-ZsG) for antiviral screening in primary-like human respiratory cell types. Validating our platform for rNiV-B-ZsG with a synthetic compound library directed against viral RNA-dependent RNA polymerases, we identified a hit compound and confirmed its sub-micromolar activity against wild-type NiV, green fluorescent reporter, and the newly constructed bioluminescent red fluorescent double reporter (rNiV-B-BREP) NiV. We furthermore demonstrated that rNiV-B-ZsG and rNiV-B-BREP viruses showed pathogenicity comparable to wild-type NiV-B in the Syrian golden hamster model of disease, supporting additional use of these tools for both pathogenesis and advanced pre-clinical studies in vivo. |
Crimean Congo hemorrhagic fever virus nucleoprotein and GP38 subunit vaccine combination prevents morbidity in mice
Karaaslan E , Sorvillo TE , Scholte FEM , O'Neal TJ , Welch SR , Davies KA , Coleman-McCray JD , Harmon JR , Ritter JM , Pegan SD , Montgomery JM , Spengler JR , Spiropoulou CF , Bergeron É . NPJ Vaccines 2024 9 (1) 148 Immunizing mice with Crimean-Congo hemorrhagic fever virus (CCHFV) nucleoprotein (NP), glycoprotein precursor (GPC), or with the GP38 domain of GPC, can be protective when the proteins are delivered with viral vectors or as a DNA or RNA vaccine. Subunit vaccines are a safe and cost-effective alternative to some vaccine platforms, but Gc and Gn glycoprotein subunit vaccines for CCHFV fail to protect despite eliciting high levels of neutralizing antibodies. Here, we investigated humoral and cellular immune responses and the protective efficacy of recombinant NP, GP38, and GP38 forms (GP85 and GP160) associated with the highly glycosylated mucin-like (MLD) domain, as well as the NP + GP38 combination. Vaccination with GP160, GP85, or GP38 did not confer protection, and vaccination with the MLD-associated GP38 forms blunted the humoral immune responses to GP38, worsened clinical chemistry, and increased viral RNA in the blood compared to the GP38 vaccination. In contrast, NP vaccination conferred 100% protection from lethal outcome and was associated with mild clinical disease, while the NP + GP38 combination conferred even more robust protection by reducing morbidity compared to mice receiving NP alone. Thus, recombinant CCHFV NP alone is a promising vaccine candidate conferring 100% survival against heterologous challenge. Moreover, incorporation of GP38 should be considered as it further enhances subunit vaccine efficacy by reducing morbidity in surviving animals. |
Replicon particle vaccination induces non-neutralizing anti-nucleoprotein antibody-mediated control of Crimean-Congo hemorrhagic fever virus
Sorvillo TE , Karaaslan E , Scholte FEM , Welch SR , Coleman-McCray JD , Genzer SC , Ritter JM , Hayes HM , Jain S , Pegan SD , Bergeron É , Montgomery JM , Spiropoulou CF , Spengler JR . NPJ Vaccines 2024 9 (1) 88 Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe human disease and is considered a WHO priority pathogen due to the lack of efficacious vaccines and antivirals. A CCHF virus replicon particle (VRP) has previously shown protective efficacy in a lethal Ifnar(-/-) mouse model when administered as a single dose at least 3 days prior to challenge. Here, we determine that non-specific immune responses are not sufficient to confer short-term protection, since Lassa virus VRP vaccination 3 days prior to CCHFV challenge was not protective. We also investigate how CCHF VRP vaccination confers protective efficacy by examining viral kinetics, histopathology, clinical analytes and immunity early after challenge (3 and 6 days post infection) and compare to unvaccinated controls. We characterize how these effects differ based on vaccination period and correspond to previously reported CCHF VRP-mediated protection. Vaccinating Ifnar(-/-) mice with CCHF VRP 28, 14, 7, or 3 days prior to challenge, all known to confer complete protection, significantly reduced CCHFV viral load, mucosal shedding, and markers of clinical disease, with greater reductions associated with longer vaccination periods. Interestingly, there were no significant differences in innate immune responses, T cell activation, or antibody titers after challenge between groups of mice vaccinated a week or more before challenge, but higher anti-NP antibody avidity and effector function (ADCD) were positively associated with longer vaccination periods. These findings support the importance of antibody-mediated responses in VRP vaccine-mediated protection against CCHFV infection. |
Characterization of humoral responses to Nipah virus infection in the Syrian Hamster model of disease
Scholte FEM , Rodriguez SE , Welch SR , Davies KA , Genzer SC , Coleman-McCray JD , Harmon JR , Sorvillo TE , Lo MK , Karaaslan E , Bergeron E , Montgomery JM , Spengler JR , Spiropoulou CF . J Infect Dis 2023 Nipah virus (NiV) is a highly pathogenic paramyxovirus. The Syrian hamster model recapitulates key features of human NiV disease and is a critical tool for evaluating antivirals and vaccines. Here we describe longitudinal humoral immune responses in NiV-infected Syrian hamsters. Samples were obtained 1-28 days after infection and analyzed by ELISA, neutralization, and Fc-mediated effector function assays. NiV infection elicited robust antibody responses against the nucleoprotein and attachment glycoprotein. Levels of neutralizing antibodies were modest and only detectable in surviving animals. Fc-mediated effector functions were mostly observed in nucleoprotein-targeting antibodies. Antibody levels and activities positively correlated with challenge dose. |
Optimal reference genes for RNA tissue analysis in small animal models of hemorrhagic fever viruses
Davies KA , Welch SR , Sorvillo TE , Coleman-McCray JD , Martin ML , Brignone JM , Montgomery JM , Spiropoulou CF , Spengler JR . Sci Rep 2023 13 (1) 19384 ![]() ![]() Reverse-transcription quantitative polymerase chain reaction assays are frequently used to evaluate gene expression in animal model studies. Data analyses depend on normalization using a suitable reference gene (RG) to minimize effects of variation due to sample collection, sample processing, or experimental set-up. Here, we investigated the suitability of nine potential RGs in laboratory animals commonly used to study viral hemorrhagic fever infection. Using tissues (liver, spleen, gonad [ovary or testis], kidney, heart, lung, eye, brain, and blood) collected from naïve animals and those infected with Crimean-Congo hemorrhagic fever (mice), Nipah (hamsters), or Lassa (guinea pigs) viruses, optimal species-specific RGs were identified based on five web-based algorithms to assess RG stability. Notably, the Ppia RG demonstrated stability across all rodent tissues tested. Optimal RG pairs that include Ppia were determined for each rodent species (Ppia and Gusb for mice; Ppia and Hrpt for hamsters; and Ppia and Gapdh for guinea pigs). These RG pair assays were multiplexed with viral targets to improve assay turnaround time and economize sample usage. Finally, a pan-rodent Ppia assay capable of detecting Ppia across multiple rodent species was developed and successfully used in ecological investigations of field-caught rodents, further supporting its pan-species utility. |
Vaccination with the Crimean-Congo hemorrhagic fever virus viral replicon vaccine induces NP-based T-cell activation and antibodies possessing Fc-mediated effector functions
Scholte FEM , Karaaslan E , O'Neal TJ , Sorvillo TE , Genzer SC , Welch SR , Coleman-McCray JD , Spengler JR , Kainulainen MH , Montgomery JM , Pegan SD , Bergeron E , Spiropoulou CF . Front Cell Infect Microbiol 2023 13 1233148 Crimean-Congo hemorrhagic fever virus (CCHFV; family Nairoviridae) is a tick-borne pathogen that frequently causes lethal disease in humans. CCHFV has a wide geographic distribution, and cases have been reported in Africa, Asia, the Middle East, and Europe. Availability of a safe and efficacious vaccine is critical for restricting outbreaks and preventing disease in endemic countries. We previously developed a virus-like replicon particle (VRP) vaccine that provides complete protection against homologous and heterologous lethal CCHFV challenge in mice after a single dose. However, the immune responses induced by this vaccine are not well characterized, and correlates of protection remain unknown. Here we comprehensively characterized the kinetics of cell-mediated and humoral immune responses in VRP-vaccinated mice, and demonstrate that they predominantly target the nucleoprotein (NP). NP antibodies are not associated with protection through neutralizing activity, but VRP vaccination results in NP antibodies possessing Fc-mediated antibody effector functions, such as complement activation (ADCD) and antibody-mediated cellular phagocytosis (ADCP). This suggests that Fc-mediated effector functions may contribute to this vaccine's efficacy. |
Single-dose mucosal replicon-particle vaccine protects against lethal Nipah virus infection up to 3 days after vaccination
Welch SR , Spengler JR , Genzer SC , Coleman-McCray JD , Harmon JR , Sorvillo TE , Scholte FEM , Rodriguez SE , O'Neal TJ , Ritter JM , Ficarra G , Davies KA , Kainulainen MH , Karaaslan E , Bergeron É , Goldsmith CS , Lo MK , Nichol ST , Montgomery JM , Spiropoulou CF . Sci Adv 2023 9 (31) eadh4057 Nipah virus (NiV) causes a highly lethal disease in humans who present with acute respiratory or neurological signs. No vaccines against NiV have been approved to date. Here, we report on the clinical impact of a novel NiV-derived nonspreading replicon particle lacking the fusion (F) protein gene (NiVΔF) as a vaccine in three small animal models of disease. A broad antibody response was detected that included immunoglobulin G (IgG) and IgA subtypes with demonstrable Fc-mediated effector function targeting multiple viral antigens. Single-dose intranasal vaccination up to 3 days before challenge prevented clinical signs and reduced virus levels in hamsters and immunocompromised mice; decreases were seen in tissues and mucosal secretions, critically decreasing potential for virus transmission. This virus replicon particle system provides a vital tool to the field and demonstrates utility as a highly efficacious and safe vaccine candidate that can be administered parenterally or mucosally to protect against lethal Nipah disease. |
Fluorescent and bioluminescent reporter mouse-adapted Ebola viruses maintain pathogenicity and can be visualized in vivo
Davies KA , Welch SR , Jain S , Sorvillo TE , Coleman-McCray JD , Montgomery JM , Spiropoulou CF , Albariño C , Spengler JR . J Infect Dis 2023 228 S536-S547 Ebola virus (EBOV) causes lethal disease in humans but not in mice. Here, we generated recombinant mouse-adapted (MA)-EBOVs, including one based on the previously reported serially adapted strain (rMA-EBOV), along with single-reporter rMA-EBOVs expressing either fluorescent (ZsGreen1 [ZsG]) or bioluminescent (nano-luciferase [nLuc]) reporters, and dual-reporter rMA-EBOVs expressing both ZsG and nLuc. No detriment to viral growth in vitro was seen with inclusion of MA-associated mutations or reporter proteins. In CD-1 mice, infection with MA-EBOV, rMA-EBOV, and single-reporter rMA-EBOVs conferred 100% lethality; infection with dual-reporter rMA-EBOV resulted in 80% lethality. Bioluminescent signal from rMA-EBOV expressing nLuc was detected in vivo and ex vivo using the IVIS Spectrum CT. Fluorescent signal from rMA-EBOV expressing ZsG was detected in situ using hand-held blue-light transillumination and ex vivo through epi-illumination with the IVIS Spectrum CT. These data support the use of reporter MA-EBOV for studies of Ebola virus in animal disease models. |
Tissue replication and mucosal swab detection of Sosuga virus in Syrian hamsters in the absence of overt tissue pathology and clinical disease
Welch SR , Ritter JM , Schuh AJ , Genzer SC , Sorvillo TE , Harmon JR , Coleman-McCray JD , Jain S , Shrivastava-Ranjan P , Seixas JN , Estetter LB , Fair PS , Towner JS , Montgomery JM , Albariño CG , Spiropoulou CF , Spengler JR . Antiviral Res 2022 209 105490 Human infection with Sosuga virus (SOSV), a recently discovered pathogenic paramyxovirus, has been reported in one individual to date. No animal models of disease are currently available for SOSV. Here, we describe initial characterization of experimental infection in Syrian hamsters, including kinetics of virus dissemination and replication, and the corresponding clinical parameters, immunological responses, and histopathology. We demonstrate susceptibility of hamsters to infection in the absence of clinical signs or significant histopathologic findings in tissues. |
Structural characterization of protective non-neutralizing antibodies targeting Crimean-Congo hemorrhagic fever virus
Durie IA , Tehrani ZR , Karaaslan E , Sorvillo TE , McGuire J , Golden JW , Welch SR , Kainulainen MH , Harmon JR , Mousa JJ , Gonzalez D , Enos S , Koksal I , Yilmaz G , Karakoc HN , Hamidi S , Albay C , Spengler JR , Spiropoulou CF , Garrison AR , Sajadi MM , Bergeron É , Pegan SD . Nat Commun 2022 13 (1) 7298 Crimean-Congo Hemorrhagic Fever Virus (CCHFV) causes a life-threatening disease with up to a 40% mortality rate. With no approved medical countermeasures, CCHFV is considered a public health priority agent. The non-neutralizing mouse monoclonal antibody (mAb) 13G8 targets CCHFV glycoprotein GP38 and protects mice from lethal CCHFV challenge when administered prophylactically or therapeutically. Here, we reveal the structures of GP38 bound with a human chimeric 13G8 mAb and a newly isolated CC5-17 mAb from a human survivor. These mAbs bind overlapping epitopes with a shifted angle. The broad-spectrum potential of c13G8 and CC5-17 and the practicality of using them against Aigai virus, a closely related nairovirus were examined. Binding studies demonstrate that the presence of non-conserved amino acids in Aigai virus corresponding region prevent CCHFV mAbs from binding Aigai virus GP38. This information, coupled with in vivo efficacy, paves the way for future mAb therapeutics effective against a wide swath of CCHFV strains. |
Immunobiology of Crimean-Congo hemorrhagic fever
Rodriguez SE , Hawman DW , Sorvillo TE , O'Neal TJ , Bird BH , Rodriguez LL , Bergeron É , Nichol ST , Montgomery JM , Spiropoulou CF , Spengler JR . Antiviral Res 2022 199 105244 Human infection with Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne pathogen in the family Nairoviridae, can result in a spectrum of outcomes, ranging from asymptomatic infection through mild clinical signs to severe or fatal disease. Studies of CCHFV immunobiology have investigated the relationship between innate and adaptive immune responses with disease severity, attempting to elucidate factors associated with differential outcomes. In this article, we begin by highlighting unanswered questions, then review current efforts to answer them. We discuss in detail current clinical studies and research in laboratory animals on CCHF, including immune targets of infection and adaptive and innate immune responses. We summarize data about the role of the immune response in natural infections of animals and humans and experimental studies in vitro and in vivo and from evaluating immune-based therapies and vaccines, and present recommendations for future research. |
Towards a Sustainable One Health Approach to Crimean-Congo Hemorrhagic Fever Prevention: Focus Areas and Gaps in Knowledge.
Sorvillo TE , Rodriguez SE , Hudson P , Carey M , Rodriguez LL , Spiropoulou CF , Bird BH , Spengler JR , Bente DA . Trop Med Infect Dis 2020 5 (3) ![]() ![]() Crimean-Congo hemorrhagic fever virus (CCHFV) infection is identified in the 2018 World Health Organization Research and Development Blueprint and the National Institute of Allergy and Infectious Diseases (NIH/NIAID) priority A list due to its high risk to public health and national security. Tick-borne CCHFV is widespread, found in Europe, Asia, Africa, the Middle East, and the Indian subcontinent. It circulates between ticks and several vertebrate hosts without causing overt disease, and thus can be present in areas without being noticed by the public. As a result, the potential for zoonotic spillover from ticks and animals to humans is high. In contrast to other emerging viruses, human-to-human transmission of CCHFV is typically limited; therefore, prevention of spillover events should be prioritized when considering countermeasures. Several factors in the transmission dynamics of CCHFV, including a complex transmission cycle that involves both ticks and vertebrate hosts, lend themselves to a One Health approach for the prevention and control of the disease that are often overlooked by current strategies. Here, we examine critical focus areas to help mitigate CCHFV spillover, including surveillance, risk assessment, and risk reduction strategies concentrated on humans, animals, and ticks; highlight gaps in knowledge; and discuss considerations for a more sustainable One Health approach to disease control. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Jun 20, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure