Last data update: Dec 09, 2024. (Total: 48320 publications since 2009)
Records 1-18 (of 18 Records) |
Query Trace: Solano M[original query] |
---|
N-glycosylation profiles of the SARS-CoV-2 spike D614G mutant and its ancestral protein characterized by advanced mass spectrometry (preprint)
Wang D , Zhou B , Keppel TR , Solano M , Baudys J , Goldstein J , Finn MG , Fan X , Chapman AP , Bundy JL , Woolfitt AR , Osman SH , Pirkle JL , Wentworth DE , Barr JR . bioRxiv 2021 2021.07.26.453787 N-glycosylation plays an important role in the structure and function of membrane and secreted proteins. The spike protein on the surface of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, is heavily glycosylated and the major target for developing vaccines, therapeutic drugs and diagnostic tests. The first major SARS-CoV-2 variant carries a D614G substitution in the spike (S-D614G) that has been associated with altered conformation, enhanced ACE2 binding, and increased infectivity and transmission. In this report, we used mass spectrometry techniques to characterize and compare the N-glycosylation of the wild type (S-614D) or variant (S-614G) SARS-CoV-2 spike glycoproteins prepared under identical conditions. The data showed that half of the N-glycosylation sequons changed their distribution of glycans in the S-614G variant. The S-614G variant showed a decrease in the relative abundance of complex-type glycans (up to 45%) and an increase in oligomannose glycans (up to 33%) on all altered sequons. These changes led to a reduction in the overall complexity of the total N-glycosylation profile. All the glycosylation sites with altered patterns were in the spike head while the glycosylation of three sites in the stalk remained unchanged between S-614G and S-614D proteins.Competing Interest StatementThe authors have declared no competing interest. |
Comprehensive characterization of toxins during progression of inhalation anthrax in a non-human primate model
Boyer AE , Gallegos-Candela M , Lins RC , Solano MI , Woolfitt AR , Lee JS , Sanford DC , Knostman KAB , Quinn CP , Hoffmaster AR , Pirkle JL , Barr JR . PLoS Pathog 2022 18 (12) e1010735 Inhalation anthrax has three clinical stages: early-prodromal, intermediate-progressive, and late-fulminant. We report the comprehensive characterization of anthrax toxins, including total protective antigen (PA), total lethal factor (LF), total edema factor (EF), and their toxin complexes, lethal toxin and edema toxin in plasma, during the course of inhalation anthrax in 23 cynomolgus macaques. The toxin kinetics were predominantly triphasic with an early rise (phase-1), a plateau/decline (phase-2), and a final rapid rise (phase-3). Eleven animals had shorter survival times, meanstandard deviation of 58.77.6 hours (fast progression), 11 animals had longer survival times, 11334.4 hours (slow progression), and one animal survived. Median (lower-upper quartile) LF levels at the end-of-phase-1 were significantly higher in animals with fast progression [138 (54.9-326) ng/mL], than in those with slow progression [23.8 (15.6-26.3) ng/mL] (p = 0.0002), and the survivor (11.1 ng/mL). The differences were also observed for other toxins and bacteremia. Animals with slow progression had an extended phase-2 plateau, with low variability of LF levels across all time points and animals. Characterization of phase-2 toxin levels defined upper thresholds; critical levels for exiting phase-2 and entering the critical phase-3, 342 ng/mL (PA), 35.8 ng/mL (LF), and 1.10 ng/mL (EF). The thresholds were exceeded earlier in animals with fast progression (38.57.4 hours) and later in animals with slow progression (78.715.2 hours). Once the threshold was passed, toxin levels rose rapidly in both groups to the terminal stage. The time from threshold to terminal was rapid and similar; 20.87.4 hours for fast and 19.97.5 hours for slow progression. The three toxemic phases were aligned with the three clinical stages of anthrax for fast and slow progression which showed that anthrax progression is toxin- rather than time-dependent. This first comprehensive evaluation of anthrax toxins provides new insights into disease progression. |
SARS-CoV-2 viral shedding in vaccinated and unvaccinated persons: A case series.
McCormick DW , Hagan LM , Salvatore PP , Magleby R , Lee C , Sleweon S , Nicolae L , Dixon T , Banta R , Ogle I , Young C , Dusseau C , Ogden C , Browne H , Michael Metz J , Chen MH , Solano MI , Rogers S , Burgin A , Sheth M , Bankamp B , Tamin A , Harcourt JL , Tate JE , Kirking HL . Vaccine 2022 41 (11) 1769-1773 The preclinical time course of SARS-CoV-2 shedding is not well-described. Understanding this time course will help to inform risk of SARS-CoV-2 transmission. During an outbreak in a congregate setting, we collected paired mid-turbinate nasal swabs for antigen testing and reverse-transcription polymerase chain reaction (RT-PCR) every other day from all consenting infected and exposed persons. Among 12 persons tested prospectively before and during SARS-CoV-2 infection, ten of 12 participants (83%) had completed a primary COVID-19 vaccination series prior to the outbreak. We recovered SARS-CoV-2 in viral culture from 9/12 (75%) of participants. All three persons from whom we did not recover SARS-CoV-2 in viral culture had completed their primary vaccination series. We recovered SARS-CoV-2 from viral culture in 6/9 vaccinated persons and before symptom onset in 3/6 symptomatic persons. These findings underscore the need for both non-pharmaceutical interventions and vaccination to mitigate transmission. |
The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis
Walker TM , Fowler PW , Knaggs J , Hunt M , Peto TE , Walker AS , Crook DW , Walker TM , Miotto P , Cirillo DM , Kser CU , Knaggs J , Iqbal Z , Hunt M , Chindelevitch L , Farhat MR , Comas I , Comas I , Posey J , Omar SV , Peto TE , Walker AS , Crook DW , Suresh A , Uplekar S , Laurent S , Colman RE , Rodwell TC , Nathanson CM , Zignol M , Ismail N , Rodwell TC , Walker AS , Steyn AJC , Lalvani A , Baulard A , Christoffels A , Mendoza-Ticona A , Trovato A , Skrahina A , Lachapelle AS , Brankin A , Piatek A , GibertoniCruz A , Koch A , Cabibbe AM , Spitaleri A , Brandao AP , Chaiprasert A , Suresh A , Barbova A , VanRie A , Ghodousi A , Bainomugisa A , Mandal A , Roohi A , Javid B , Zhu B , Letcher B , Rodrigues C , Nimmo C , Nathanson CM , Duncan C , Coulter C , Utpatel C , Liu C , Grazian C , Kong C , Kser CU , Wilson DJ , Cirillo DM , Matias D , Jorgensen D , Zimenkov D , Chetty D , Moore DA , Clifton DA , Crook DW , vanSoolingen D , Liu D , Kohlerschmidt D , Barreira D , Ngcamu D , SantosLazaro ED , Kelly E , Borroni E , Roycroft E , Andre E , Bttger EC , Robinson E , Menardo F , Mendes FF , Jamieson FB , Coll F , Gao GF , Kasule GW , Rossolini GM , Rodger G , Smith EG , Meintjes G , Thwaites G , Hoffmann H , Albert H , Cox H , Laurenson IF , Comas I , Arandjelovic I , Barilar I , Robledo J , Millard J , Johnston J , Posey J , Andrews JR , Knaggs J , Gardy J , Guthrie J , Taylor J , Werngren J , Metcalfe J , Coronel J , Shea J , Carter J , Pinhata JM , Kus JV , Todt K , Holt K , Nilgiriwala KS , Ghisi KT , Malone KM , Faksri K , Musser KA , Joseph L , Rigouts L , Chindelevitch L , Jarrett L , Grandjean L , Ferrazoli L , Rodrigues M , Farhat M , Schito M , Fitzgibbon MM , Loemb MM , Wijkander M , Ballif M , Rabodoarivelo MS , Mihalic M , Wilcox M , Hunt M , Zignol M , Merker M , Egger M , O'Donnell M , Caws M , Wu MH , Whitfield MG , Inouye M , Mansj M , DangThi MH , Joloba M , Kamal SM , Okozi N , Ismail N , Mistry N , Hoang NN , Rakotosamimanana N , Paton NI , Rancoita PMV , Miotto P , Lapierre P , Hall PJ , Tang P , Claxton P , Wintringer P , Keller PM , Thai PVK , Fowler PW , Supply P , Srilohasin P , Suriyaphol P , Rathod P , Kambli P , Groenheit R , Colman RE , Ong RTH , Warren RM , Wilkinson RJ , Diel R , Oliveira RS , Khot R , Jou R , Tahseen S , Laurent S , Gharbia S , Kouchaki S , Shah S , Plesnik S , Earle SG , Dunstan S , Hoosdally SJ , Mitarai S , Gagneux S , Omar SV , Yao SY , GrandjeanLapierre S , Battaglia S , Niemann S , Pandey S , Uplekar S , Halse TA , Cohen T , Cortes T , Prammananan T , Kohl TA , Thuong NTT , Teo TY , Peto TEA , Rodwell TC , William T , Walker TM , Rogers TR , Surve U , Mathys V , Furi V , Cook V , Vijay S , Escuyer V , Dreyer V , Sintchenko V , Saphonn V , Solano W , Lin WH , vanGemert W , He W , Yang Y , Zhao Y , Qin Y , Xiao YX , Hasan Z , Iqbal Z , Puyen ZM , CryPticConsortium theSeq , Treat Consortium . Lancet Microbe 2022 3 (4) e265-e273 Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (73%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (07%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (914%), moxifloxacin (916%) and ethambutol (933%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation. 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license |
N-glycosylation profiles of the SARS-CoV-2 spike D614G mutant and its ancestral protein characterized by advanced mass spectrometry.
Wang D , Zhou B , Keppel TR , Solano M , Baudys J , Goldstein J , Finn MG , Fan X , Chapman AP , Bundy JL , Woolfitt AR , Osman SH , Pirkle JL , Wentworth DE , Barr JR . Sci Rep 2021 11 (1) 23561 N-glycosylation plays an important role in the structure and function of membrane and secreted proteins. The spike protein on the surface of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, is heavily glycosylated and the major target for developing vaccines, therapeutic drugs and diagnostic tests. The first major SARS-CoV-2 variant carries a D614G substitution in the spike (S-D614G) that has been associated with altered conformation, enhanced ACE2 binding, and increased infectivity and transmission. In this report, we used mass spectrometry techniques to characterize and compare the N-glycosylation of the wild type (S-614D) or variant (S-614G) SARS-CoV-2 spike glycoproteins prepared under identical conditions. The data showed that half of the N-glycosylation sequons changed their distribution of glycans in the S-614G variant. The S-614G variant showed a decrease in the relative abundance of complex-type glycans (up to 45%) and an increase in oligomannose glycans (up to 33%) on all altered sequons. These changes led to a reduction in the overall complexity of the total N-glycosylation profile. All the glycosylation sites with altered patterns were in the spike head while the glycosylation of three sites in the stalk remained unchanged between S-614G and S-614D proteins. |
Comprehensive Analysis of the Glycan Complement of SARS-CoV-2 Spike Proteins Using Signature Ions-Triggered Electron-Transfer/Higher-Energy Collisional Dissociation (EThcD) Mass Spectrometry.
Wang D , Baudys J , Bundy JL , Solano M , Keppel T , Barr JR . Anal Chem 2020 92 (21) 14730-14739 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a global pandemic of coronavirus disease 2019 (COVID-19). The spike protein expressed on the surface of this virus is highly glycosylated and plays an essential role during the process of infection. We conducted a comprehensive mass spectrometric analysis of the N-glycosylation profiles of the SARS-CoV-2 spike proteins using signature ions-triggered electron-transfer/higher-energy collision dissociation (EThcD) mass spectrometry. The patterns of N-glycosylation within the recombinant ectodomain and S1 subunit of the SARS-CoV-2 spike protein were characterized using this approach. Significant variations were observed in the distribution of glycan types as well as the specific individual glycans on the modification sites of the ectodomain and subunit proteins. The relative abundance of sialylated glycans in the S1 subunit compared to the full-length protein could indicate differences in the global structure and function of these two species. In addition, we compared N-glycan profiles of the recombinant spike proteins produced from different expression systems, including human embryonic kidney (HEK 293) cells and Spodoptera frugiperda (SF9) insect cells. These results provide useful information for the study of the interactions of SARS-CoV-2 viral proteins and for the development of effective vaccines and therapeutics. |
Transmission of COVID-19 to Health Care Personnel During Exposures to a Hospitalized Patient - Solano County, California, February 2020.
Heinzerling A , Stuckey MJ , Scheuer T , Xu K , Perkins KM , Resseger H , Magill S , Verani JR , Jain S , Acosta M , Epson E . MMWR Morb Mortal Wkly Rep 2020 69 (15) 472-476 On February 26, 2020, the first U.S. case of community-acquired coronavirus disease 2019 (COVID-19) was confirmed in a patient hospitalized in Solano County, California (1). The patient was initially evaluated at hospital A on February 15; at that time, COVID-19 was not suspected, as the patient denied travel or contact with symptomatic persons. During a 4-day hospitalization, the patient was managed with standard precautions and underwent multiple aerosol-generating procedures (AGPs), including nebulizer treatments, bilevel positive airway pressure (BiPAP) ventilation, endotracheal intubation, and bronchoscopy. Several days after the patient's transfer to hospital B, a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) test for SARS-CoV-2 returned positive. Among 121 hospital A health care personnel (HCP) who were exposed to the patient, 43 (35.5%) developed symptoms during the 14 days after exposure and were tested for SARS-CoV-2; three had positive test results and were among the first known cases of probable occupational transmission of SARS-CoV-2 to HCP in the United States. Little is known about specific risk factors for SARS-CoV-2 transmission in health care settings. To better characterize and compare exposures among HCP who did and did not develop COVID-19, standardized interviews were conducted with 37 hospital A HCP who were tested for SARS-CoV-2, including the three who had positive test results. Performing physical examinations and exposure to the patient during nebulizer treatments were more common among HCP with laboratory-confirmed COVID-19 than among those without COVID-19; HCP with COVID-19 also had exposures of longer duration to the patient. Because transmission-based precautions were not in use, no HCP wore personal protective equipment (PPE) recommended for COVID-19 patient care during contact with the index patient. Health care facilities should emphasize early recognition and isolation of patients with possible COVID-19 and use of recommended PPE to minimize unprotected, high-risk HCP exposures and protect the health care workforce. |
Long-term outcomes of Guillain-Barre syndrome possibly associated with Zika virus infection
Walteros DM , Soares J , Styczynski AR , Abrams JY , Galindo-Buitrago JI , Acosta-Reyes J , Bravo-Ribero E , Arteta ZE , Solano-Sanchez A , Prieto FE , Gonzalez-Duarte M , Navarro-Lechuga E , Salinas JL , Belay ED , Schonberger LB , Damon IK , Ospina ML , Sejvar JJ . PLoS One 2019 14 (8) e0220049 BACKGROUND: This prospective cohort investigation analyzed the long-term functional and neurologic outcomes of patients with Zika virus-associated Guillain-Barre syndrome (GBS) in Barranquilla, Colombia. METHODS: Thirty-four Zika virus-associated GBS cases were assessed a median of 17 months following acute GBS illness. We assessed demographics, results of Overall Disability Sum Scores (ODSS), Hughes Disability Score (HDS), Zung Depression Scale (ZDS), and Health Related Quality of Life (HRQL) questionnaires; and compared outcomes indices with a normative sample of neighborhood-selected control subjects in Barranquilla without GBS. RESULTS: Median age at time of acute neurologic onset was 49 years (range, 10-80); 17 (50%) were male. No deaths occurred. At long-term follow-up, 25 (73%) patients had a HDS 0-1, indicating complete / near complete recovery. Among the group, HDS (mean 1.4, range 0-4), ODSS (mean 1.9, range 0-9) and ZDS score (mean 34.4, range 20-56) indicated mild / moderate ongoing disability. Adjusting for age and sex, Zika virus-associated GBS cases were similar to a population comparison group (n = 368) in Barranquilla without GBS in terms of prevalence of physical or mental health complaints, though GBS patients were more likely to have an ODSS of >/= 1 (OR 8.8, 95% CI 3.2-24.5) and to suffer from moderate / moderate-severe depression (OR 3.89, 95% CI 1.23-11.17) than the comparison group. CONCLUSIONS: Long-term outcomes of Zika virus-associated GBS are consistent with those associated with other antecedent antigenic stimuli in terms of mortality and ongoing long-term morbidity, as published in the literature. Persons with Zika virus-associated GBS more frequently reported disability and depression after approximately one year compared with those without GBS. |
Accurate and selective quantification of anthrax protective antigen in plasma by immunocapture and isotope dilution mass spectrometry
Solano MI , Woolfitt AR , Boyer AE , Lins RC , Isbell K , Gallegos-Candela M , Moura H , Pierce CL , Barr JR . Analyst 2019 144 (7) 2264-2274 Anthrax protective antigen (83 kDa, PA83) is an essential component of two major binary toxins produced by Bacillus anthracis, lethal toxin (LTx) and edema toxin (ETx). During infection, LTx and ETx contribute to immune collapse, endothelial dysfunction, hemorrhage and high mortality. Following protease cleavage on cell receptors or in circulation, the 20 kDa (PA20) N-terminus is released, activating the 63 kDa (PA63) form which binds lethal factor (LF) and edema factor (EF), facilitating their entry into their cellular targets. Several ELISA-based PA methods previously developed are primarily qualitative or semi-quantitative. Here, we combined protein immunocapture, tryptic digestion and isotope dilution liquid chromatography-mass spectrometry (LC-MS/MS), to develop a highly selective and sensitive method for detection and accurate quantification of total-PA (PA83 + PA63) and PA83. Two tryptic peptides in the 63 kDa region measure total-PA and three in the 20 kDa region measure PA83 alone. Detection limits range from 1.3-2.9 ng mL-1 PA in 100 muL of plasma. Spiked recovery experiments with combinations of PA83, PA63, LF and EF in plasma showed that PA63 and PA83 were quantified accurately against the PA83 standard and that LF and EF did not interfere with accuracy. Applied to a study of inhalation anthrax in rhesus macaques, total-PA suggested triphasic kinetics, similar to that previously observed for LF and EF. This study is the first to report circulating PA83 in inhalation anthrax, typically at less than 4% of the levels of PA63, providing the first evidence that activated PA63 is the primary form of PA throughout infection. |
Quantification of Influenza Neuraminidase Activity by Ultra-High Performance Liquid Chromatography and Isotope Dilution Mass Spectrometry
Solano MI , Woolfitt AR , Williams TL , Pierce CL , Gubareva LV , Mishin V , Barr JR . Anal Chem 2017 89 (5) 3130-3137 Mounting evidence suggests that neuraminidase's functionality extends beyond its classical role in influenza virus infection and that antineuraminidase antibodies offer protective immunity. Therefore, a renewed interest in the development of neuraminidase (NA)-specific methods to characterize the glycoprotein and evaluate potential advantages for NA standardization in influenza vaccines has emerged. NA displays sialidase activity by cleaving off the terminal N-acetylneuraminic acid on α-2,3 or α-2,6 sialic acid containing receptors of host cells. The type and distribution of these sialic acid containing receptors is considered to be an important factor in transmission efficiency of influenza viruses between and among host species. Changes in hemagglutinin (HA) binding and NA specificity in reassortant viruses may be related to the emergence of new and potentially dangerous strains of influenza. Current methods to investigate neuraminidase activity use small derivatized sugars that are poor models for natural glycoprotein receptors and do not provide information on the linkage specificity. Here, a novel approach for rapid and accurate quantification of influenza neuraminidase activity is achieved utilizing ultra-high performance liquid chromatography (UPLC) and isotope dilution mass spectrometry (IDMS). Direct LC-MS/MS quantification of NA-released sialic acid provides precise measurement of influenza neuraminidase activity over a range of substrates. The method provides exceptional sensitivity and specificity with a limit of detection of 0.38 μM for sialic acid and the capacity to obtain accurate measurements of specific enzyme activity preference toward α-2,3-sialyllactose linkages, α-2,6-sialyllactose linkages, or whole glycosylated proteins such as fetuin. |
Zika virus disease-associated Guillain-Barre syndrome - Barranquilla, Colombia 2015-2016
Salinas JL , Walteros DM , Styczynski A , Garzon F , Quijada H , Bravo E , Chaparro P , Madero J , Acosta-Reyes J , Ledermann J , Arteta Z , Borland E , Burns P , Gonzalez M , Powers AM , Mercado M , Solano A , Sejvar JJ , Ospina ML . J Neurol Sci 2017 381 272-277 Background An outbreak of Guillain-Barre syndrome (GBS), a disorder characterized by acute, symmetric limb weakness with decreased or absent deep-tendon reflexes, was reported in Barranquilla, Colombia, after the introduction of Zika virus in 2015. We reviewed clinical data for GBS cases in Barranquilla and performed a case-control investigation to assess the association of suspect and probable Zika virus disease with GBS. Methods We used the Brighton Collaboration Criteria to confirm reported GBS patients in Barranquilla during October 2015-April 2016. In April 2016, two neighborhood and age range-matched controls were selected for each confirmed GBS case-patient. We obtained demographics and antecedent symptoms in the 2-month period before GBS onset for case-patients and the same period for controls. Sera were collected for Zika virus antibody testing. Suspected Zika virus disease was defined as a history of rash and >= 2 other Zika-related symptoms (fever, arthralgia, myalgia, or conjunctivitis). Probable Zika virus disease was defined as suspected Zika virus disease with laboratory evidence of a recent Zika virus or flavivirus infection. Conditional logistic regression adjusted for sex and race/ethnicity was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results We confirmed 47 GBS cases. Incidence increased with age (10-fold higher in those >= 60 years versus those < 20 years). We interviewed 40 case-patients and 79 controls. There was no significant difference in laboratory evidence of recent Zika virus or flavivirus infection between case-patients and controls (OR: 2.2; 95% CI: 0.9-5.1). GBS was associated with having suspected (OR: 3.0, 95% CI: 1.1-8.6) or probable Zika virus disease (OR: 4.6, CI: 1.1-19.0). Conclusions Older individuals and those with suspected and probable Zika virus disease had higher odds of developing GBS. Key points We confirmed a Guillain-Barre syndrome (GBS) outbreak in Barranquilla, Colombia, during October 2015-April 2016. A case-control investigation using neighborhood controls showed an association of suspected and probable Zika virus disease with GBS. |
Immunocapture isotope dilution mass spectrometry in response to a pandemic influenza threat
Pierce CL , Williams TL , Santana WI , Levine M , Chen LM , Cooper HC , Solano MI , Woolfitt AR , Marasco WA , Fang H , Donis RO , Barr JR . Vaccine 2017 35 (37) 5011-5018 As a result of recent advances in mass spectrometry-based protein quantitation methods, these techniques are now poised to play a critical role in rapid formulation of pandemic influenza vaccines. Analytical techniques that have been developed and validated on seasonal influenza strains can be used to increase the quality and decrease the time required to deliver protective pandemic vaccines to the global population. The emergence of a potentially pandemic avian influenza A (H7N9) virus in March of 2013, prompted the US public health authorities and the vaccine industry to initiate production of a pre-pandemic vaccine for preparedness purposes. To this end, we evaluated the feasibility of using immunocapture isotope dilution mass spectrometry (IC-IDMS) to evaluate the suitability of the underlying monoclonal and polyclonal antibodies (mAbs and pAbs) for their capacity to isolate the H7 hemagglutinin (HA) in this new vaccine for quantification by IDMS. A broad range of H7 capture efficiencies was observed among mAbs tested by IC-IDMS with FR-545, 46/6, and G3 A533 exhibiting the highest cross-reactivity capabilities to H7 of A/Shanghai/2/2013. MAb FR-545 was selected for continued assessment, evaluated by IC-IDMS for mAb reactivity against H7 in the H7N9 candidate vaccine virus and compared with/to reactivity to the reference polyclonal antiserum in allantoic fluid, purified whole virus, lyophilized whole virus and final detergent-split monovalent vaccine preparations for vaccine development. IC-IDMS assessment of FR-545 alongside IC-IDMS using the reference polyclonal antiserum to A/Shanghai/2/2013 and with the regulatory SRID method showed strong correlation and mAb IC-IDMS could have played an important role in the event a potential surrogate potency test was required to be rapidly implemented. |
Genetic Characterisation of Plasmodium falciparum Isolates with Deletion of the pfhrp2 and/or pfhrp3 Genes in Colombia: The Amazon Region, a Challenge for Malaria Diagnosis and Control.
Dorado EJ , Okoth SA , Montenegro LM , Diaz G , Barnwell JW , Udhayakumar V , Murillo Solano C . PLoS One 2016 11 (9) e0163137 Most Plasmodium falciparum-detecting rapid diagnostic tests (RDTs) target histidine-rich protein 2 (PfHRP2). However, P. falciparum isolates with deletion of the pfhrp2 gene and its homolog gene, pfhrp3, have been detected. We carried out an extensive investigation on 365 P. falciparum dried blood samples collected from seven P. falciparum endemic sites in Colombia between 2003 and 2012 to genetically characterise and geographically map pfhrp2- and/or pfhrp3-negative P. falciparum parasites in the country. We found a high proportion of pfhrp2-negative parasites only in Amazonas (15/39; 38.5%), and these parasites were also pfhrp3-negative. These parasites were collected between 2008 and 2009 in Amazonas, while pfhrp3-negative parasites (157/365, 43%) were found in all the sites and from each of the sample collection years evaluated (2003 to 2012). We also found that all pfhrp2- and/or pfhrp3-negative parasites were also negative for one or both flanking genes. Six sub-population clusters were established with 93.3% (14/15) of the pfhrp2-negative parasites grouped in the same cluster and sharing the same haplotype. This haplotype corresponded with the genetic lineage BV1, a multidrug resistant strain that caused two outbreaks reported in Peru between 2010 and 2013. We found this BV1 lineage in the Colombian Amazon as early as 2006. Two new clonal lineages were identified in these parasites from Colombia: the genetic lineages EV1 and F. PfHRP2 sequence analysis revealed high genetic diversity at the amino acid level, with 17 unique sequences identified among 53 PfHRP2 sequences analysed. The use of PfHRP2-based RDTs is not recommended in Amazonas because of the high proportion of parasites with pfhrp2 deletion (38.5%), and implementation of new strategies for malaria diagnosis and control in Amazonas must be prioritised. Moreover, studies to monitor and genetically characterise pfhrp2-negative P. falciparum parasites in the Americas are warranted, given the extensive human migration occurring in the region. |
Injuries and traumatic psychological exposures associated with the South Napa Earthquake - California, 2014
Attfield KR , Dobson CB , Henn JB , Acosta M , Smorodinsky S , Wilken JA , Barreau T , Schreiber M , Windham GC , Materna BL , Roisman R . MMWR Morb Mortal Wkly Rep 2015 64 (35) 975-8 On August 24, 2014, at 3:20 a.m., a magnitude 6.0 earthquake struck California, with its epicenter in Napa County (1). The earthquake was the largest to affect the San Francisco Bay area in 25 years and caused significant damage in Napa and Solano counties, including widespread power outages, five residential fires, and damage to roadways, waterlines, and 1,600 buildings (2). Two deaths resulted (2). On August 25, Napa County Public Health asked the California Department of Public Health (CDPH) for assistance in assessing postdisaster health effects, including earthquake-related injuries and effects on mental health. On September 23, Solano County Public Health requested similar assistance. A household-level Community Assessment for Public Health Emergency Response (CASPER) was conducted for these counties in two cities (Napa, 3 weeks after the earthquake, and Vallejo, 6 weeks after the earthquake). Among households reporting injuries, a substantial proportion (48% in Napa and 37% in western Vallejo) reported that the injuries occurred during the cleanup period, suggesting that increased messaging on safety precautions after a disaster might be needed. One fifth of respondents overall (27% in Napa and 9% in western Vallejo) reported one or more traumatic psychological exposures in their households. These findings were used by Napa County Mental Health to guide immediate-term mental health resource allocations and to conduct public training sessions and education campaigns to support persons with mental health risks following the earthquake. In addition, to promote community resilience and future earthquake preparedness, Napa County Public Health subsequently conducted community events on the earthquake anniversary and provided outreach workers with psychological first aid training. |
Deletion of Plasmodium falciparum Histidine-Rich Protein 2 (pfhrp2) and Histidine-Rich Protein 3 (pfhrp3) Genes in Colombian Parasites.
Murillo Solano C , Akinyi Okoth S , Abdallah JF , Pava Z , Dorado E , Incardona S , Huber CS , Macedo de Oliveira A , Bell D , Udhayakumar V , Barnwell JW . PLoS One 2015 10 (7) e0131576 A number of studies have analyzed the performance of malaria rapid diagnostic tests (RDTs) in Colombia with discrepancies in performance being attributed to a combination of factors such as parasite levels, interpretation of RDT results and/or the handling and storage of RDT kits. However, some of the inconsistencies observed with results from Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs could also be explained by the deletion of the gene that encodes the protein, pfhrp2, and its structural homolog, pfhrp3, in some parasite isolates. Given that pfhrp2- and pfhrp3-negative P. falciparum isolates have been detected in the neighboring Peruvian and Brazilian Amazon regions, we hypothesized that parasites with deletions of pfhrp2 and pfhrp3 may also be present in Colombia. In this study we tested 100 historical samples collected between 1999 and 2009 from six Departments in Colombia for the presence of pfhrp2, pfhrp3 and their flanking genes. Seven neutral microsatellites were also used to determine the genetic background of these parasites. In total 18 of 100 parasite isolates were found to have deleted pfhrp2, a majority of which (14 of 18) were collected from Amazonas Department, which borders Peru and Brazil. pfhrp3 deletions were found in 52 of the100 samples collected from all regions of the country. pfhrp2 flanking genes PF3D7_0831900 and PF3D7_0831700 were deleted in 22 of 100 and in 1 of 100 samples, respectively. pfhrp3 flanking genes PF3D7_1372100 and PF3D7_1372400 were missing in 55 of 100 and in 57 of 100 samples. Structure analysis of microsatellite data indicated that Colombian samples tested in this study belonged to four clusters and they segregated mostly based on their geographic region. Most of the pfhrp2-deleted parasites were assigned to a single cluster and originated from Amazonas Department although a few pfhrp2-negative parasites originated from the other three clusters. The presence of a high proportion of pfhrp2-negative isolates in the Colombian Amazon may have implications for the use of PfHRP2-based RDTs in the region and may explain inconsistencies observed when PfHRP2-based tests and assays are performed. |
Studies on botulinum neurotoxins type/C1 and mosaic/DC using endopep-MS and proteomics
Moura H , Terilli RR , Woolfitt AR , Gallegos-Candela M , McWilliams LG , Solano MI , Pirkle JL , Barr JR . FEMS Immunol Med Microbiol 2010 61 (3) 288-300 Botulinum neurotoxins (BoNTs) are very potent toxins and category A biological threat agents. BoNT serotypes/C1 and/D affect birds and mammals and can be potentially lethal to humans. We have previously described the usefulness of the Endopep-MS method to detect the activity of BoNT A through G. This report was followed by the application of the method to clinical samples. The activity of the BoNT serotypes associated with human disease (/A,/B,/E, and/F) was successfully detected. However, BoNT/C and/D require different conditions for fast substrate cleavage and a comprehensive description of a method to study BoNT/C and/D has not yet been reported. This work describes a new, optimized version of the Endopep-MS method to detect BoNTs/C1 and/DC either spiked directly in 20 muL of reaction buffer or spiked in a larger volume of buffer and further extracted using antibody-coated magnetic beads. It was found that the incubation temperature at 42 degrees C was more effective for both toxin serotypes, but each toxin serotype has an optimum cleavage pH. Additionally, we describe for the first time a proteomics study using a fast trypsin digestion method and label-free quantification of these toxin serotypes. |
Accuracy of influenza vaccination status in a computer-based immunization tracking system of a managed care organization
Sy LS , Liu IL , Solano Z , Cheetham TC , Lugg MM , Greene SK , Weintraub ES , Jacobsen SJ . Vaccine 2010 28 (32) 5254-9 Influenza vaccine safety and effectiveness studies conducted using electronic medical records rely on accurate assessment of influenza vaccination status. However, influenza immunization in non-traditional settings (e.g., the workplace) may not be captured in patient immunization tracking systems. We compared influenza vaccination status from electronic records with self-reported vaccination status for five hundred and two 50-79 years olds enrolled in a large managed care organization. Influenza vaccination status in the medical record had a high positive predictive value and specificity (both >99%). The negative predictive value was 80% and sensitivity was 78%. These data suggest that an electronic record of influenza vaccination reliably indicates immunization, while the absence of such a record is only moderately accurate, partly due to vaccines received in non-traditional settings. |
Optimization of digestion parameters for protein quantification
Norrgran J , Williams TL , Woolfitt AR , Solano MI , Pirkle JL , Barr JR . Anal Biochem 2009 393 (1) 48-55 We present a rapid and efficient in-solution enzymatic digestion protocol suitable for mass spectrometry-based absolute protein quantification techniques. The digestion method employs RapiGest SF (an acid-labile surfactant), an excess amount of modified trypsin (enzyme-to-substrate ratio of 2.5:1), and an incubation time of 2 h. No reduction/alkylation reagents are used. Digestion parameters were varied systematically to monitor their effect on rate and completeness of digestion. To demonstrate the general applicability of the method, the optimization was done using a viral hemagglutinin (HA) as a model protein and then applied to ricin, a potent protein toxin extracted from the castor bean (Ricinus communis). The parameters that were optimized included incubation time, concentration of RapiGest SF, enzyme-to-substrate ratio, and incubation temperature. The optimization was done by comparing the yields from two protein-specific peptides originating from two different sites of the HA protein. The analysis was performed by liquid chromatography-tandem mass spectrometry in multiple reaction monitoring mode using isotopically labeled peptide standards for quantification. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 09, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure