Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-15 (of 15 Records) |
Query Trace: Slaven JE[original query] |
---|
Associations of objectively measured and self-reported sleep duration with carotid artery intima media thickness among police officers
Ma CC , Burchfiel CM , Charles LE , Dorn JM , Andrew ME , Gu JK , Joseph PN , Fekedulegn D , Slaven JE , Hartley TA , Mnatsakanova A , Violanti JM . Am J Ind Med 2013 56 (11) 1341-51 BACKGROUND: We aimed to examine the association of objectively measured and self-reported sleep duration with carotid artery intima media thickness (IMT) among 257 police officers, a group at high risk for cardiovascular disease (CVD). METHODS: Sleep duration was estimated using actigraphic data and through self-reports. The mean maximum IMT was the average of the largest 12 values scanned bilaterally from three angles of the near and far wall of the common carotid, bulb, and internal carotid artery. Linear and quadratic regression models were used to assess the association of sleep duration with IMT. RESULTS: Officers who had fewer than 5 or 8 hr or more of objectively measured sleep duration had significantly higher maximum IMT values, independent of age. Self-reported sleep duration was not associated with either IMT measure. CONCLUSION: Attainment of sufficient sleep duration may be considered as a possible strategy for atherosclerosis prevention among police officers. |
Effect of calibration environment on the performance of direct-reading organic vapor monitors
LeBouf RF , Slaven JE , Coffey CC . J Air Waste Manag Assoc 2013 63 (5) 528-533 The performance of two direct-reading organic vapor monitors (monitors) when calibrated at different environmental conditions was compared with charcoal tube results. Three MIRAN SapphIRe portable ambient air analyzers (SAP) and three Century portable toxic vapor analyzers (TVAs) were evaluated. Prior to sampling, the monitors were calibrated per the manufacturer's instructions using methane for the TVA flame ionization detector (FID) and isobutylene for the photoionization detector (PID), whereas the SapphIRe instruments were zeroed and the instrument's manufacturer-supplied library was used. For the first series of tests (Part 1Same condition), the monitors were calibrated under the same environmental conditions as those present during sampling. They were then challenged with four cyclohexane concentrations (30, 150, 300, and 475 ppm) under two extreme environmental conditions: 5 degrees C and 30% relative humidity (RH) (same/cold) and 38 degrees C and 90% RH (same/hot). For the second series of tests (Part 2Different condition), the monitors were calibrated at approximately normal indoor environmental conditions (21 degrees C and 50% RH) and sampled at extreme environmental conditions (different/cold and different/hot). The monitor readings from the two methods were compared with the actual cyclohexane concentration determined from charcoal tubes using ratios and root mean square errors. A number of monitor failures, both below detection limit values in the presence of a known challenge concentration and erroneously high measurements, occurred in each part: same condition 20.7% (149/720) and different condition 42.4% (305/720), with a majority of the failures (>78%) during the hot and humid conditions. All monitors performed best at the same/cold, followed by the same/hot, in terms of closeness to the reference standard method and low within-monitor variability. The ranked choice of monitors for same/cold is PID > SAP > FID; for different/cold FID > PID > SAP; for same/hot SAP > PID > FID; and for different/hot PID > SAP (FID not included due to 100% failure rate). Implications: Direct-reading organic vapor monitors are used for assessing the concentrations of volatile organic compounds in the air at varying environmental conditions. Typical calibration is performed at laboratory temperature and pressure. The monitors may be used in atmospheres that differ from that during calibration. An understanding of the effect of calibration environment on monitor performance may provide valuable information on the reliability and appropriateness of certain monitor types for industrial hygienists, emergency responders, and exposure assessment practitioners. Results of the study indicate monitor calibration should be performed at the same environmental conditions as sampling. |
Effects of covered solid sorbent tube sample holders on organic vapor measurements
Marpoe BS , Groves WA , Lee EG , Slaven JE , Harper M . J Occup Environ Hyg 2012 9 (10) 572-9 A study was conducted to examine whether there are significant differences between organic vapor concentrations measured using charcoal tubes with three different configurations: uncovered sample holder (open tube), SKC, and Buck brand covered sample holders. A fractional factorial experimental design was used with the following factors and levels: vapor (n-hexane vs. m-xylene), pump type (pulsating vs. continuous), exposure profile (variable vs. constant), flow rate (30 mL/min vs. 200 mL/min), duration (30 min vs. 80 min), and sample placement (mannequin vs. free hanging). Two of each sampler configuration (six total) were placed in an exposure chamber, and a dynamic test-atmosphere generation system was used to prepare atmospheres containing approximately 12-15 ppm n-hexane or m-xylene with exposure profiles and sampling conducted according to a run sheet generated for the experimental design. A total of 24 runs were completed with six samplers per run, yielding 144 samples that were analyzed by gas chromatography/flame ionization detector. Concentration results for each pair of SKC and Buck covered sample holders were averaged and normalized by dividing by the average result for the open tube sampler from the same run to eliminate the effect of daily variation in chamber concentrations. The resulting ratio of covered sample tube holder and open tube concentrations was used as the response variable. Results of analysis of variance using the general linear model (MINITAB 16) identified statistically significant main effects and/or interactions for pump type, exposure profile, flow rate, and sample holder. However, the magnitude of the effects was generally less than 10%, and overall mean concentration ratios were 0.989 and 1.02 for the Buck and SKC sample holders, respectively. These results show good agreement between covered sample holder results and open tube measurements and demonstrate that exposure assessment errors resulting from the use of covered sorbent tube sample holders for organic vapor monitoring are relatively small (<10%) and not likely to be of practical importance. |
Comparison of filter and wall deposits from samplers used to collect airborne lead-containing dusts at field sites
Chisholm WP , Lee T , Slaven JE , Nelson J , Harper M . Aerosol Sci Technol 2012 46 (4) 411-418 Pairs of Institute of Occupational Medicine (IOM) and 37 mm closed face cassette samplers (CFC) were deployed where occupational exposures to lead-containing dusts were known to occur. Discrete particle analyses of wall and filter deposits were performed by Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry (SEM-EDX). From the elemental composition and projected area diameter of each particle a density, volume, and mass were calculated, and a mass-weighted size distribution for each filter and corresponding wall deposit determined. Comparison of pairs of wall and filter mass-weighted size distributions by Mann-Whitney statistical analysis shows that in only 3 of 72 examples from either sampler were the distributions significantly different that suggests that the mechanisms of particle deposition on the sampler walls for particles in this size range (0.5 mcm through 20 mcm) do not differ for the different samplers. Furthermore, in only 4 of 33 sampler pairs did the IOM and CFC results differ. Although these results originate from several distinct processes characterized by different chemical and physical dust generation mechanisms, they suggest that in these environments the measurement of "total dust" by the CFC and inhalable dust by the IOM will be very similar when both samplers are processed the same way with respect to the including or excluding wall deposits with the filter catch. However, these results may not be applicable to environments where larger particles exist. |
An inter-laboratory study to determine the effectiveness of procedures for discriminating amphibole asbestos fibers from amphibole cleavage fragments in fiber counting by phase-contrast microscopy
Harper M , Lee EG , Slaven JE , Bartley DL . Ann Occup Hyg 2012 56 (6) 645-59 The US Occupational Safety and Health Administration (OSHA) and Mine Safety and Health Administration do not regulate cleavage fragments of amphibole and serpentine minerals as asbestos, even when particles meet the dimensional criteria for counting under standard phase-contrast microscopy methods. The OSHA ID-160 method cautions that discriminatory counting is difficult and should not be attempted unless necessary and no procedure is provided for differentiation. A standard published by the American Society for Testing and Materials (ASTM International D7200-06) includes an attempt to codify a procedure but recognizes that the procedure should be validated in an inter-laboratory study. The US National Institute for Occupational Safety and Health has carried out such a study with multiple laboratories using slides made from riebeckite and crocidolite, grunerite and amosite, tremolite and tremolite asbestos, and actinolite and actinolite asbestos using two different measurement aids (graticules). The asbestos fibers had dimensions consistent with those reported for air samples from actual amphibole asbestos operations, and the cleavage fragments were also dimensionally consistent with those found in non-asbestos mining and milling operations. The procedure for discriminating asbestos fibers from other mineral particles in the ASTM Standard calls for the recognition of characteristics supposedly common to asbestos. For the asbestos fibers created in this study, these characteristics were found not to be common and generally a function of length. More importantly, different laboratories did not recognize these features consistently. Laboratories were much more consistent in measuring dimensions, but excessive overlap in the lengths of asbestos fibers and cleavage fragments rendered length a poor criterion for discrimination. The ASTM discrimination procedure as written could not be supported on the basis of this study. Width was a much more consistent parameter for distinguishing the asbestos and non-asbestos fibers in this study and inclusion of aspect ratio, while considered important by some researchers, did not refine the discrimination further. The ability of the majority of microscopists in this study to discriminate fibers and cleavage fragments through measurement of particle widths was determined and found to be within limits of uncertainty typical for air sampling measurements. A width criterion might be a very simple and useful aid where discrimination between asbestos and non-asbestos fibers in fiber counting by phase-contrast microscopy is required for further investigation. Recognition of asbestos features can also be retained as excessive recognition by some laboratories will lead to a conservative decision for additional investigation. |
Validation of an evacuated canister method for measuring part-per-billion levels of chemical warfare agent simulants
Coffey CC , LeBouf RF , Calvert CA , Slaven JE . J Air Waste Manag Assoc 2011 61 (8) 826-833 The National Institute for Occupational Safety and Health (NIOSH) research on direct-reading instruments (DRIs) needed an instantaneous sampling method to provide independent confirmation of the concentrations of chemical warfare agent (CWA) simulants. It was determined that evacuated canisters would be the method of choice. There is no method specifically validated for volatile organic compounds (VOCs) in the NIOSH Manual of Analytical Methods. The purpose of this study was to validate an evacuated canister method for sampling seven specific VOCs that can be used as a simulant for CWA agents (cyclohexane) or influence the DRI measurement of CWA agents (acetone, chloroform, methylene chloride, methyl ethyl ketone, hexane, and carbon tetrachloride [CCl(4)]). The method used 6-L evacuated stainless-steel fused silica-lined canisters to sample the atmosphere containing VOCs. The contents of the canisters were then introduced into an autosampler/preconcentrator using a microscale purge and trap (MPT) method. The MPT method trapped and concentrated the VOCs in the air sample and removed most of the carbon dioxide and water vapor. After preconcentration, the samples were analyzed using a gas chromatograph with a mass selective detector. The method was tested, evaluated, and validated using the NIOSH recommended guidelines. The evaluation consisted of determining the optimum concentration range for the method; the sample stability over 30 days; and the accuracy, precision, and bias of the method. This method meets the NIOSH guidelines for six of the seven compounds (excluding acetone) tested in the range of 2.3-50 parts per billion (ppb), making it suitable for sampling of these VOCs at the ppb level. |
Quantitative mid-infrared diffuse reflection of occupational wood dust exposures
Chirila MM , Lee T , Flemmer MM , Slaven JE , Harper M . Appl Spectrosc 2011 65 (3) 243-9 Occupational exposure to airborne wood dust has been implicated in the development of several symptoms and diseases, including nasal carcinoma. However, the assessment of occupational wood dust exposure is usually performed by gravimetric analysis, which is non-specific. In this study, a mid-infrared (mid-IR) diffuse reflection method was adapted for direct on-filter determination of wood dust mass. The cup from the diffuse reflection unit was replaced with a horizontal translational stage and a filter with wood dust was set thereon. Diffuse reflection (DR) spectra were collected from filters with six different diameters in order to average the signal from the most filter surface. Two absorption bands around 1595 and 1510 cm(-1), attributed to lignin, were monitored for quantitative analysis. Calibration curves were constructed for standard extrathoracic red oak and yellow pine (aerodynamic particle diameters between 10 and 100 mum). Calibration of DR intensity versus known wood dust mass on the filter using the Kubelka-Munk function showed a nonlinear dependence for mass of less than 10 mg of wood dust. The experimental data and small-thickness samples indicate that Kubelka-Munk conditions are not obeyed. Alternatively, the pseudo-absorption function log(1/R), for which R is the relative reflectance, while still giving nonlinear dependence against mass, is closer to a linear dependence and has been preferred by other researchers. Therefore, we consider the use of the log(1/R) function for mid-infrared DR analysis of neat, small-thickness wood dust samples. Furthermore, we suggest the use of a silver metal membrane filter for direct on-filter analysis of wood dust rather than the glass fiber filters that have been used previously. |
Size-selective sampling of particulates using a physiologic sampling pump
Lee LA , Lee EG , Lee T , Kim SW , Slaven JE , Harper M . J Environ Monit 2011 13 (3) 527-35 Recent laboratory research indicates physiologic sampling of gas and vapor may provide more representative estimates of personal exposures than traditional methods. Modifications to the physiologic sampling pump (PSP) used in that research are described which extend its usefulness to size-selective sampling of particulates. PSPs used in previous research varied motor speed to keep sampling proportional to the subject's inhalation. This caused airflow and particle velocities through the collection device to continually change making those pumps unsuitable for sampling particulates. The modified implementation of the PSP pulls a constant airflow into and through a cyclone, then uses valves to either direct the airflow through, or divert the airflow around, the sampling filter. By using physiologic inputs to regulate the fraction of each second that air flows through the sampling filter, samples may be collected in proportion to inhalation rate. To evaluate the performance of a functional prototype 5 different sizes of monodisperse aerosols of ammonium fluorescein were generated by a vibrating orifice aerosol generator and introduced into a calm air chamber. To simulate different inhalation rates the valves of the PSP were energized using 9 different duty cycles. Efficiency curves are presented and compared to a standard respirable convention by bias mapping. The performance of the modified cyclone used in the PSP sampling head compared favorably with a commercially available cyclone of the same model, operating at a constant airflow (+/-10% over almost all the size distributions of concern). The new method makes physiologic sampling of the respirable fraction of particulates feasible. |
Effect of an interferent on the performance of two direct-reading organic vapor monitors
LeBouf RF , Rossner A , Hudnall JB , Slaven JE , Calvert CC , Pearce TA , Coffey CC . J Emerg Manag 2010 8 (5) 72-80 Direct-reading organic vapor monitors (DROVMs) are widely used by industrial hygienists and emergency responders as survey tools for the assessment of volatile organic compounds (VOCs) in occupational or emergency response settings. Although these monitors provide real-time information for expedient decision making, their utility in determining compliance with specific exposure limits is not well established. In addition, other VOCs that may be present in the same environment can act as interferents and adversely affect performance. This study assessed the effect of an interferent (hexane) on the performance of two representative commercially available monitors when measuring cyclohexane. The instrument readings were compared with concentrations measured with sorbent tubes, a standard compliance monitoring technique. Infrared-based concentration measurements were more precise at the two middle challenge concentrations (144 and 289 ppm), indicating a shift in instrument precision at the low and high end of the recommended operating range. Both photoionization detection and infrared-based concentration measurements were affected by the presence and amount of hexane in the test atmosphere. Emergency response personnel and industrial hygienists should be aware of the limitations of DROVMs in the assessment of hazardous situations involving VOCs. |
Fungal pigments inhibit the MALDI-TOF mass spectrometry analysis of darkly pigmented fungi
Buskirk AD , Hettick JM , Chipinda I , Law BF , Siegel PD , Slaven JE , Green BJ , Beezhold DH . Anal Biochem 2010 411 (1) 122-8 Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used to discriminate monilaceous fungal species, however, darkly pigmented fungi yield poor fingerprint mass spectra that contain few peaks of low relative abundance. In this study, the effect of dark fungal pigments on the observed MALDI mass spectra was investigated. Peptide and protein samples containing varying concentrations of synthetic melanin or fungal pigments extracted from Aspergillus niger were analyzed by MALDI-TOF and MALDI-qTOF MS. Signal suppression was observed in samples containing greater than 25 ng/muL pigment. Microscopic examination of the MALDI sample deposit was usually heterogeneous, with regions of high pigment concentration appearing black. Acquisition of MALDI mass spectra from these darkly pigmented regions of the sample deposit yielded poor or no [M+H](+) ion signal. In contrast, non-pigmented regions within the sample deposit and hyphal negative control extracts of A. niger were not inhibited. This study demonstrated that dark fungal pigments inhibited the desorption/ionization process during MALDI-MS; however these fungi may be successfully analyzed by MALDI-TOF MS when culture methods that suppress pigment expression are used. Addition of tricyclazole to the fungal growth media blocks fungal melanin synthesis and results in less-melanized fungi that may be analyzed by MALDI-TOF MS. |
Wood dust sampling: field evaluation of personal samplers when large particles are present
Lee T , Harper M , Slaven JE , Lee K , Rando RJ , Maples EH . Ann Occup Hyg 2010 55 (2) 180-91 Recent recommendations for wood dust sampling include sampling according to the inhalable convention of International Organization for Standardization (ISO) 7708 (1995) Air quality-particle size fraction definitions for health-related sampling. However, a specific sampling device is not mandated, and while several samplers have laboratory performance approaching theoretical for an 'inhalable' sampler, the best choice of sampler for wood dust is not clear. A side-by-side field study was considered the most practical test of samplers as laboratory performance tests consider overall performance based on a wider range of particle sizes than are commonly encountered in the wood products industry. Seven companies in the wood products industry of the Southeast USA (MS, KY, AL, and WV) participated in this study. The products included hardwood flooring, engineered hardwood flooring, door skins, shutter blinds, kitchen cabinets, plywood, and veneer. The samplers selected were 37-mm closed-face cassette with ACCU-CAP, Button, CIP10-I, GSP, and Institute of Occupational Medicine. Approximately 30 of each possible pairwise combination of samplers were collected as personal sample sets. Paired samplers of the same type were used to calculate environmental variance that was then used to determine the number of pairs of samples necessary to detect any difference at a specified level of confidence. Total valid sample number was 888 (444 valid pairs). The mass concentration of wood dust ranged from 0.02 to 195 mg m(-3). Geometric mean (geometric standard deviation) and arithmetic mean (standard deviation) of wood dust were 0.98 mg m(-3) (3.06) and 2.12 mg m(-3) (7.74), respectively. One percent of the samples exceeded 15 mg m(-3), 6% exceeded 5 mg m(-3), and 48% exceeded 1 mg m(-3). The number of collected pairs is generally appropriate to detect a 35% difference when outliers (negative mass loadings) are removed. Statistical evaluation of the nonsimilar sampler pair results produced a finding of no significant difference between any pairing of sampler type. A practical consideration for sampling in the USA is that the ACCU-CAP is similar to the sampler currently used by the Occupational Safety and Health Administration for purposes of demonstrating compliance with its permissible exposure limit for wood dust, which is the same as for Particles Not Otherwise Regulated, also known as inert dust or nuisance dust (Method PV2121). |
Laboratory evaluation of a physiologic sampling pump (PSP)
Lin MI , Groves WA , Freivalds A , Lee L , Lee EG , Slaven JE , Harper M . J Environ Monit 2010 12 (7) 1415-21 Recently, physiologic sampling pumps (PSPs), which can adjust their sampling rates in proportion to wearers' minute ventilation, have been proposed to better estimate exposure to airborne contaminants in the workplace. A laboratory evaluation was conducted to compare the performance of a new PSP with a traditional sampling pump (TSP) in an exposure chamber. Fifteen subjects (aged 19-36 years) performed two replicate sessions of step-tests for correlated and uncorrelated exposure scenarios on four separate days. When exposed to a scenario in which subject is highly correlated with m-xylene concentration over the sampling period (r = 0.93), the PSP-measured time-weighted average (TWA) concentrations are higher than TSP-measured concentrations (average ratio of PSP to TSP = 1.18). The ratio of PSP- and TSP-measured TWA concentrations for the uncorrelated scenario (r = 0.02) is closer to one, as expected, with an average value of 0.94. The test results of the linear mixed model further indicate that the performance of the PSP is unaffected by the anthropometric and physiological characteristics of the wearer. Potential differences in exposure estimates resulting from the use of the two instruments were examined in light of various schemes which can potentially occur in the field. With the capability of estimating the total volume of air inhaled over the sampling period with improved accuracy, PSPs show promise in reducing the inherent uncertainty in current risk assessment approaches that entail constant-flow (TSP) sampling approaches. |
Association between IL-1A single nucleotide polymorphisms and chronic beryllium disease and beryllium sensitization
McCanlies EC , Yucesoy B , Mnatsakanova A , Slaven JE , Andrew M , Frye BL , Schuler CR , Kreiss K , Weston A . J Occup Environ Med 2010 52 (7) 680-4 OBJECTIVE: To determine if single nucleotide polymorphisms (SNPs) in interleukin (IL) IL-1A, IL-1B, IL-1RN, IL-2, IL-9, and IL-9R were associated with chronic beryllium disease (CBD) and beryllium sensitization (BeS). METHODS: Forty SNPs in six IL genes were evaluated in 85 individuals with CBD, 61 individuals with BeS, and 730 individuals without BeS or CBD (nonsensitized) using a 5' nuclease polymerase chain reaction assay. Logistic regression was used to evaluate the association between IL SNPs, CBD, and BeS, adjusting for plant-site and HLA-DPB1 in additive, dominant, and recessive inheritance models. RESULTS: IL-1A-1142, IL-1A-3769, and IL-1A-4697 were significantly associated with CBD in both the additive and dominant models compared to individuals with BeS or the nonsensitized. CONCLUSIONS: These results indicate that genetic variations in the IL-1A gene may play a role in the development of CBD but not BeS. |
Influence of cytokine gene variations on immunization to childhood vaccines
Yucesoy B , Johnson VJ , Fluharty K , Kashon ML , Slaven JE , Wilson NW , Weissman DN , Biagini RE , Germolec DR , Luster MI . Vaccine 2009 27 (50) 6991-7 The magnitude of the immune response to vaccinations can be influenced by genetic variability. In the present study, we aimed to investigate whether cytokine or cytokine receptor gene polymorphisms were associated with variations in the immune response to childhood vaccination. The study group consisted of 141 healthy infants who had been immunized with hepatitis B vaccine (HBV), 7-valent pneumococcal conjugate (PCV7), and diphtheria, tetanus, acellular pertussis (DTaP) vaccines according to standard childhood immunization schedules. Genotype analysis was performed on genomic DNA using a 5' nuclease PCR assay. Post vaccination total, isotypic, and antigen-specific serum antibody levels were measured using multiplex immunoassays. Significant associations were observed between SNPs in the TNFalpha, IL-12B, IL-4Ralpha, and IL-10 genes and vaccine-specific immune responses (p<0.05). In addition, SNPs in the IL-1beta, TNFalpha, IL-2, IL-4, IL-10, IL-4Ralpha, and IL-12B genes were associated with variations in serum levels of immunoglobulins (IgG, IgA, IgM) and IgG isotypes (IgG1-IgG3) (p<0.05). These data suggest that genetic variations in cytokine genes can influence vaccine-induced immune responses in infants, which in turn may influence vaccine efficacy. |
Size Distributions of 0.5 to 20 μm Aerodynamic Diameter Lead-Containing Particles from Aerosol Sampler Walls and Filters
Lee T , Chisholm WP , Slaven JE , Harper M . Aerosol Sci Technol 2009 43 (10) 1042-50 The study presented here investigates the number weighted particle size distributions of aerosols generated in the laboratory from lead oxide and lead sulfide dusts and sampled by Institute of Occupational Medicine (IOM) and closed face cassette (CFC) samplers as determined by scanning electron microscopy (SEM). The wall deposits and filter deposits from each sampler were characterized separately. A Mann-Whitney statistical analysis revealed that differences in the number weighted distributions of particles captured by the filter and the wall were not significant over the size range ( up to 20 mu m aerodynamic equivalent diameter) present in these laboratory-generated aerosols. Furthermore, for these samples it was not possible to distinguish an absolute difference between the IOM and CFC filter catches. By comparing direct measurements of aerodynamic equivalent diameter (AED) made by an Aerodynamic Particle Sizer (APS) to AEDs calculated from SEM images, empirical shape factors for lead oxide and lead sulfide were determined. To validate this approach APS and SEM measurements of the AED of 2 mu m and 6 mu m physical diameter monodisperse glass and polystyrene microspheres were made. Using the shape factors of spheres and the known densities of these materials, it was found that the SEM determinations of AED agreed with the APS results. To demonstrate the reliability of the redeposition method of sample preparation, lead sulfide and lead oxide aerosols were briefly sampled by IOM samplers such that sufficient particles were collected for SEM examination directly on the filter but not so many that particles were likely to touch or overlap. Half of each filter was analyzed in the SEM directly; the other half was ultrasonically |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure