Last data update: Nov 11, 2024. (Total: 48109 publications since 2009)
Records 1-24 (of 24 Records) |
Query Trace: Sinsel E[original query] |
---|
Rat-tail models for studying hand-arm vibration syndrome: A comparison between living and cadaver rat tails
Warren CM , Xu XS , Jackson M , McKinney WG , Wu JZ , Welcome DE , Waugh S , Chapman P , Sinsel EW , Service S , Krajnak K , Dong RG . Vib 2024 7 (3) 722-737 Over-exposure of the hand-arm system to intense vibration and force over time may cause degeneration of the vascular, neurological, and musculoskeletal systems in the fingers. A novel animal model using rat tails has been developed to understand the health effects on human fingers exposed to vibration and force when operating powered hand tools or workpieces. The biodynamic responses, such as vibration stress, strain, and power absorption density, of the rat tails can be used to help evaluate the health effects related to vibration and force and to establish a dose-effect relationship. While the biodynamic responses of cadaver rat tails have been investigated, the objective of the current study was to determine whether the biodynamic responses of living rat tails are different from those of cadaver rat tails, and whether the biodynamic responses of both living and cadaver tails change with exposure duration. To make direct comparisons, the responses of both cadaver and living rat tails were examined on four different testing stations. The transfer function of each tail under a given contact force (2 N) was measured at each frequency in the one-third octave bands from 20 to 1000 Hz, and used to calculate the mechanical system parameters of the tails. The transfer functions were also measured at different exposure durations to determine the time dependency of the response. Differences were observed in the vibration biodynamic responses between living and cadaver tails, but the general trends were similar. The biodynamic responses of both cadaver and living rat tails varied with exposure duration. © 2024 by the authors. |
Reduction of exposure to simulated respiratory aerosols using ventilation, physical distancing, and universal masking (preprint)
Coyle JP , Derk RC , Lindsley WG , Boots T , Blachere FM , Reynolds JS , McKinney WG , Sinsel EW , Lemons AR , Beezhold DH , Noti JD . medRxiv 2021 2021.09.16.21263702 To limit community spread of SARS-CoV-2, CDC recommends universal masking indoors, maintaining 1.8 m of physical distancing, adequate ventilation, and avoiding crowded indoor spaces. Several studies have examined the independent influence of each control strategy in mitigating transmission in isolation, yet controls are often implemented concomitantly within an indoor environment. To address the influence of physical distancing, universal masking, and ventilation on very fine respiratory droplets and aerosol particle exposure, a simulator that coughed and exhaled aerosols (the source) and a second breathing simulator (the recipient) were placed in an exposure chamber. When controlling for the other two mitigation strategies, universal masking with 3-ply cotton masks reduced exposure to 0.3–3 µm coughed and exhaled aerosol particles by > 77% compared to unmasked tests, whereas physical distancing (0.9 or 1.8 m) significantly changed exposure to cough but not exhaled aerosols. The effectiveness of ventilation depended upon the respiratory activity, i.e., coughing or breathing, as well as the duration of exposure time. Our results demonstrate that a combination of administrative and engineering controls can reduce personal inhalation exposure to potentially infectious very fine respiratory droplets and aerosol particles within an indoor environment.PRACTICAL IMPLICATIONSUniversal masking provided the most effective strategy in reducing inhalational exposure to simulated aerosols.Physical distancing provided limited reductions in exposure to small aerosol particles.Ventilation promotes air mixing in addition to aerosol removal, thus altering the exposure profile to individuals.A combination of mitigation strategies can effectively reduce exposure to potentially infectious aerosols.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis work was supported by the Centers for Disease Control and Prevention Emergency Operations Center.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Not ApplicableAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. |
Efficacy of universal masking for source control and personal protection from simulated cough and exhaled aerosols in a room (preprint)
Lindsley WG , Beezhold DH , Coyle J , Derk RC , Blachere FM , Boots T , Reynolds JS , McKinney WG , Sinsel E , Noti JD . medRxiv 2021 2021.04.21.21255880 Face masks reduce the spread of infectious respiratory diseases such as COVID-19 by blocking aerosols produced during coughs and exhalations (“source control”). Masks also slow and deflect cough and exhalation airflows, which changes the dispersion of aerosols. Factors such as the directions in which people are facing (orientation) and separation distance also affect aerosol dispersion. However, it is not clear how masking, orientation, and distance interact. We placed a respiratory aerosol simulator (“source”) and a breathing simulator (“recipient”) in a 3 m x 3 m chamber and measured aerosol concentrations for different combinations of masking, orientation, and separation distance. When the simulators were front-to-front during coughing, masks reduced the 15-minute mean aerosol concentration at the recipient by 92% at 0.9 and 1.8 m separation. When the simulators were side-by-side, masks reduced the concentration by 81% at 0.9 m and 78% at 1.8 m. During breathing, masks reduced the aerosol concentration by 66% when front-to-front and 76% when side-by-side at 0.9 m. Similar results were seen at 1.8 m. When the simulators were unmasked, changing the orientations from front-to-front to side-by-side reduced the cough aerosol concentration by 59% at 0.9 m and 60% at 1.8 m. When both simulators were masked, changing the orientations did not significantly change the concentration at either distance during coughing or breathing. Increasing the distance between the simulators from 0.9 m to 1.8 m during coughing reduced the aerosol concentration by 25% when no masks were worn but had little effect when both simulators were masked. During breathing, when neither simulator was masked, increasing the separation reduced the concentration by 13%, which approached significance, while the change was not significant when both source and recipient were masked. Our results show that universal masking reduces exposure to respiratory aerosol particles regardless of the orientation and separation distance between the source and recipient.Competing Interest StatementThe authors have declared no competing interest.Clinical TrialRegistration not requiredFunding StatementThis work was supported by the US Centers for Disease Control and Prevention (CDC).Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:IRB approval was not required for this study.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesExperimental data is available upon request. |
Automated classification of the phases relevant to work-related musculoskeletal injury risks in residential roof shingle installation operations using machine learning
Dutta A , Breloff SP , Mahmud D , Dai F , Sinsel EW , Warren CM , Wu JZ . Buildings 2023 13 (6) Awkward kneeling in sloped shingle installation operations exposes roofers to knee musculoskeletal disorder (MSD) risks. To address the varying levels of risk associated with different phases of shingle installation, this research investigated utilizing machine learning to automatically classify seven distinct phases in a typical shingle installation task. The classification process relied on analyzing knee kinematics data and roof slope information. Nine participants were recruited and performed simulated shingle installation tasks while kneeling on a sloped wooden platform. The knee kinematics data were collected using an optical motion capture system. Three supervised machine learning classification methods (i.e., k-nearest neighbors (KNNs), decision tree (DT), and random forest (RF)) were selected for evaluation. The KNN classifier provided the best performance for overall accuracy. The results substantiated the feasibility of applying machine learning in classifying shingle installation phases from workers’ knee joint rotation and roof slope angles, which may help facilitate method and tool development for automated knee MSD risk surveillance and assessment among roofers. © 2023 by the authors. |
Efficacy of Do-It-Yourself air filtration units in reducing exposure to simulated respiratory aerosols
Derk RC , Coyle JP , Lindsley WG , Blachere FM , Lemons AR , Service SK , Martin SB Jr , Mead KR , Fotta SA , Reynolds JS , McKinney WG , Sinsel EW , Beezhold DH , Noti JD . Build Environ 2023 229 109920 Many respiratory diseases, including COVID-19, can be spread by aerosols expelled by infected people when they cough, talk, sing, or exhale. Exposure to these aerosols indoors can be reduced by portable air filtration units (air cleaners). Homemade or Do-It-Yourself (DIY) air filtration units are a popular alternative to commercially produced devices, but performance data is limited. Our study used a speaker-audience model to examine the efficacy of two popular types of DIY air filtration units, the Corsi-Rosenthal cube and a modified Ford air filtration unit, in reducing exposure to simulated respiratory aerosols within a mock classroom. Experiments were conducted using four breathing simulators at different locations in the room, one acting as the respiratory aerosol source and three as recipients. Optical particle spectrometers monitored simulated respiratory aerosol particles (0.3-3 μm) as they dispersed throughout the room. Using two DIY cubes (in the front and back of the room) increased the air change rate as much as 12.4 over room ventilation, depending on filter thickness and fan airflow. Using multiple linear regression, each unit increase of air change reduced exposure by 10%. Increasing the number of filters, filter thickness, and fan airflow significantly enhanced the air change rate, which resulted in exposure reductions of up to 73%. Our results show DIY air filtration units can be an effective means of reducing aerosol exposure. However, they also show performance of DIY units can vary considerably depending upon their design, construction, and positioning, and users should be mindful of these limitations. |
Reduction of exposure to simulated respiratory aerosols using ventilation, physical distancing, and universal masking.
Coyle JP , Derk RC , Lindsley WG , Boots T , Blachere FM , Reynolds JS , McKinney WG , Sinsel EW , Lemons AR , Beezhold DH , Noti JD . Indoor Air 2022 32 (2) e12987 To limit community spread of SARS-CoV-2, CDC recommends universal masking indoors, maintaining 1.8 m of physical distancing, adequate ventilation, and avoiding crowded indoor spaces. Several studies have examined the independent influence of each control strategy in mitigating transmission in isolation, yet controls are often implemented concomitantly within an indoor environment. To address the influence of physical distancing, universal masking, and ventilation on very fine respiratory droplets and aerosol particle exposure, a simulator that coughed and exhaled aerosols (the source) and a second breathing simulator (the recipient) were placed in an exposure chamber. When controlling for the other two mitigation strategies, universal masking with 3-ply cotton masks reduced exposure to 0.3-3 µm coughed and exhaled aerosol particles by >77% compared to unmasked tests, whereas physical distancing (0.9 or 1.8 m) significantly changed exposure to cough but not exhaled aerosols. The effectiveness of ventilation depended upon the respiratory activity, that is, coughing or breathing, as well as the duration of exposure time. Our results demonstrate that a layered mitigation strategy approach of administrative and engineering controls can reduce personal inhalation exposure to potentially infectious very fine respiratory droplets and aerosol particles within an indoor environment. |
Efficacy of Ventilation, HEPA Air Cleaners, Universal Masking, and Physical Distancing for Reducing Exposure to Simulated Exhaled Aerosols in a Meeting Room.
Coyle JP , Derk RC , Lindsley WG , Blachere FM , Boots T , Lemons AR , Martin SBJr , Mead KR , Fotta SA , Reynolds JS , McKinney WG , Sinsel EW , Beezhold DH , Noti JD . Viruses 2021 13 (12) There is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but not limited to maintaining physical distancing, adequate ventilation, universal masking, avoiding overcrowding, and vaccination, have shown to be effective in reducing the spread of SARS-CoV-2 within the indoor environment. Here, we examine the effect of mitigation strategies on reducing the risk of exposure to simulated respiratory aerosol particles within a classroom-style meeting room. To quantify exposure of uninfected individuals (Recipients), surrogate respiratory aerosol particles were generated by a breathing simulator with a headform (Source) that mimicked breath exhalations. Recipients, represented by three breathing simulators with manikin headforms, were placed in a meeting room and affixed with optical particle counters to measure 0.3-3 µm aerosol particles. Universal masking of all breathing simulators with a 3-ply cotton mask reduced aerosol exposure by 50% or more compared to scenarios with simulators unmasked. While evaluating the effect of Source placement, Recipients had the highest exposure at 0.9 m in a face-to-face orientation. Ventilation reduced exposure by approximately 5% per unit increase in air change per hour (ACH), irrespective of whether increases in ACH were by the HVAC system or portable HEPA air cleaners. The results demonstrate that mitigation strategies, such as universal masking and increasing ventilation, reduce personal exposure to respiratory aerosols within a meeting room. While universal masking remains a key component of a layered mitigation strategy of exposure reduction, increasing ventilation via system HVAC or portable HEPA air cleaners further reduces exposure. |
Efficacy of universal masking for source control and personal protection from simulated cough and exhaled aerosols in a room
Lindsley WG , Beezhold DH , Coyle J , Derk RC , Blachere FM , Boots T , Reynolds JS , McKinney WG , Sinsel E , Noti JD . J Occup Environ Hyg 2021 18 (8) 1-15 Face masks reduce the expulsion of respiratory aerosols produced during coughs and exhalations ("source control"). Factors such as the directions in which people are facing (orientation) and separation distance also affect aerosol dispersion. However, it is not clear how the combined effects of masking, orientation, and distance affect the exposure of individuals to respiratory aerosols in indoor spaces. We placed a respiratory aerosol simulator ("source") and a breathing simulator ("recipient") in a 3 m x 3 m chamber and measured aerosol concentrations for different combinations of masking, orientation, and separation distance. When the simulators were front-to-front during coughing, masks reduced the 15-minute mean aerosol concentration at the recipient by 92% at 0.9 and 1.8 m separation. When the simulators were side-by-side, masks reduced the concentration by 81% at 0.9 m and 78% at 1.8 m. During breathing, masks reduced the aerosol concentration by 66% when front-to-front and 76% when side-by-side at 0.9 m. Similar results were seen at 1.8 m. When the simulators were unmasked, changing the orientations from front-to-front to side-by-side reduced the cough aerosol concentration by 59% at 0.9 m and 60% at 1.8 m. When both simulators were masked, changing the orientations did not significantly change the concentration at either distance during coughing or breathing. Increasing the distance between the simulators from 0.9 m to 1.8 m during coughing reduced the aerosol concentration by 25% when no masks were worn but had little effect when both simulators were masked. During breathing, when neither simulator was masked, increasing the separation reduced the concentration by 13%, which approached significance, while the change was not significant when both source and recipient were masked. Our results show that universal masking reduces exposure to respiratory aerosol particles regardless of the orientation and separation distance between the source and recipient. |
Application of Data Fusion via Canonical Polyadic Decomposition in Risk Assessment of Musculoskeletal Disorders in Construction: Procedure and Stability Evaluation
Dutta A , Breloff SP , Dai F , Sinsel EW , Warren CM , Carey RE , Wu JZ . J Constr Eng Manage 2021 147 (8) Missing data is a common problem in data collection for work-related musculoskeletal disorder (WMSD) risk-assessment studies. It can cause incompleteness of risk indicators, leading to erroneous conclusion on potential risk factors. Previous studies suggested that data fusion is a potential way to solve this issue. This research evaluated the numerical stability of a data fusion technique that applies canonical polyadic decomposition (CPD) for WMSD risk assessment in construction. Two knee WMSD risk-related data sets - three-dimensional (3D) knee rotation (kinematics) and electromyography (EMG) of five knee postural muscles - collected from previous studies were fused for the evaluation. By comparing the consistency performance with and without data fusion, it revealed that for all low to high proportion of missing data (10%-70%) from both kinematics and EMG data sets, the WMSD risk assessment using fused data sets outperformed using unfused kinematics data sets. For large proportions of missing data (>50%) from both kinematics and EMG data sets, better performance was observed by using fused data sets in comparison with unfused EMG data sets. These findings suggest that data fusion using CPD generates a more reliable risk assessment compared with data sets with missing values and therefore is an effective approach for remedying missing data in WMSD risk evaluation. © 2021 American Society of Civil Engineers. |
Fusing imperfect experimental data for risk assessment of musculoskeletal disorders in construction using canonical polyadic decomposition
Dutta A , Breloff SP , Dai F , Sinsel EW , Carey RE , Warren CM , Wu JZ . Autom Constr 2020 119 Field or laboratory data collected for work-related musculoskeletal disorder (WMSD) risk assessment in construction often becomes unreliable as a large amount of data go missing due to technology-induced errors, instrument failures or sometimes at random. Missing data can adversely affect the assessment conclusions. This study proposes a method that applies Canonical Polyadic Decomposition (CPD) tensor decomposition to fuse multiple sparse risk-related datasets and fill in missing data by leveraging the correlation among multiple risk indicators within those datasets. Two knee WMSD risk-related datasets—3D knee rotation (kinematics) and electromyography (EMG) of five knee postural muscles—collected from previous studies were used for the validation and demonstration of the proposed method. The analysis results revealed that for a large portion of missing values (40%), the proposed method can generate a fused dataset that provides reliable risk assessment results highly consistent (70%–87%) with those obtained from the original experimental datasets. This signified the usefulness of the proposed method for use in WMSD risk assessment studies when data collection is affected by a significant amount of missing data, which will facilitate reliable assessment of WMSD risks among construction workers. In the future, findings of this study will be implemented to explore whether, and to what extent, the fused dataset outperforms the datasets with missing values by comparing consistencies of the risk assessment results obtained from these datasets for further investigation of the fusion performance. |
Effects of working posture and roof slope on activation of lower limb muscles during shingle installation
Dutta A , Breloff SP , Dai F , Sinsel EW , Warren CM , Carey RE , Wu JZ . Ergonomics 2020 63 (9) 1-17 Awkward and extreme kneeling during roofing generates high muscular tension which can lead to knee musculoskeletal disorders (MSDs) among roofers. However, the combined impact of roof slope and kneeling posture on the activation of the knee postural muscles and their association to potential knee MSD risks among roofers have not been studied. The current study evaluated the effects of kneeling posture and roof slope on the activation of major knee postural muscles during shingle installation via a laboratory assessment. Maximum normalized electromyography (EMG) data were collected from knee flexor and extensor muscles of seven subjects, who mimicked the shingle installation process on a slope-configurable wooden platform. The results revealed a significant increase in knee muscle activation during simulated shingle installation on sloped rooftops. Given the fact that increased muscle activation of knee postural muscles has been associated with knee MSDs, roof slope and awkward kneeling posture can be considered as potential knee MSD risk factors.Practitioner Summary: This study demonstrated significant effects of roof slope and kneeling posture on the peak activation of knee postural muscles. The findings of this study suggested that residential roofers could be exposed to a greater risk of developing knee MSDs with the increase of roof slope during shingle installation due to increased muscle loading. |
Kneeling trunk kinematics during simulated sloped roof shingle installation
Breloff SP , Carey RE , Dutta A , Sinsel EW , Warren CM , Dai F , Wu JZ . Int J Ind Ergon 2020 77 Trunk musculoskeletal disorders are common among residential roofers. Addressing this problem requires a better understanding of the movements required to complete working tasks, such as affixing shingles on a sloped residential roof. We analyzed the extent to which the trunk kinematics during a shingling process are altered due to different angles of roof slope. Eight male subjects completed a kneeling shingle installation process on three differently sloped roof surfaces. The magnitude of the trunk kinematics was significantly influenced by both slope and task phase of the shingling process, depending on the metric. The results unequivocally point to roof slope and task phase as significant factors altering trunk kinematics. However, extension of the results to roofing workers should be done carefully, depending on the degree to which the study protocol represents the natural setting. Future studies on shingle installation in residential roofing should absolutely consider capturing a wider array of shingling procedures in order to encapsulate all the possible methods that are used due to the lack of a standardized procedure. |
Identifying potentially risky phases leading to knee musculoskeletal disorders during shingle installation operations
Dutta A , Breloff SP , Dai F , Sinsel EW , Warren CM , Wu JZ . J Constr Eng Manage 2020 146 (3) Repeated and prolonged awkward kneeling can result in musculoskeletal disorders (MSD) in construction roofers. However, a task-specific risk assessment for roofers' knee injuries is still missing in the literature. This study identified a ranking-based ergonomic method for suggesting potentially risky phases that may increase knee MSD risk during shingle installation operations. On a slope-adjustable wooden platform in a laboratory setting, nine subjects performed shingle installations that included seven phases: (1) reaching for shingles, (2) placing shingles, (3) grabbing nail gun, (4) moving to first nailing position, (5) nailing shingles, (6) replacing nail gun, and (7) returning to upright position. Flexion, abduction, adduction, and internal and external knee rotations were measured to assess relative risks of these phases by ranking them with a scoring model. The ranking results revealed that the phases of placing shingles and nailing shingles lead to the most knee MSD risk exposure, and awkward flexion, abduction, and adduction involved in these phases can significantly contribute to the potential knee MSD risk measurement. By using the ranking-based method, this study suggested that certain phases of the shingle installation process may increase knee MSD risk, which is useful for developing effective interventions to reduce knee injury risk exposures from roof shingle installation. |
Are knee savers and knee pads a viable intervention to reduce lower extremity musculoskeletal disorder risk in residential roofers
Breloff SP , Sinsel EW , Dutta A , Carey RE , Warren CM , Dai F , Ning S , Wu JZ . Int J Ind Ergon 2019 74 One factor commonly associated with musculoskeletal disorder risk is extreme postures. To lessen this risk, extreme postures should be reduced using proactive and prevention-focused methods. The effect of combinations of two interventions, knee pads and knee savers, on lower extremity kinematics during deep or near full flexion kneeling on differently sloped surfaces was analyzed. Nine male subjects were requested to keep a typical resting posture while kneeling on a sloped roofing simulator with and without knee pads and knee savers. Three-dimensional peak knee kinematics were recording using a motion capture system. The kinematic data were analyzed with a two-way—4(intervention) X 3(slope)—repeated measure analysis of variance (ANOVA). It was observed that knee pads did not alter lower extremity kinematics in a way that may reduce musculoskeletal injury risk, but they do provide comfort. Knee savers did statistically significantly reduce peak lower extremity kinematics, however these changes were small and it is uncertain if the changes will reduce musculoskeletal injury risk. This study has provided initial data that supports the use of knee savers as a potential intervention to reduce musculoskeletal disorder risk due to lower extremity joint angles on a sloped surface, nonetheless, further testing involving other musculoskeletal disorder risk factors is needed prior to a conclusive recommendation. |
Biomechanical modeling of deep squatting: Effects of the interface contact between posterior thigh and shank
Wu JZ , Sinsel EW , Carey RE , Zheng L , Warren CM , Breloff SP . J Biomech 2019 96 109333 Epidemiological studies indicate that occupational activities that require extended deep knee flexion or kneeling are associated with a higher prevalence of knee osteoarthritis. In many sport activities, such as a catcher in a baseball or a softball game, athletes have to make repetitive deep squatting motions, which have been associated with the development of osteochondritis dissecans. Excessive deep knee flexion postures may cause excessive loading in the knee joint. In deep knee flexion postures, the posterior aspect of the shank will contact the posterior thigh, resulting in a compressive force within the soft tissues. The current study was aimed at analyzing the effects of the posterior thigh/shank contact on the joint loading during deep knee flexion in a natural knee. An existing, whole body model with detailed anatomical components of the knee (AnyBody) has been adopted and modified for this study. The effects of the posterior thigh/shank contact were evaluated by comparing the results of the inverse dynamic analysis for two scenarios: with and without the posterior thigh/shank contact force. Our results showed that, in a deep squatting posture (knee flexion 120+ degrees), the posterior thigh/shank contact helps reduce the patellofemoral (PF) and tibiofemoral (TF) normal contact forces by 42% and 57%, respectively. |
Assessing work-related risk factors for musculoskeletal knee disorders in construction roofing tasks
Breloff SP , Dutta A , Dai F , Sinsel EW , Warren CM , Ning X , Wu JZ . Appl Ergon 2019 81 102901 Roofers often suffer from musculoskeletal disorders (MSDs) to their knees due to spending a large amount of time kneeling while performing work-related roofing activities on sloped rooftops. Several ergonomic studies have identified kneeling as a potential risk factor for knee injuries and disorders. Existing biomechanical models and sensor technologies used to assess work-related risk factors for different construction trades are not applicable in roof work settings especially on slanted rooftop surfaces. This work assesses the impacts of work-related factors, namely working posture and roof slope, on the potential risk of developing knee MSDs due to residential roofing tasks in a laboratory setting. Nine human subjects participated in the experiment and mimicked shingle installation on a slope-configurable wooden platform. Maximum angles of right and left knee flexion, abduction, adduction, and axial rotation (internal and external) were measured as risk indicators using a motion capture system under different roof slope settings. The results demonstrated that roof slope, working posture and their interaction may have significant impacts on developing knee MSDs during roofing activities. Knees are likely to be exposed to increased risk of MSDs due to working in a dynamic kneeling posture during shingle installation. In our study, flexion in both knees and adduction in the right knee were found lower in high-pitched rooftops; however, abduction in the left knee and internal rotation in the right knee were found higher during shingle installation. Hence proper attention is needed for these situations. This study provides useful information about the impact of roof work settings on knee MSDs development, which may facilitate effective interventions such as education, training, and tools to prevent knee injuries in construction roofing tasks. |
An evaluation of the contact forces on the fingers when squeezing a spherical rehabilitation ball
Wu JZ , Sinsel EW , Warren CM , Welcome DE . Biomed Mater Eng 2018 29 (5) 629-639 The rehabilitation squeeze ball is a popular device to help strengthen the hand, fingers and forearm muscles. The distributions of the contact pressure in the interface between the therapy ball and hand/fingers can affect the joint moment of each of the individual fingers, thereby affecting rehabilitation effects. In the current study, we evaluated the contact force distributions on the fingers when gripping a spherical object. Eight female adults [age 29 (9.1) years, mass 64.6 (7.1) kg, height 163.5 (1.9) cm, hand length 17.2 (0.7) cm] participated in the study. Contact force sensors were attached to the middle of the palmar surfaces of the distal, middle, and proximal phalanges of the four fingers in the longitudinal direction. In order to evaluate the effects of the ball stiffness on the contact force distributions on the fingers, subjects were requested to perform quasi-static gripping on a standard tennis ball and on a rehabilitation ball. The tennis ball is much stiffer and experiences smaller deformation under compression compared to the rehabilitation ball. We analyzed the force share among the distal, middle, and proximal finger segments, when subjects gripping balls of different stiffnesses (tennis ball vs. rehabilitation ball) and at three different grip efforts. Our results indicated that the grip force is contributed about 60% and 40% by the middle/ring fingers and by the index/little fingers, respectively. These characteristics are independent of the grip force levels and stiffness of the contact surface. |
Automated pressure map segmentation for quantifying phalangeal kinetics during cylindrical gripping
Sinsel EW , Gloekler DS , Wimer BM , Warren CM , Wu JZ , Buczek FL . Med Eng Phys 2015 38 (2) 72-9 Inverse dynamics models used to investigate musculoskeletal disorders associated with handle gripping require accurate phalangeal kinetics. Cylindrical handles wrapped with pressure film grids have been used in studies of gripping kinetics. We present a method fusing six degree-of-freedom hand kinematics and a kinematic calibration of a cylinder-wrapped pressure film. Phalanges are modeled as conic frusta and projected onto the pressure grid, automatically segmenting the pressure map into regions of interest (ROIs). To demonstrate the method, segmented pressure maps are presented from two subjects with substantially different hand length and body mass, gripping cylinders 50 and 70 mm in diameter. For each ROI, surface-normal force vectors were summed to create a reaction force vector and center of pressure location. Phalangeal force magnitudes for a data sample were similar to that reported in previous studies. To evaluate our method, a surrogate was designed for each handle such that when modeled as a phalanx it would generate a ROI around the cells under its supports; the classification F-score was above 0.95 for both handles. Both the human subject results and the surrogate evaluation suggest that the approach can be used to automatically segment the pressure map for quantifying phalangeal kinetics of the fingers during cylindrical gripping. |
Review and evaluation of hand-arm coordinate systems for measuring vibration exposure, biodynamic responses, and hand forces
Dong RG , Sinsel EW , Welcome DE , Warren C , Xu XS , McDowell TW , Wu JZ . Saf Health Work 2015 6 (3) 159-73 The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study. |
Analysis of the constraint joint loading in the thumb during pipetting
Wu JZ , Sinsel EW , Zhao KD , An KN , Buczek FL . J Biomech Eng 2015 137 (8) 084501 Dynamic loading on articular joints is essential for the evaluation of the risk of the articulation degeneration associated with occupational activities. In the current study, we analyzed the dynamic constraint loading for the thumb during pipetting. The constraint loading is considered as the loading that has to be carried by the connective tissues of the joints (i.e., the cartilage layer and the ligaments) to maintain the kinematic constraints of the system. The joint loadings are solved using a classic free-body approach, using the external loading and muscle forces, which were obtained in an inverse dynamic approach combined with an optimization procedure in anybody. The constraint forces in the thumb joint obtained in the current study are compared with those obtained in the pinch and grasp tests in a previous study (Cooney and Chao, 1977, Biomechanical Analysis of Static Forces in the Thumb During Hand Function, J. Bone Joint Surg. Am., 59(1), pp. 27-36). The maximal compression force during pipetting is approximately 83% and 60% greater than those obtained in the tip pinch and key pinch, respectively, while substantially smaller than that obtained during grasping. The maximal lateral shear force is approximately six times, 32 times, and 90% greater than those obtained in the tip pinch, key pinch, and grasp, respectively. The maximal dorsal shear force during pipetting is approximately 3.2 and 1.4 times greater than those obtained in the tip pinch and key pinch, respectively, while substantially smaller than that obtained during grasping. Our analysis indicated that the thumb joints are subjected to repetitive, intensive loading during pipetting, compared to other daily activities. |
Analysis of the musculoskeletal loading of the thumb during pipetting - A pilot study
Wu JZ , Sinsel EW , Shroyer JF , Warren CM , Welcome DE , Zhao KD , An KN , Buczek FL . J Biomech 2013 47 (2) 392-9 Previous epidemiological studies indicate that the use of thumb-push mechanical pipettes is associated with musculoskeletal disorders (MSDs) in the hand. The goal of the current study was to analyze the loading in the muscle-tendon units in the thumb during pipetting. The hand is modeled as a multi-body linkage system and includes four fingers (index, long, ring, and little finger), a thumb, and a palm segment. Since the current study is focused on the thumb, the model includes only nine muscles attached to the thumb via tendons. The time-histories of joint angles and push force at the pipette plunger during pipetting were determined experimentally and used as model input; whereas forces in the muscle-tendon units in the thumb were calculated via an inverse dynamic approach combined with an optimization procedure. Results indicate that all nine muscles have force outputs during pipetting, and the maximal force was in the abductor pollicis brevis (APB). The ratio of the mean peak muscle force to the mean peak push force during the dispensing cycle was approximately 2.3, which is comparable to values observed in grasping tasks in the literature. The analysis method and results in the current study provide a mechanistic understanding of MSD risk factors associated with pipetting, and may be useful in guiding ergonomic designs for manual pipettes. |
The musculoskeletal loading profile of the thumb during pipetting based on tendon displacement
Wu JZ , Sinsel EW , Shroyer JF , Welcome DE , Zhao KD , An KN , Buczek FL . Med Eng Phys 2013 35 (12) 1801-10 Strong evidence indicates that highly repetitive manual work is associated with the development of upper extremity musculoskeletal disorders (MSDs). One of the occupational activities that involves highly repetitive and forceful hand work is manual pipetting in chemical or biological laboratories. In the current study, we quantified tendon displacement as a parameter to assess the cumulative loading exposure of the musculoskeletal system in the thumb during pipetting. The maximal tendon displacement was found in the flexor pollicis longus (FPL) tendon. Assuming that subjects' pipetting rates were maintained constant during a period of 1h, the average accumulated tendon displacement in the FPL reached 29m, which is in the lower range of those observed in other occupational activities, such as typing and nail gun operations. Our results showed that tendon displacement data contain relatively small standard deviations, despite high variances in thumb kinematics, suggesting that the tendon displacements may be useful in evaluating the musculoskeletal loading profile. |
Inverse dynamic analysis of the biomechanics of the thumb while pipetting: a case study
Wu JZ , Sinsel EW , Gloekler DS , Wimer BM , Zhao KD , An KN , Buczek FL . Med Eng Phys 2011 34 (6) 693-701 Thumb-push manual pipettes are commonly used tools in many medical, biological, and chemical laboratories. Epidemiological studies indicate that the use of thumb-push mechanical pipettes is associated with musculoskeletal disorders in the hand. The goal of the current study was to evaluate the kinematics and joint loading of the thumb during pipetting. The time-histories of joint angles and the interface contact force between the thumb and plunger during the pipetting action were determined experimentally, and the joint loadings and joint power in the thumb were calculated via an inverse dynamic approach. The moment, power, and energy absorption in each joint of the thumb during the extraction and dispensing actions were analyzed. The results indicate that the majority of the power is generated in the interphalangeal (IP) and carpometacarpal (CMC) joints for the pipetting action. The analysis method and results in the current study will be helpful in exploring the mechanism for musculoskeletal injuries of the hand associated with pipetting, providing a preliminary foundation for ergonomic design of the pipette. |
Kinematic performance of a six degree-of-freedom hand model (6DHand) for use in occupational biomechanics
Buczek FL , Sinsel EW , Gloekler DS , Wimer BM , Warren CM , Wu JZ . J Biomech 2011 44 (9) 1805-9 Upper extremity musculoskeletal disorders represent an important health issue across all industry sectors; as such, the need exists to develop models of the hand that provide comprehensive biomechanics during occupational tasks. Previous optical motion capture studies used a single marker on the dorsal aspect of finger joints, allowing calculation of one and two degree-of-freedom (DOF) joint angles; additional algorithms were needed to define joint centers and the palmar surface of fingers. We developed a 6DOF model (6DHand) to obtain unconstrained kinematics of finger segments, modeled as frusta of right circular cones that approximate the palmar surface. To evaluate kinematic performance, twenty subjects gripped a cylindrical handle as a surrogate for a powered hand tool. We hypothesized that accessory motions (metacarpophalangeal pronation/supination; proximal and distal interphalangeal radial/ulnar deviation and pronation/supination; all joint translations) would be small (less than 5 degrees rotations, less than 2mm translations) if segment anatomical reference frames were aligned correctly, and skin movement artifacts were negligible. For the gripping task, 93 of 112 accessory motions were small by our definition, suggesting this 6DOF approach appropriately models joints of the fingers. Metacarpophalangeal supination was larger than expected (approximately 10 degrees ), and may be adjusted through local reference frame optimization procedures previously developed for knee kinematics in gait analysis. Proximal translations at the metacarpophalangeal joints (approximately 10mm) were explained by skin movement across the metacarpals, but would not corrupt inverse dynamics calculated for the phalanges. We assessed performance in this study; a more rigorous validation would likely require medical imaging. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 11, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure