Last data update: Mar 17, 2025. (Total: 48910 publications since 2009)
Records 1-11 (of 11 Records) |
Query Trace: Shragai T[original query] |
---|
Migration from Epi Info to District Health Information Software 2 for Vaccine-Preventable Disease Surveillance - World Health Organization African Region, 2019-2023
Adegoke OJ , Rachlin A , Porter AM , Katsande R , Kubenga S , Potter R , Titlestad OH , Noubi Tchoupopnou Royd L , Rosencrans L , Kinkade C , Crispino V , Shragai T , Kossi E , Chu HA , Murrill CS , Lam E , Wiysonge CS , Kazembe L , Pezzoli L , Alegana V , Benido I . MMWR Morb Mortal Wkly Rep 2024 73 (23) 529-533 High-quality vaccine-preventable disease (VPD) surveillance data are critical for timely outbreak detection and response. In 2019, the World Health Organization (WHO) African Regional Office (AFRO) began transitioning from Epi Info, a free, CDC-developed statistical software package with limited capability to integrate with other information systems, affecting reporting timeliness and data use, to District Health Information Software 2 (DHIS2). DHIS2 is a free and open-source software platform for electronic aggregate Integrated Disease Surveillance and Response (IDSR) and case-based surveillance reporting. A national-level reporting system, which provided countries with the option to adopt this new system, was introduced. Regionally, the Epi Info database will be replaced with a DHIS2 regional data platform. This report describes the phased implementation from 2019 to the present. Phase one (2019-2021) involved developing IDSR aggregate and case-based surveillance packages, including pilots in the countries of Mali, Rwanda, and Togo. Phase two (2022) expanded national-level implementation to 27 countries and established the WHO AFRO DHIS2 regional data platform. Phase three (from 2023 to the present) activities have been building local capacity and support for country reporting to the regional platform. By February 2024, eight of 47 AFRO countries had adopted both the aggregate IDSR and case-based surveillance packages, and two had successfully transferred VPD surveillance data to the AFRO regional platform. Challenges included limited human and financial resources, the need to establish data-sharing and governance agreements, technical support for data transfer, and building local capacity to report to the regional platform. Despite these challenges, the transition to DHIS2 will support efficient data transmission to strengthen VPD detection, response, and public health emergencies through improved system integration and interoperability. |
Strengthening the WHO Regional Office for Africa (WHO AFRO) COVID-19 vaccination information system
Shragai T , Bukhari A , Atagbaza AO , Oyaole DR , Shah R , Volkmann K , Kamau L , Sheillah N , Farham B , Wong MK , Lam E , Mboussou F , Impouma B . BMJ Glob Health 2024 9 (1) This manuscript describes the process and impact of strengthening the WHO Regional Office for Africa (WHO AFRO)'s COVID-19 vaccination information system. This system plays a critical role in tracking vaccination coverage, guiding resource allocation and supporting vaccination campaign roll-out for countries in the African region. Recognising existing data management issues, including complex reporting prone to human error, compromised data quality and underutilisation of collected data, WHO AFRO introduced significant system improvements during the COVID-19 pandemic. These improvements include shifting from an Excel-based to an online Azure-based data collection system, automating data processing and validation, and expansion of collected data. These changes have led to improvements in data quality and quantity including a decrease in data non-validity, missingness, and record duplication, and expansion of data collection forms to include a greater number of data fields, offering a more comprehensive understanding of vaccination efforts. Finally, the creation of accessible information products-including an interactive public dashboard, a weekly data pack and a public monthly bulletin-has improved data use and reach to relevant partners. These resources provide crucial insights into the region's vaccination progress at national and subnational levels, thereby enabling data-driven decision-making to improve programme performance. Overall, the strengthening of the WHO AFRO COVID-19 vaccination information system can serve as a model for similar efforts in other WHO regions and contexts. The impact of system strengthening on data quality demonstrated here underscores the vital role of robust data collection, capacity building and management systems in achieving high-quality data on vaccine distribution and coverage. Continued investment in information systems is essential for effective and equitable public health efforts. |
Quantifying the relationship between arboviral infection prevalence and human mobility patterns among participants of the Communities Organized to Prevent Arboviruses cohort (COPA) in southern Puerto Rico
Phillips MT , Sánchez-González L , Shragai T , Rodriguez DM , Major CG , Johansson MA , Rivera-Amill V , Paz-Bailey G , Adams LE . PLoS Negl Trop Dis 2023 17 (12) e0011840 Human movement is increasingly being recognized as a major driver of arbovirus risk and dissemination. The Communities Organized to Prevent Arboviruses (COPA) study is a cohort in southern Puerto Rico to measure arboviral prevalence, evaluate interventions, and collect mobility data. To quantify the relationship between arboviral prevalence and human mobility patterns, we fit multilevel logistic regression models to estimate odds ratios for mobility-related predictors of positive chikungunya IgG or Zika IgM test results collected from COPA, assuming mobility data does not change substantially from year to year. From May 8, 2018-June 8, 2019, 39% of the 1,845 active participants during the study period had a positive arboviral seroprevalence result. Most (74%) participants reported spending five or more weekly hours outside of their home. A 1% increase in weekly hours spent outside the home was associated with a 4% (95% confidence interval (CI): 2-7%) decrease in the odds of testing positive for arbovirus. After adjusting for age and whether a person had air conditioning (AC) at home, any time spent in a work location was protective against arbovirus infection (32% decrease, CI: 9-49%). In fact, there was a general decreased prevalence for individuals who visited locations that were inside and had AC or screens, regardless of the type of location (32% decrease, CI: 12-47%). In this population, the protective characteristics of locations visited appear to be the most important driver of the relationship between mobility and arboviral prevalence. This relationship indicates that not all mobility is the same, with elements like screens and AC providing protection in some locations. These findings highlight the general importance of AC and screens, which are known to be protective against mosquitoes and mosquito-transmitted diseases. |
Outcomes after acute malnutrition program adaptations to COVID-19, Uganda, Ethiopia, and Somalia
Shragai T , Talley L , Summers A , Behringer H , Wrabel M , Stobaugh H , Leidman E . Emerg Infect Dis 2022 28 (13) S288-s298 At the onset of the COVID-19 pandemic, protocols for community-based management of acute malnutrition (CMAM) were implemented to support continuity of essential feeding services while mitigating COVID-19 transmission. To assess correlations between adaptation timing and CMAM program indicators, we evaluated routine program data in Uganda, Ethiopia, and Somalia for children 6-59 months of age. We specifically analyzed facility-level changes in total admissions, average length of stay (ALOS), total children screened for admission, and recovery rates before and after adaptations. We found no statistically significant changes in program indicators after adaptations. For Somalia, we also analyzed child-level changes in ALOS and in weight and mid-upper arm circumference at admission and discharge. ALOS significantly increased immediately after adaptations and then decreased to preadaptation levels. We found no meaningful changes in either weight or mid-upper arm circumference at admission or discharge. These findings indicate that adapted CMAM programs can remain effective. |
CDC's COVID-19 international vaccine implementation and evaluation program and lessons from earlier vaccine introductions
Soeters HM , Doshi RH , Fleming M , Adegoke OJ , Ajene U , Aksnes BN , Bennett S , Blau EF , Carlton JG , Clements S , Conklin L , Dahlke M , Duca LM , Feldstein LR , Gidudu JF , Grant G , Hercules M , Igboh LS , Ishizumi A , Jacenko S , Kerr Y , Konne NM , Kulkarni S , Kumar A , Lafond KE , Lam E , Longley AT , McCarron M , Namageyo-Funa A , Ortiz N , Patel JC , Perry RT , Prybylski D , Reddi P , Salman O , Sciarratta CN , Shragai T , Siddula A , Sikare E , Tchoualeu DD , Traicoff D , Tuttle A , Victory KR , Wallace A , Ward K , Wong MKA , Zhou W , Schluter WW , Fitter DL , Mounts A , Bresee JS , Hyde TB . Emerg Infect Dis 2022 28 (13) S208-s216 The US Centers for Disease Control and Prevention (CDC) supports international partners in introducing vaccines, including those against SARS-CoV-2 virus. CDC contributes to the development of global technical tools, guidance, and policy for COVID-19 vaccination and has established its COVID-19 International Vaccine Implementation and Evaluation (CIVIE) program. CIVIE supports ministries of health and their partner organizations in developing or strengthening their national capacities for the planning, implementation, and evaluation of COVID-19 vaccination programs. CIVIE's 7 priority areas for country-specific technical assistance are vaccine policy development, program planning, vaccine confidence and demand, data management and use, workforce development, vaccine safety, and evaluation. We discuss CDC's work on global COVID-19 vaccine implementation, including priorities, challenges, opportunities, and applicable lessons learned from prior experiences with Ebola, influenza, and meningococcal serogroup A conjugate vaccine introductions. |
Implementation of data triangulation and dashboard development for COVID-19 vaccine adverse event following immunisation (AEFI) data in Nigeria
Shragai T , Adegoke OJ , Ikwe H , Sorungbe T , Haruna A , Williams I , Okonkwo R , Onu K , Asekun A , Gberikon M , Iwara E , Abimiku A , Rufai A , Okposen B , Gidudu J , Lam E , Bolu O . BMJ Glob Health 2023 8 (1) Nigeria began administering COVID-19 vaccines on 5 March 2021 and is working towards the WHO's African regional goal to fully vaccinate 70% of their eligible population by December 2022. Nigeria's COVID-19 vaccination information system includes a surveillance system for COVID-19 adverse events following immunisation (AEFI), but as of April 2021, AEFI data were being collected and managed by multiple groups and lacked routine analysis and use for action. To fill this gap in COVID-19 vaccine safety monitoring, between April 2021 and June 2022, the US Centers for Disease Control and Prevention, in collaboration with other implementing partners led by the Institute of Human Virology Nigeria, supported the Government of Nigeria to triangulate existing COVID-19 AEFI data. This paper describes the process of implementing published draft guidelines for data triangulation for COVID-19 AEFI data in Nigeria. Here, we focus on the process of implementing data triangulation rather than analysing the results and impacts of triangulation. Work began by mapping the flow of COVID-19 AEFI data, engaging stakeholders and building a data management system to intake and store all shared data. These datasets were used to create an online dashboard with key indicators selected based on existing WHO guidelines and national guidance. The dashboard went through an iterative review before dissemination to stakeholders. This case study highlights a successful example of implementing data triangulation for rapid use of AEFI data for decision-making and emphasises the importance of stakeholder engagement and strong data governance structures to make data triangulation successful. |
Household characteristics associated with surface contamination of SARS-CoV-2 and frequency of RT-PCR and viral culture positivity-California and Colorado, 2021.
Shragai T , Pratt C , Castro Georgi J , Donnelly MAP , Schwartz NG , Soto R , Chuey M , Chu VT , Marcenac P , Park GW , Ahmad A , Albanese B , Totten SE , Austin B , Bunkley P , Cherney B , Dietrich EA , Figueroa E , Folster JM , Godino C , Herzegh O , Lindell K , Relja B , Sheldon SW , Tong S , Vinjé J , Thornburg NJ , Matanock AM , Hughes LJ , Stringer G , Hudziec M , Beatty ME , Tate JE , Kirking HL , Hsu CH . PLoS One 2022 17 (10) e0274946 ![]() ![]() While risk of fomite transmission of SARS-CoV-2 is considered low, there is limited environmental data within households. This January-April 2021 investigation describes frequency and types of surfaces positive for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction (RT-PCR) among residences with ≥1 SARS-CoV-2 infection, and associations of household characteristics with surface RT-PCR and viable virus positivity. Of 1232 samples from 124 households, 27.8% (n = 342) were RT-PCR positive with nightstands (44.1%) and pillows (40.9%) most frequently positive. SARS-CoV-2 lineage, documented household transmission, greater number of infected persons, shorter interval between illness onset and sampling, total household symptoms, proportion of infected persons ≤12 years old, and persons exhibiting upper respiratory symptoms or diarrhea were associated with more positive surfaces. Viable virus was isolated from 0.2% (n = 3 samples from one household) of all samples. This investigation suggests that while SARS-CoV-2 on surfaces is common, fomite transmission risk in households is low. |
Risk-Factors for Exposure Associated With SARS-CoV-2 Detection After Recent Known or Potential COVID-19 Exposures Among Patients Seeking Medical Care at a Large Urban, Public Hospital in Fulton County, Georgia - A Cross-Sectional Investigation.
Smith-Jeffcoat SE , Sleweon S , Koh M , Khalil GM , Schechter MC , Rebolledo PA , Kasinathan V , Hoffman A , Rossetti R , Shragai T , O'Laughlin K , Espinosa CC , Bankamp B , Bowen MD , Paulick A , Gargis AS , Folster JM , da Silva J , Biedron C , Stewart RJ , Wang YF , Kirking HL , Tate JE . Front Public Health 2022 10 809356 We aimed to describe frequency of COVID-19 exposure risk factors among patients presenting for medical care at an urban, public hospital serving mostly uninsured/Medicare/Medicaid clients and risk factors associated with SARS-CoV-2 infection. Consenting, adult patients seeking care at a public hospital from August to November 2020 were enrolled in this cross-sectional investigation. Saliva, anterior nasal and nasopharyngeal swabs were collected and tested for SARS-CoV-2 using RT-PCR. Participant demographics, close contact, and activities ≤14 days prior to enrollment were collected through interview. Logistic regression was used to identify risk factors associated with testing positive for SARS-CoV-2. Among 1,078 participants, 51.8% were male, 57.0% were aged ≥50 years, 81.3% were non-Hispanic Black, and 7.6% had positive SARS-CoV-2 tests. Only 2.7% reported COVID-19 close contact ≤14 days before enrollment; this group had 6.79 adjusted odds of testing positive (95%CI = 2.78-16.62) than those without a reported exposure. Among participants who did not report COVID-19 close contact, working in proximity to ≥10 people (adjusted OR = 2.17; 95%CI = 1.03-4.55), choir practice (adjusted OR = 11.85; 95%CI = 1.44-97.91), traveling on a plane (adjusted OR = 5.78; 95%CI = 1.70-19.68), and not participating in an essential indoor activity (i.e., grocery shopping, public transit use, or visiting a healthcare facility; adjusted OR = 2.15; 95%CI = 1.07-4.30) were associated with increased odds of testing positive. Among this population of mostly Black, non-Hispanic participants seeking care at a public hospital, we found several activities associated with testing positive for SARS-CoV-2 infection in addition to close contact with a case. Understanding high-risk activities for SARS-CoV-2 infection among different communities is important for issuing awareness and prevention strategies. |
Effects of Patient Characteristics on Diagnostic Performance of Self-Collected Samples for SARS-CoV-2 Testing.
Smith-Jeffcoat SE , Koh M , Hoffman A , Rebolledo PA , Schechter MC , Miller HK , Sleweon S , Rossetti R , Kasinathan V , Shragai T , O'Laughlin K , Espinosa CC , Khalil GM , Adeyemo AO , Moorman A , Bauman BL , Joseph K , O'Hegarty M , Kamal N , Atallah H , Moore BL , Bohannon CD , Bankamp B , Hartloge C , Bowen MD , Paulick A , Gargis AS , Elkins C , Stewart RJ , da Silva J , Biedron C , Tate JE , Wang YF , Kirking HL . Emerg Infect Dis 2021 27 (8) 2081-2089 We evaluated the performance of self-collected anterior nasal swab (ANS) and saliva samples compared with healthcare worker-collected nasopharyngeal swab specimens used to test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We used the same PCR diagnostic panel to test all self-collected and healthcare worker-collected samples from participants at a public hospital in Atlanta, Georgia, USA. Among 1,076 participants, 51.9% were men, 57.1% were >50 years of age, 81.2% were Black (non-Hispanic), and 74.9% reported >1 chronic medical condition. In total, 8.0% tested positive for SARS-CoV-2. Compared with nasopharyngeal swab samples, ANS samples had a sensitivity of 59% and saliva samples a sensitivity of 68%. Among participants tested 3-7 days after symptom onset, ANS samples had a sensitivity of 80% and saliva samples a sensitivity of 85%. Sensitivity varied by specimen type and patient characteristics. These findings can help physicians interpret PCR results for SARS-CoV-2. |
Epidemiologic, immunologic, and virus characteristics in patients with paired SARS-CoV-2 serology and reverse transcription polymerase chain reaction testing.
Shragai T , Smith-Jeffcoat SE , Koh M , Schechter MC , Rebolledo PA , Kasinathan V , Wang Y , Hoffman A , Miller H , Tejada-Strop A , Jain S , Tamin A , Harcourt JL , Thornburg NJ , Wong P , Medrzycki M , Folster JM , Semenova V , Steward-Clark E , Drobenuic J , Biedron C , Stewart RJ , da Silva J , Kirking HL , Tate JE . J Infect Dis 2021 225 (2) 229-237 ![]() BACKGROUND: The natural history and clinical progression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can be better understood using combined serological and reverse transcription polymerase chain reaction (RT-PCR) testing. METHODS: Nasopharyngeal swabs and serum were collected at a single time-point from patients at an urban, public hospital August - November 2020 and tested for SARS-CoV-2 using RT-PCR, viral culture, and anti-Spike pan-Ig antibody testing. Participant demographics and symptoms were collected through interview. Chi-squared and Fisher's exact tests were used to identify associations between RT-PCR and serology results with presence of viable virus and frequency of symptoms. RESULTS: Among 592 participants, 129 (21.8%) had evidence of SARS-CoV-2 infection by RT-PCR or serology. Presence of SARS-CoV-2 antibodies was strongly associated with lack of viable virus (p-value=0.016). COVID-19 symptom frequency was similar for patients testing RT-PCR positive/seronegative and patients testing RT-PCR positive/seropositive. Patients testing RT-PCR positive/seronegative reported headaches, fatigue, diarrhea and vomiting at rates not statistically significantly different from those testing RT-PCR negative/seropositive. CONCLUSIONS: While patients testing SARS-CoV-2 seropositive were unlikely to test positive for viable virus and were therefore low-risk for forward transmission, COVID-19 symptoms were common. Paired SARS-CoV-2 RT-PCR and antibody testing provides more nuanced understanding of patients' COVID-19 status. |
Impact of Policy and Funding Decisions on COVID-19 Surveillance Operations and Case Reports - South Sudan, April 2020-February 2021.
Shragai T , Summers A , Olushayo O , Rumunu J , Mize V , Laku R , Bunga S . MMWR Morb Mortal Wkly Rep 2021 70 (22) 811-817 Early models predicted substantial COVID-19-associated morbidity and mortality across Africa (1-3). However, as of March 2021, countries in Africa are among those with the lowest reported incidence of COVID-19 worldwide (4). Whether this reflects effective mitigation, outbreak response, or demographic characteristics, (5) or indicates limitations in disease surveillance capacity is unclear (6). As countries implemented changes in funding, national policies, and testing strategies in response to the COVID-19 pandemic, surveillance capacity might have been adversely affected. This study assessed whether changes in surveillance operations affected reporting in South Sudan; testing and case numbers reported during April 6, 2020-February 21, 2021, were analyzed relative to the timing of funding, policy, and strategy changes.* South Sudan, with a population of approximately 11 million, began COVID-19 surveillance in February 2020 and reported 6,931 cases through February 21, 2021. Surveillance data analyzed were from point of entry screening, testing of symptomatic persons who contacted an alert hotline, contact tracing, sentinel surveillance, and outbound travel screening. After travel restrictions were relaxed in early May 2020, international land and air travel resumed and mandatory requirements for negative pretravel test results were initiated. The percentage of all testing accounted for by travel screening increased >300%, from 21.1% to 91.0% during the analysis period, despite yielding the lowest percentage of positive tests among all sources. Although testing of symptomatic persons and contact tracing yielded the highest percentage of COVID-19 cases, the percentage of all testing from these sources decreased 88%, from 52.6% to 6.3% after support for these activities was reduced. Collectively, testing increased over the project period, but shifted toward sources least likely to yield positive results, possibly resulting in underreporting of cases. Policy, funding, and strategy decisions related to the COVID-19 pandemic response, such as those implemented in South Sudan, are important issues to consider when interpreting the epidemiology of COVID-19 outbreaks. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 17, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure