Last data update: Nov 22, 2024. (Total: 48197 publications since 2009)
Records 1-30 (of 77 Records) |
Query Trace: Shoemaker T[original query] |
---|
Crimean-Congo hemorrhagic fever cases diagnosed during an outbreak of Sudan virus disease in Uganda, 2022-23
Balinandi S , Mulei S , Whitmer S , Nyakarahuka L , Cossaboom CM , Shedroff E , Morales-Betoulle M , Krapiunaya I , Tumusiime A , Kyondo J , Baluku J , Namanya D , Torach CR , Mutesi J , Kiconco J , Pimundu G , Muyigi T , Rowland J , Nsawotebba A , Ssewanyana I , Muwanguzi D , Kadobera D , Harris JR , Ario AR , Atek K , Kyobe HB , Nabadda S , Kaleebu P , Mwebesa HG , Montgomery JM , Shoemaker TR , Lutwama JJ , Klena JD . PLoS Negl Trop Dis 2024 18 (10) e0012595 BACKGROUND: In September 2022, Uganda experienced an outbreak of Sudan virus disease (SVD), mainly in central Uganda. As a result of enhanced surveillance activities for Ebola disease, samples from several patients with suspected viral hemorrhagic fever (VHF) were sent to the VHF Program at Uganda Virus Research Institute (UVRI), Entebbe, Uganda, and identified with infections caused by other viral etiologies. Herein, we report the epidemiologic and laboratory findings of Crimean-Congo hemorrhagic fever (CCHF) cases that were detected during the SVD outbreak response. METHODOLOGY: Whole blood samples from VHF suspected cases were tested for Sudan virus (SUDV) by real-time reverse transcription-polymerase chain reaction (RT-PCR); and if negative, were tested for CCHF virus (CCHFV) by RT-PCR. CCHFV genomic sequences generated by metagenomic next generation sequencing were analyzed to ascertain strain relationships. PRINCIPAL FINDINGS: Between September 2022 and January 2023, a total of 2,626 samples were submitted for VHF testing at UVRI. Overall, 13 CCHF cases (including 7 deaths; case fatality rate of 53.8%), aged 4 to 60 years, were identified from 10 districts, including several districts affected by the SVD outbreak. Four cases were identified within the Ebola Treatment Unit (ETU) at Mubende Hospital. Most CCHF cases were males engaged in livestock farming or had exposure to wildlife (n = 8; 61.5%). Among confirmed cases, the most common clinical symptoms were hemorrhage (n = 12; 92.3%), fever (n = 11; 84.6%), anorexia (n = 10; 76.9%), fatigue (n = 9; 69.2%), abdominal pain (n = 9; 69.2%) and vomiting (n = 9; 69.2%). Sequencing analysis showed that the majority of identified CCHFV strains belonged to the Africa II clade previously identified in Uganda. Two samples, however, were identified with greater similarity to a CCHFV strain that was last reported in Uganda in 1958, suggesting possible reemergence. CONCLUSIONS/SIGNIFICANCE: Identifying CCHFV from individuals initially suspected to be infected with SUDV emphasizes the need for comprehensive VHF testing during filovirus outbreak responses in VHF endemic countries. Without expanded testing, CCHFV-infected patients would have posed a risk to health care workers and others while receiving treatment after a negative filovirus diagnosis, thereby complicating response dynamics. Additionally, CCHFV-infected cases could acquire an Ebola infection while in the ETU, and upon release because of a negative Ebola virus result, have the potential to spread these infections in the community. |
A public, cross-reactive glycoprotein epitope confounds Ebola virus serology
Kainulainen MH , Harmon JR , Karaaslan E , Kyondo J , Whitesell A , Twongyeirwe S , Malenfant JH , Baluku J , Kofman A , Bergeron É , Waltenburg MA , Nyakarahuka L , Balinandi S , Cossaboom CM , Choi MJ , Shoemaker TR , Montgomery JM , Spiropoulou CF . J Med Virol 2024 96 (10) e29946 Ebola disease (EBOD) in humans is a severe disease caused by at least four related viruses in the genus Orthoebolavirus, most often by the eponymous Ebola virus. Due to human-to-human transmission and incomplete success in treating cases despite promising therapeutic development, EBOD is a high priority in public health research. Yet despite almost 50 years since EBOD was first described, the sources of these viruses remain undefined and much remains to be understood about the disease epidemiology and virus emergence and spread. One important approach to improve our understanding is detection of antibodies that can reveal past human infections. However, serosurveys routinely describe seroprevalences that imply infection rates much higher than those clinically observed. Proposed hypotheses to explain this difference include existence of common but less pathogenic strains or relatives of these viruses, misidentification of EBOD as something else, and a higher proportion of subclinical infections than currently appreciated. The work presented here maps B-cell epitopes in the spike protein of Ebola virus and describes a single epitope that is cross-reactive with an antigen seemingly unrelated to orthoebolaviruses. Antibodies against this epitope appear to explain most of the unexpected reactivity towards the spike, arguing against common but unidentified infections in the population. Importantly, antibodies of cross-reactive donors from within and outside the known EBOD geographic range bound the same epitope. In light of this finding, it is plausible that epitope mapping enables broadly applicable specificity improvements in the field of serology. |
Implementation and adaptation of clinical quality improvement opioid measures
Hersey C , Shoemaker-Hunt S , Parchman M , Childs E , Le J , Sargent W . Healthc (Amst) 2024 12 (4) 100753 |
Virulence of burkholderia pseudomallei ATS2021 unintentionally imported to United States in aromatherapy spray
Cote CK , Mlynek KD , Klimko CP , Biryukov SS , Mou S , Hunter M , Rill NO , Dankmeyer JL , Miller JA , Talyansky Y , Davies ML , Meinig JM , Halasohoris SA , Gray AM , Spencer JL , Babyak AL , Hourihan MK , Curry BJ , Toothman RG , Ruiz SI , Zeng X , Ricks KM , Clements TL , Douglas CE , Ravulapalli S , Stefan CP , Shoemaker CJ , Elrod MG , Gee JE , Weiner ZP , Qiu J , Bozue JA , Twenhafel NA , DeShazer D . Emerg Infect Dis 2024 30 (10) 2056-2069 In the United States in 2021, an outbreak of 4 cases of Burkholderia pseudomallei, the etiologic agent of melioidosis and a Tier One Select Agent (potential for deliberate misuse and subsequent harm), resulted in 2 deaths. The causative strain, B. pseudomallei ATS2021, was unintentionally imported into the United States in an aromatherapy spray manufactured in India. We established that ATS2021 represents a virulent strain of B. pseudomallei capable of robust formation of biofilm at physiologic temperatures that may contribute to virulence. By using mouse melioidosis models, we determined median lethal dose estimates and analyzed the bacteriologic and histopathologic characteristics of the organism, particularly the potential neurologic pathogenesis that is probably associated with the bimA(Bm) allele identified in B. pseudomallei strain ATS2021. Our data, combined with previous case reports and the identification of endemic B. pseudomallei strains in Mississippi, support the concept that melioidosis is emerging in the United States. |
Continuous community engagement is needed to improve adherence to ebola response activities and survivorship during ebola outbreaks
Soke GN , Fonjungo P , Mbuyi G , Luce R , Klena J , Choi M , Kombe J , Makaya G , Mbuyi F , Bulambo H , Mossoko M , Mwanzembe C , Ikomo B , Adikey P , Montgomery J , Shoemaker T , Mbala P , Earle-Richardson G , Mwamba D , Tamfum JM . Glob Health Sci Pract 2024 |
Human Orthohantavirus disease prevalence and genotype distribution in the U.S., 2008–2020: a retrospective observational study
Whitmer SLM , Whitesell A , Mobley M , Talundzic E , Shedroff E , Cossaboom CM , Messenger S , Deldari M , Bhatnagar J , Estetter L , Zufan S , Cannon D , Chiang CF , Gibbons A , Krapiunaya I , Morales-Betoulle M , Choi M , Knust B , Amman B , Montgomery JM , Shoemaker T , Klena JD . Lancet Reg Health - Am 2024 37 Background: In the United States (U.S.), hantavirus pulmonary syndrome (HPS) and non-HPS hantavirus infection are nationally notifiable diseases. Criteria for identifying human cases are based on clinical symptoms (HPS or non-HPS) and acute diagnostic results (IgM+, rising IgG+ titers, RT-PCR+, or immunohistochemistry (IHC)+). Here we provide an overview of diagnostic testing and summarize human Hantavirus disease occurrence and genotype distribution in the U.S. from 2008 to 2020. Methods: Epidemiological data from the national hantavirus registry was merged with laboratory diagnostic testing results performed at the CDC. Residual hantavirus-positive specimens were sequenced, and the available epidemiological and genetic data sets were linked to conduct a genomic epidemiological study of hantavirus disease in the U.S. Findings: From 1993 to 2020, 833 human hantavirus cases have been identified, and from 2008 to 2020, 335 human cases have occurred. Among New World (NW) hantavirus cases detected at the CDC diagnostic laboratory (representing 29.2% of total cases), most (85.0%) were detected during acute disease, however, some convalescent cases were detected in states not traditionally associated with hantavirus infections (Connecticut, Missouri, New Jersey, Pennsylvania, Tennessee, and Vermont). From 1993 to 2020, 94.9% (745/785) of U.S. hantaviruses cases were detected west of the Mississippi with 45.7% (359/785) in the Four Corners region of the U.S. From 2008 to 2020, 67.7% of NW hantavirus cases were detected between the months of March and August. Sequencing of RT-PCR-positive cases demonstrates a geographic separation of Orthohantavirus sinnombreense species [Sin Nombre virus (SNV), New York virus, and Monongahela virus]; however, there is a large gap in viral sequence data from the Northwestern and Central U.S. Finally, these data indicate that commercial IgM assays are not concordant with CDC-developed assays, and that “concordant positive” (i.e., commercial IgM+ and CDC IgM+ results) specimens exhibit clinical characteristics of hantavirus disease. Interpretation: Hantaviral disease is broadly distributed in the contiguous U.S, viral variants are localised to specific geographic regions, and hantaviral disease infrequently detected in most Southeastern states. Discordant results between two diagnostic detection methods highlight the need for an improved standardised testing plan in the U.S. Hantavirus surveillance and detection will continue to improve with clearly defined, systematic reporting methods, as well as explicit guidelines for clinical characterization and diagnostic criteria. Funding: This work was funded by core funds provided to the Viral Special Pathogens Branch at CDC. © 2024 |
Knowledge, attitudes, and practices and long-term immune response after rVSVΔG-ZEBOV-GP Ebola vaccination in healthcare workers in high-risk districts in Uganda
Waltenburg MA , Kainulainen MH , Whitesell A , Nyakarahuka L , Baluku J , Kyondo J , Twongyeirwe S , Harmon J , Mulei S , Tumusiime A , Bergeron E , Haberling DL , Klena JD , Spiropoulou C , Montgomery JM , Lutwama JJ , Makumbi I , Driwale A , Muruta A , Balinandi S , Shoemaker T , Cossaboom CM . Vaccine 2024 BACKGROUND: The rVSVΔG-ZEBOV-GP Ebola vaccine (rVSV-ZEBOV) has been used in response to Ebola disease outbreaks caused by Ebola virus (EBOV). Understanding Ebola knowledge, attitudes, and practices (KAP) and the long-term immune response following rVSV-ZEBOV are critical to inform recommendations on future use. METHODS: We administered surveys and collected blood samples from healthcare workers (HCWs) from seven Ugandan healthcare facilities. Questionnaires collected information on demographic characteristics and KAP related to Ebola and vaccination. IgG ELISA, virus neutralization, and interferon gamma ELISpot measured immunological responses against EBOV glycoprotein (GP). RESULTS: Overall, 37 % (210/565) of HCWs reported receiving any Ebola vaccination. Knowledge that rVSV-ZEBOV only protects against EBOV was low among vaccinated (32 %; 62/192) and unvaccinated (7 %; 14/200) HCWs. Most vaccinated (91 %; 192/210) and unvaccinated (92 %; 326/355) HCWs wanted to receive a booster or initial dose of rVSV-ZEBOV, respectively. Median time from rVSV-ZEBOV vaccination to sample collection was 37.7 months (IQR: 30.5, 38.3). IgG antibodies against EBOV GP were detected in 95 % (61/64) of HCWs with vaccination cards and in 84 % (162/194) of HCWs who reported receiving a vaccination. Geometric mean titer among seropositive vaccinees was 0.066 IU/mL (95 % CI: 0.058-0.076). CONCLUSION: As Uganda has experienced outbreaks of Sudan virus and Bundibugyo virus, for which rVSV-ZEBOV does not protect against, our findings underscore the importance of continued education and risk communication to HCWs on Ebola and other viral hemorrhagic fevers. IgG antibodies against EBOV GP were detected in most vaccinated HCWs in Uganda 2─4 years after vaccination; however, the duration and correlates of protection warrant further investigation. |
Sudan virus disease super-spreading, Uganda, 2022
Komakech A , Whitmer S , Izudi J , Kizito C , Ninsiima M , Ahirirwe SR , Kabami Z , Ario AR , Kadobera D , Kwesiga B , Gidudu S , Migisha R , Makumbi I , Eurien D , Kayiwa J , Bulage L , Gonahasa DN , Kyamwine I , Okello PE , Nansikombi HT , Atuhaire I , Asio A , Elayeete S , Nsubuga EJ , Masanja V , Migamba SM , Mwine P , Nakamya P , Nampeera R , Kwiringira A , Akunzirwe R , Naiga HN , Namubiru SK , Agaba B , Zalwango JF , Zalwango MG , King P , Simbwa BN , Zavuga R , Wanyana MW , Kiggundu T , Oonyu L , Ndyabakira A , Komugisha M , Kibwika B , Ssemanda I , Nuwamanya Y , Kamukama A , Aanyu D , Kizza D , Ayen DO , Mulei S , Balinandi S , Nyakarahuka L , Baluku J , Kyondo J , Tumusiime A , Aliddeki D , Masiira B , Muwanguzi E , Kimuli I , Bulwadda D , Isabirye H , Aujo D , Kasambula A , Okware S , Ochien E , Komakech I , Okot C , Choi M , Cossaboom CM , Eggers C , Klena JD , Osinubi MO , Sadigh KS , Worrell MC , Boore AL , Shoemaker T , Montgomery JM , Nabadda SN , Mwanga M , Muruta AN , Harris JR . BMC Infect Dis 2024 24 (1) 520 BACKGROUND: On 20 September 2022, Uganda declared its fifth Sudan virus disease (SVD) outbreak, culminating in 142 confirmed and 22 probable cases. The reproductive rate (R) of this outbreak was 1.25. We described persons who were exposed to the virus, became infected, and they led to the infection of an unusually high number of cases during the outbreak. METHODS: In this descriptive cross-sectional study, we defined a super-spreader person (SSP) as any person with real-time polymerase chain reaction (RT-PCR) confirmed SVD linked to the infection of ≥ 13 other persons (10-fold the outbreak R). We reviewed illness narratives for SSPs collected through interviews. Whole-genome sequencing was used to support epidemiologic linkages between cases. RESULTS: Two SSPs (Patient A, a 33-year-old male, and Patient B, a 26-year-old male) were identified, and linked to the infection of one probable and 50 confirmed secondary cases. Both SSPs lived in the same parish and were likely infected by a single ill healthcare worker in early October while receiving healthcare. Both sought treatment at multiple health facilities, but neither was ever isolated at an Ebola Treatment Unit (ETU). In total, 18 secondary cases (17 confirmed, one probable), including three deaths (17%), were linked to Patient A; 33 secondary cases (all confirmed), including 14 (42%) deaths, were linked to Patient B. Secondary cases linked to Patient A included family members, neighbours, and contacts at health facilities, including healthcare workers. Those linked to Patient B included healthcare workers, friends, and family members who interacted with him throughout his illness, prayed over him while he was nearing death, or exhumed his body. Intensive community engagement and awareness-building were initiated based on narratives collected about patients A and B; 49 (96%) of the secondary cases were isolated in an ETU, a median of three days after onset. Only nine tertiary cases were linked to the 51 secondary cases. Sequencing suggested plausible direct transmission from the SSPs to 37 of 39 secondary cases with sequence data. CONCLUSION: Extended time in the community while ill, social interactions, cross-district travel for treatment, and religious practices contributed to SVD super-spreading. Intensive community engagement and awareness may have reduced the number of tertiary infections. Intensive follow-up of contacts of case-patients may help reduce the impact of super-spreading events. |
Case of human orthohantavirus infection, Michigan, USA, 2021
Goodfellow SM , Nofchissey RA , Arsnoe D , Ye C , Lee S , Park J , Kim WK , Chandran K , Whitmer SLM , Klena JD , Dyal JW , Shoemaker T , Riner D , Stobierski MG , Signs K , Bradfute SB . Emerg Infect Dis 2024 30 (4) 817-821 Orthohantaviruses cause hantavirus cardiopulmonary syndrome; most cases occur in the southwest region of the United States. We discuss a clinical case of orthohantavirus infection in a 65-year-old woman in Michigan and the phylogeographic link of partial viral fragments from the patient and rodents captured near the presumed site of infection. |
Marburgvirus resurgence in Kitaka Mine bat population after extermination attempts, Uganda.
Amman BR , Nyakarahuka L , McElroy AK , Dodd KA , Sealy TK , Schuh AJ , Shoemaker TR , Balinandi S , Atimnedi P , Kaboyo W , Nichol ST , Towner JS . Emerg Infect Dis 2014 20 (10) 1761-4 Marburg virus (MARV) and Ravn virus (RAVV), collectively called marburgviruses, cause Marburg hemorrhagic fever (MHF) in humans. In July 2007, 4 cases of MHF (1 fatal) occurred in miners at Kitaka Mine in southern Uganda. Later, MHF occurred in 2 tourists who visited Python Cave, ≈50 km from Kitaka Mine. One of the tourists was from the United States (December 2007) and 1 was from the Netherlands (July 2008); 1 case was fatal (1,2,3). The cave and the mine each contained 40,000–100,000 Rousettus aegyptiacus bats (Egyptian fruit bats). | | Longitudinal investigations of the outbreaks at both locations were initiated by the Viral Special Pathogens Branch of the Centers for Disease Control and Prevention (CDC, Atlanta, GA, USA, and Entebbe, Uganda) in collaboration with the Uganda Wildlife Authority (UWA) and the Uganda Virus Research Institute (UVRI). During these studies, genetically diverse MARVs and RAVVs were isolated directly from bat tissues, and infection levels of the 2 viruses were found to increase in juvenile bats on a predictable bi-annual basis (4,5). However, investigations at Kitaka Mine were stopped when the miners exterminated the bat colony by restricting egress from the cave with papyrus reed barriers and then entangling the bats in fishing nets draped over the exits. The trapping continued for weeks, and the entrances were then sealed with sticks and plastic. These depopulation efforts were documented by researchers from UVRI, the CDC, the National Institute of Communicable Diseases (Sandringham, South Africa), and UWA during site visits to Kitaka Mine (Technical Appendix Figure). In August 2008, thousands of dead bats were found piled in the forest, and by November 2008, there was no evidence of bats living in the mine; whether 100% extermination was achieved is unknown. CDC, UVRI, and UWA recommended against extermination, believing that any results would be temporary and that such efforts could exacerbate the problem if bat exclusion methods were not complete and permanent (6,7). |
2020 Ebola virus disease outbreak in Équateur Province, Democratic Republic of the Congo: a retrospective genomic characterisation
Kinganda-Lusamaki E , Whitmer S , Lokilo-Lofiko E , Amuri-Aziza A , Muyembe-Mawete F , Makangara-Cigolo JC , Makaya G , Mbuyi F , Whitesell A , Kallay R , Choi M , Pratt C , Mukadi-Bamuleka D , Kavunga-Membo H , Matondo-Kuamfumu M , Mambu-Mbika F , Ekila-Ifinji R , Shoemaker T , Stewart M , Eng J , Rajan A , Soke GN , Fonjungo PN , Otshudiema JO , Folefack GLT , Pukuta-Simbu E , Talundzic E , Shedroff E , Bokete JL , Legand A , Formenty P , Mores CN , Porzucek AJ , Tritsch SR , Kombe J , Tshapenda G , Mulangu F , Ayouba A , Delaporte E , Peeters M , Wiley MR , Montgomery JM , Klena JD , Muyembe-Tamfum JJ , Ahuka-Mundeke S , Mbala-Kingebeni P . Lancet Microbe 2024 BACKGROUND: The Democratic Republic of the Congo has had 15 Ebola virus disease (EVD) outbreaks, from 1976 to 2023. On June 1, 2020, the Democratic Republic of the Congo declared an outbreak of EVD in the western Équateur Province (11th outbreak), proximal to the 2018 Tumba and Bikoro outbreak and concurrent with an outbreak in the eastern Nord Kivu Province. In this Article, we assessed whether the 11th outbreak was genetically related to previous or concurrent EVD outbreaks and connected available epidemiological and genetic data to identify sources of possible zoonotic spillover, uncover additional unreported cases of nosocomial transmission, and provide a deeper investigation into the 11th outbreak. METHODS: We analysed epidemiological factors from the 11th EVD outbreak to identify patient characteristics, epidemiological links, and transmission modes to explore virus spread through space, time, and age groups in the Équateur Province, Democratic Republic of the Congo. Trained field investigators and health professionals recorded data on suspected, probable, and confirmed cases, including demographic characteristics, possible exposures, symptom onset and signs and symptoms, and potentially exposed contacts. We used blood samples from individuals who were live suspected cases and oral swabs from individuals who were deceased to diagnose EVD. We applied whole-genome sequencing of 87 available Ebola virus genomes (from 130 individuals with EVD between May 19 and Sept 16, 2020), phylogenetic divergence versus time, and Bayesian reconstruction of phylogenetic trees to calculate viral substitution rates and study viral evolution. We linked the available epidemiological and genetic datasets to conduct a genomic and epidemiological study of the 11th EVD outbreak. FINDINGS: Between May 19 and Sept 16, 2020, 130 EVD (119 confirmed and 11 probable) cases were reported across 13 Équateur Province health zones. The individual identified as the index case reported frequent consumption of bat meat, suggesting the outbreak started due to zoonotic spillover. Sequencing revealed two circulating Ebola virus variants associated with this outbreak-a Mbandaka variant associated with the majority (97%) of cases and a Tumba-like variant with similarity to the ninth EVD outbreak in 2018. The Tumba-like variant exhibited a reduced substitution rate, suggesting transmission from a previous survivor of EVD. INTERPRETATION: Integrating genetic and epidemiological data allowed for investigative fact-checking and verified patient-reported sources of possible zoonotic spillover. These results demonstrate that rapid genetic sequencing combined with epidemiological data can inform responders of the mechanisms of viral spread, uncover novel transmission modes, and provide a deeper understanding of the outbreak, which is ultimately needed for infection prevention and control during outbreaks. FUNDING: WHO and US Centers for Disease Control and Prevention. |
Seroepidemiological investigation of Crimean Congo hemorrhagic fever virus in livestock in Uganda, 2017
Nyakarahuka L , Kyondo J , Telford C , Whitesell A , Tumusiime A , Mulei S , Baluku J , Cossaboom CM , Cannon DL , Montgomery JM , Lutwama JJ , Nichol ST , Balinandi SK , Klena JD , Shoemaker TR . PLoS One 2023 18 (11) e0288587 Crimean-Congo Hemorrhagic fever (CCHF) is an important zoonotic disease transmitted to humans both by tick vectors and contact with fluids from an infected animal or human. Although animals are not symptomatic when infected, they are the main source of human infection. Uganda has reported sporadic human outbreaks of CCHF in various parts of the country since 2013. We designed a nationwide epidemiological study to investigate the burden of CCHF in livestock. A total of 3181 animals were sampled; 1732 cattle (54.4%), 1091 goats (34.3%), and 358 sheep (11.3%) resulting in overall livestock seropositivity of IgG antibodies against CCHF virus (CCHFV) of 31.4% (999/3181). Seropositivity in cattle was 16.9% and in sheep and goats was 48.8%. Adult and juvenile animals had higher seropositivity compared to recently born animals, and seropositivity was higher in female animals (33.5%) compared to male animals (24.1%). Local breeds had higher (36.8%) compared to exotic (2.8%) and cross breeds (19.3%). Animals that had a history of abortion or stillbirth had higher seropositivity compared to those without a history of abortion or stillbirth. CCHFV seropositivity appeared to be generally higher in northern districts of the country, though spatial trends among sampled districts were not examined. A multivariate regression analysis using a generalized linear mixed model showed that animal species, age, sex, region, and elevation were all significantly associated with CCHFV seropositivity after adjusting for the effects of other model predictors. This study shows that CCHFV is actively circulating in Uganda, posing a serious risk for human infection. The results from this study can be used to help target surveillance efforts for early case detection in animals and limit subsequent spillover into humans. |
Molecular characterization of the 2022 Sudan virus disease outbreak in Uganda
Balinandi S , Whitmer S , Mulei S , Nassuna C , Pimundu G , Muyigi T , Kainulainen M , Shedroff E , Krapiunaya I , Scholte F , Nyakarahuka L , Tumusiime A , Kyondo J , Baluku J , Kiconco J , Harris JR , Ario AR , Kagirita A , Bosa HK , Ssewanyana I , Nabadda S , Mwebesa HG , Aceng JR , Atwine D , Lutwama JJ , Shoemaker TR , Montgomery JM , Kaleebu P , Klena JD . J Virol 2023 97 (10) e0059023 Uganda experienced five Ebola disease outbreaks caused by Bundibugyo virus (n = 1) and Sudan virus (SUDV) (n = 4) from 2000 to 2021. On 20 September 2022, Uganda declared a fifth Sudan virus disease outbreak in the Mubende district, resulting in 142 confirmed and 22 probable cases by the end of the outbreak declaration on 11 January 2023. The earliest identified cases, through retrospective case investigations, had onset in early August 2022. From the 142 confirmed cases, we performed unbiased (Illumina) and SUDV-amplicon-specific (Minion) high-throughput sequencing to obtain 120 SUDV genome-and coding-complete sequences, representing 95.4% (104/109) of SVD-confirmed individuals within a sequence-able range (Ct ≤30) and 10 genome sequences outside of this range and 6 duplicate genome sequences. A comparison of the nucleotide genetic relatedness for the newly emerged Mubende variant indicated that it was most closely related to the Nakisamata SUDV sequence from 2011, represented a likely new zoonotic spillover event, and exhibited an inter- and intra-outbreak substitution rate consistent with previous outbreaks. The most recent common ancestor for the Mubende variant was estimated to have occurred in October and November 2021. The Mubende variant glycoprotein amino acid sequences exhibited 99.7% similarity altogether and a maximum of 96.1% glycoprotein similarity compared to historical SUDV strains from 1976. Integrating the genetic sequence and epidemiological data into the response activities generated a broad overview of the outbreak, allowing for quick fact-checking of epidemiological connections between the identified patients. IMPORTANCE Ebola disease (EBOD) is a public health threat with a high case fatality rate. Most EBOD outbreaks have occurred in remote locations, but the 2013-2016 Western Africa outbreak demonstrated how devastating EBOD can be when it reaches an urban population. Here, the 2022 Sudan virus disease (SVD) outbreak in Mubende District, Uganda, is summarized, and the genetic relatedness of the new variant is evaluated. The Mubende variant exhibited 96% amino acid similarity with historic SUDV sequences from the 1970s and a high degree of conservation throughout the outbreak, which was important for ongoing diagnostics and highly promising for future therapy development. Genetic differences between viruses identified during the Mubende SVD outbreak were linked with epidemiological data to better interpret viral spread and contact tracing chains. This methodology should be used to better integrate discrete epidemiological and sequence data for future viral outbreaks. |
Lymphocytic choriomeningitis virus in person living with HIV, Connecticut, USA, 2021
Dyal J , Gandhi S , Cossaboom CM , Leach A , Patel K , Golden M , Canterino J , Landry ML , Cannon D , Choi M , Krapiunaya I , Klena JD , Shoemaker T . Emerg Infect Dis 2023 29 (9) 1886-1889 Lymphocytic choriomeningitis virus is an underreported cause of miscarriage and neurologic disease. Surveillance remains challenging because of nonspecific symptomatology, inconsistent case reporting, and difficulties with diagnostic testing. We describe a case of acute lymphocytic choriomeningitis virus disease in a person living with HIV in Connecticut, USA, identified by using quantitative reverse transcription PCR. |
Detection of Hantavirus during the COVID-19 Pandemic, Arizona, USA, 2020
Hecht G , Dale AP , Ruberto I , Adame G , Close R , Snyder SJ , Pink K , Lemmon N , Rudolfo J , Madsen M , Wiens AL , Cossaboom C , Shoemaker T , Choi MJ , Cannon D , Krapiunaya I , Whitmer S , Mobley M , Talundzic E , Klena JD , Venkat H . Emerg Infect Dis 2023 29 (8) 1663-1667 We identified 2 fatal cases of persons infected with hantavirus in Arizona, USA, 2020; 1 person was co-infected with SARS-CoV-2. Delayed identification of the cause of death led to a public health investigation that lasted ≈9 months after their deaths, which complicated the identification of a vector or exposure. |
Rio Negro virus infection, Bolivia, 2021
Loayza Mafayle R , Morales-Betoulle ME , Whitmer S , Cossaboom C , Revollo J , Loayza NM , Méndez HA , Chuquimia Valdez JA , Subieta FA , Espinoza Morales MX , Canedo Sánchez MV , Romero MER , Brault AC , Hugues HR , Mendez-Rico J , Malenfant JH , Shoemaker T , Klena JD , Montgomery JM , Marquina Salas JD . Emerg Infect Dis 2023 29 (8) 1705-1708 In May 2021, an agricultural worker originally from Trementinal, Argentina, sought treatment for febrile illness in Tarija, Bolivia, where he resided at the time of illness onset. The patient tested negative for hantavirus RNA, but next-generation sequencing of a serum sample yielded a complete genome for Rio Negro virus. |
Revisiting the minimum incubation period of Zaire ebolavirus
Kofman AD , Haberling DL , Mbuyi G , Martel LD , Whitesell AN , Van Herp M , Makaya G , Corvil S , Abedi AA , Ngoma PM , Mbuyi F , Mossoko M , Koivogui E , Soke N , Gbamou N , Fonjungo PN , Keita L , Keita S , Shoemaker TR , Richards GA , Montgomery JM , Breman JG , Geisbert TW , Choi MJ , Rollin PE . Lancet Infect Dis 2023 23 (10) 1111-1112 Ebola virus disease (EVD) caused by Ebola virus species Zaire ebolavirus (EBOV) is a major global health challenge causing sporadic outbreaks with high mortality. The minimum incubation period of EBOV, or the time from infection with the virus to the development of first symptoms, is thought to be 2 days and was initially established during the first EVD investigation in 1976.1 A published observation from the investigation noted that, “in one case of the disease, the only possible source of infection was contact with a probable case 48 hours before the latter developed symptoms”, and this observation was restated in another publication.2, 3 However, concluding that the minimum incubation period for EBOV is 2 days based on these reports is flawed for several reasons. First, the presumed source of the infection was a probable case of EVD and was not laboratory-confirmed; it is therefore uncertain whether the source truly had EVD. Second, since the report describes the contact between the source and the case occurring before the source developed symptoms, this implies asymptomatic transmission, which has been established to not occur with EBOV.4, 5, 6 Finally, the report's description of 48 h refers to the time between the case's contact with the alleged source and the source's onset of symptoms, which is itself not an incubation period. |
A countrywide seroepidemiological survey of Rift Valley fever in livestock, Uganda, 2017
Nyakarahuka L , Kyondo J , Telford C , Whitesell A , Tumusiime A , Mulei S , Baluku J , Cossaboom CM , Cannon DL , Montgomery JM , Lutwama JJ , Nichol ST , Balinandi S , Klena JD , Shoemaker TR . Am J Trop Med Hyg 2023 109 (3) 548-553 In 2016, an outbreak of Rift Valley fever was reported in the Kabale District in Uganda for the first time in 48 years. Three human cases were confirmed by polymerase chain reaction, and subsequent serological investigations revealed an overall IgG seropositivity of 13% in humans and 13% in animals. In response to this reemergence, we designed a countrywide survey to determine the seropositivity of anti-Rift Valley fever virus (RVFV) IgG antibodies in livestock. Samples were collected from 27 districts and tested for RVFV anti-IgG antibodies. A total of 3,181 livestock samples were tested, of which 54.4% were cattle (1,732 of 3,181), 34.3% were goats (1,091 of 3,181), and 11.3% were sheep (358 of 3,181). Overall RVFV seropositivity was 6.9% (221 of 3,181). Seroprevalence was greater in cattle (10.7%) compared with goats (2.6%) and sheep (2.0%), among females (7.5%) compared with males (5.2%), and among adults (7.6%) compared with juveniles (4.9%) and nurslings (6.4%). Exotic breeds and animals with a history of abortion or stillbirth also had greater odds of RVFV seropositivity. Animals grazed under tethering and paddocking had greater RVFV seropositivity compared with animals that grazed communally, and livestock in the western and eastern regions had the greatest seroprevalence. In a multivariate regression model, animal species (odds ratio [OR], 6.4; 95% CI, 3.5-11.4) and age (OR, 2.3; 95% CI, 1.4-3.6) were associated significantly with RVFV seropositivity. This study could be important in developing risk-based surveillance for early outbreak detection to limit the spread of RVFV in both human and animal populations. |
Spatial prediction of Crimean Congo hemorrhagic fever virus seroprevalence among livestock in Uganda
Telford C , Nyakarahuka L , Waller L , Kitron U , Shoemaker T . One Health 2023 17 100576 Crimean-Congo Hemorrhagic Fever (CCHF) is a viral disease that can infect humans via contact with tick vectors or livestock reservoirs and can cause moderate to severe disease. The first human case of CCHF in Uganda was identified in 2013. To determine the geographic distribution of the CCHF virus (CCHFV), serosampling among herds of livestock was conducted in 28 Uganda districts in 2017. A geostatistical model of CCHF seroprevalence among livestock was developed to incorporate environmental and anthropogenic variables associated with elevated CCHF seroprevalence to predict CCHF seroprevalence on a map of Uganda and estimate the probability that CCHF seroprevalence exceeded 30% at each prediction location. Environmental and anthropogenic variables were also analyzed in separate models to determine the spatially varying drivers of prediction and determine which covariate class resulted in best prediction certainty. Covariates used in the full model included distance to the nearest croplands, average annual change in night-time light index, percent sand soil content, land surface temperature, and enhanced vegetation index. Elevated CCHF seroprevalence occurred in patches throughout the country, being highest in northern Uganda. Environmental covariates drove predicted seroprevalence in the full model more than anthropogenic covariates. Combination of environmental and anthropogenic variables resulted in the best prediction certainty. An understanding of the spatial distribution of CCHF across Uganda and the variables that drove predictions can be used to prioritize specific locations and activities to reduce the risk of future CCHF transmission. © 2023 The Authors |
Factors That Affect Opioid Quality Improvement Initiatives in Primary Care: Insights from Ten Health Systems
Childs E , Tano CA , Mikosz CA , Parchman ML , Hersey CL , Keane N , Shoemaker-Hunt SJ , Losby JL . Jt Comm J Qual Patient Saf 2023 49 (1) 26-33 OBJECTIVE: To improve patient safety and pain management, the Centers for Disease Control and Prevention (CDC) released the Guideline for Prescribing Opioids for Chronic Pain (CDC Guideline). Recognizing that issuing a guideline alone is insufficient for transforming practice, CDC supported an Opioid Quality Improvement (QI) Collaborative, consisting of 10 health care systems that represented more than 120 practices across the United States. The research team identified factors related to implementation success using domains described by the integrated Promoting Action on Research Implementation in Health Services (iPARIHS) implementation science framework. METHODS: Data from interviews, notes from check-in calls, and documents provided by systems were used. The researchers collected data throughout the project through interviews, meeting notes, and documents. RESULTS: The iPARIHS framework was used to identify factors that affected implementation related to the context, innovation (implementing recommendations from the CDC Guideline), recipient (clinicians), and facilitation (QI team). Contextual characteristics were at the clinic, health system, and broader external context, including staffing and leadership support, previous QI experience, and state laws. Characteristics of the innovation were its adaptability and challenges operationalizing the measures. Recipient characteristics included belief in the importance of the innovation but challenges engaging in the initiative. Finally, facilitation characteristics driving differential outcomes included staffing and available time of the QI team, the ability to make changes, and experience with QI. CONCLUSION: As health care systems continue to implement the CDC Guideline, these insights can advance successful implementation efforts by describing common implementation challenges and identifying strategies to prepare for and overcome them. |
Highlights From an Expert Meeting on Opportunities for Cancer Prevention Among Older Adults
Cancer Prevention During Older Adulthood Writing Group , Ekwueme Donatus U , Flagg T’Ronda , Holman Dawn M , Peipins Lucy , Qin Jin , Shoemaker Meredith , White Mary C . Gerontologist 2019 59 S94-s101 This paper provides highlights from an expert meeting to explore opportunities to reduce cancer risk and promote health at older ages. Factors that increase cancer risk among older adults include exposure to carcinogens from multiple sources, chronic conditions such as obesity and diabetes, and unhealthy behaviors. Emerging research points to chronic social stressors - social isolation, loneliness, and financial hardship - as being linked to accelerated biological aging and increased cancer risk later in life. Older adults may disproportionately encounter these stressors as well as barriers to preventive health care services, accurate health information, and environments that promote health. Researchers can use existing cohort studies of older adults to deepen our understanding of the relative benefit of modifying specific behaviors and circumstances. The evidence points to the value of comprehensive, transdisciplinary approaches to promote health and reduce cancer risk across the entire lifespan, extending through older adulthood. Clinical encounters with older adults provide opportunities for psychosocial and behavioral screening and counseling. In the presence of multiple morbidities, preventive health services may offer greater health benefits than cancer-screening tests. Strategies that involve families and caregivers, promote positive attitudes about aging, and engage many different community sectors have the potential to prevent or delay the development of cancer at older ages. |
Anti-schistosomal immunity to core xylose/fucose in N-glycans
Prasanphanich NS , Leon K , Secor WE , Shoemaker CB , Heimburg-Molinaro J , Cummings RD . Front Mol Biosci 2023 10 1142620 Schistosomiasis is a globally prevalent, debilitating disease that is poorly controlled by chemotherapy and for which no vaccine exists. While partial resistance in people may develop over time with repeated infections and treatments, some animals, including the brown rat (Rattus norvegicus), are only semi-permissive and have natural protection. To understand the basis of this protection, we explored the nature of the immune response in the brown rat to infection by Schistosoma mansoni. Infection leads to production of IgG to Infection leads to production of IgG to parasite glycoproteins parasite glycoproteins with complex-type N-glycans that contain a non-mammalian-type modification by core α2-Xylose and core α3-Fucose (core Xyl/Fuc). These epitopes are expressed on the surfaces of schistosomula and adult worms. Importantly, IgG to these epitopes can kill schistosomula by a complement-dependent process in vitro. Additionally, sera from both infected rhesus monkey and infected brown rat were capable of killing schistosomula in a manner inhibited by glycopeptides containing core Xyl/Fuc. These results demonstrate that protective antibodies to schistosome infections in brown rats and rhesus monkeys include IgG responses to the core Xyl/Fuc epitopes in surface-expressed N-glycans, and raise the potential of novel glyco-based vaccines that might be developed to combat this disease. |
Detection of sporadic outbreaks of Rift Valley fever in Uganda through the National Viral Hemorrhagic Fever Surveillance System, 2017-2020
Nyakarahuka L , Whitmer S , Klena J , Balinandi S , Talundzic E , Tumusiime A , Kyondo J , Mulei S , Patel K , Baluku J , Akurut G , Namanya D , Kamugisha K , Cossaboom C , Whitesell A , Telford C , Graziano J , Montgomery J , Nichol S , Lutwama J , Shoemaker T . Am J Trop Med Hyg 2023 108 (5) 995-1002 Rift Valley fever (RVF) is a zoonotic disease of public health and economic importance. Uganda has reported sporadic outbreaks of RVF in both humans and animals across the country, especially in the southwestern part of the "cattle corridor" through an established viral hemorrhagic fever surveillance system. We report 52 human cases of laboratory-confirmed RVF from 2017 to 2020. The case fatality rate was 42%. Among those infected, 92% were males and 90% were adults (≥ 18 years). Clinical symptoms were characterized by fever (69%), unexplained bleeding (69%), headache (51%), abdominal pain (49%), and nausea and vomiting (46%). Most of the cases (95%) originated from central and western districts that are part of the cattle corridor of Uganda, where the main risk factor was direct contact with livestock (P = 0.009). Other predictors of RVF positivity were determined to be male gender (P = 0.001) and being a butcher (P = 0.04). Next-generation sequencing identified the predominant Ugandan clade as Kenya-2, observed previously across East Africa. There is need for further investigation and research into the effect and spread of this neglected tropical disease in Uganda and the rest of Africa. Control measures such as promoting vaccination and limiting animal-human transmission could be explored to reduce the impact of RVF in Uganda and globally. |
Geostatistical modeling and prediction of Rift Valley fever seroprevalence among livestock in Uganda
Telford C , Nyakarahuka L , Waller L , Kitron U , Shoemaker T . Am J Trop Med Hyg 2023 108 (4) 712-721 Uganda reported cases of Rift Valley fever virus (RVFV) for the first time in almost 50 years in 2016, following an outbreak of Rift Valley fever (RVF) that caused four human infections, two of which resulted in death. Subsequent outbreak investigation serosurveys found high seroprevalence of IgG antibodies without evidence of acute infection or IgM antibodies, suggesting the possibility of undetected RVFV circulation prior to the outbreak. After the 2016 outbreak investigation, a serosurvey was conducted in 2017 among domesticated livestock herds across Uganda. Sampling data were incorporated into a geostatistical model to estimate RVF seroprevalence among cattle, sheep, and goats. Variables resulting in the best fit to RVF seroprevalence sampling data included annual variability in monthly precipitation and enhanced vegetation index, topographic wetness index, log human population density percent increase, and livestock species. Individual species RVF seroprevalence prediction maps were created for cattle, sheep, and goats, and a composite livestock prediction was created based on the estimated density of each species across the country. Seroprevalence was greater in cattle compared with sheep and goats. Predicted seroprevalence was greatest in the central and northwestern quadrant of the country, surrounding Lake Victoria, and along the Southern Cattle Corridor. We identified areas that experienced conditions conducive to potential increased RVFV circulation in 2021 in central Uganda. An improved understanding of the determinants of RVFV circulation and locations with high probability of elevated RVF seroprevalence can guide prioritization of disease surveillance and risk mitigation efforts. |
Crimean-Congo Hemorrhagic Fever Outbreak in Refugee Settlement during COVID-19 Pandemic, Uganda, April 2021.
Nyakarahuka L , Whitmer S , Kyondo J , Mulei S , Cossaboom CM , Telford CT , Tumusiime A , Akurut GG , Namanya D , Kamugisha K , Baluku J , Lutwama J , Balinandi S , Shoemaker T , Klena JD . Emerg Infect Dis 2022 28 (11) 2326-2329 Crimean-Congo hemorrhagic fever (CCHF) was detected in 2 refugees living in a refugee settlement in Kikuube district, Uganda. Investigations revealed a CCHF IgG seroprevalence of 71.3% (37/52) in goats within the refugee settlement. This finding highlights the need for a multisectoral approach to controlling CCHF in humans and animals in Uganda. |
Rift Valley Fever Outbreak during COVID-19 Surge, Uganda, 2021.
Cossaboom CM , Nyakarahuka L , Mulei S , Kyondo J , Tumusiime A , Baluku J , Akurut GG , Namanya D , Kamugisha K , Nansikombi HT , Nyabakira A , Mutesasira S , Whitmer S , Telford C , Lutwama J , Balinandi S , Montgomery J , Klena JD , Shoemaker T . Emerg Infect Dis 2022 28 (11) 2290-2293 Rift Valley fever, endemic or emerging throughout most of Africa, causes considerable risk to human and animal health. We report 7 confirmed Rift Valley fever cases, 1 fatal, in Kiruhura District, Uganda, during 2021. Our findings highlight the importance of continued viral hemorrhagic fever surveillance, despite challenges associated with the COVID-19 pandemic. |
Chapare Hemorrhagic Fever and Virus Detection in Rodents in Bolivia in 2019.
LoayzaMafayle R , Morales-Betoulle ME , Romero C , Cossaboom CM , Whitmer S , AlvarezAguilera CE , AvilaArdaya C , CruzZambrana M , DvalosAnajia A , MendozaLoayza N , Montao AM , MoralesAlvis FL , RevolloGuzmn J , SasasMartnez S , AlarcnDeLaVega G , MedinaRamrez A , MolinaGutirrez JT , CornejoPinto AJ , SalasBacci R , Brignone J , Garcia J , Aez A , Mendez-Rico J , Luz K , Segales A , TorrezCruz KM , Valdivia-Cayoja A , Amman BR , Choi MJ , Erickson BR , Goldsmith C , Graziano JC , Joyce A , Klena JD , Leach A , Malenfant JH , Nichol ST , Patel K , Sealy T , Shoemaker T , Spiropoulou CF , Todres A , Towner JS , Montgomery JM . N Engl J Med 2022 386 (24) 2283-2294 BACKGROUND: In June 2019, the Bolivian Ministry of Health reported a cluster of cases of hemorrhagic fever that started in the municipality of Caranavi and expanded to La Paz. The cause of these cases was unknown. METHODS: We obtained samples for next-generation sequencing and virus isolation. Human and rodent specimens were tested by means of virus-specific real-time quantitative reverse-transcriptase-polymerase-chain-reaction assays, next-generation sequencing, and virus isolation. RESULTS: Nine cases of hemorrhagic fever were identified; four of the patients with this illness died. The etiologic agent was identified as Mammarenavirus Chapare mammarenavirus, or Chapare virus (CHAPV), which causes Chapare hemorrhagic fever (CHHF). Probable nosocomial transmission among health care workers was identified. Some patients with CHHF had neurologic manifestations, and those who survived had a prolonged recovery period. CHAPV RNA was detected in a variety of human body fluids (including blood; urine; nasopharyngeal, oropharyngeal, and bronchoalveolar-lavage fluid; conjunctiva; and semen) and in specimens obtained from captured small-eared pygmy rice rats (Oligoryzomys microtis). In survivors of CHHF, viral RNA was detected up to 170 days after symptom onset; CHAPV was isolated from a semen sample obtained 86 days after symptom onset. CONCLUSIONS: M. Chapare mammarenavirus was identified as the etiologic agent of CHHF. Both spillover from a zoonotic reservoir and possible person-to-person transmission were identified. This virus was detected in a rodent species, O. microtis. (Funded by the Bolivian Ministry of Health and others.). |
Establishing a public health emergency operations center in an outbreak-prone country: Lessons learned in Uganda, January 2014 to December 2021
Kayiwa J , Homsy J , Nelson LJ , Ocom F , Kasule JN , Wetaka MM , Kyazze S , Mwanje W , Kisakye A , Nabunya D , Nyirabakunzi M , Aliddeki DM , Ojwang J , Boore A , Kasozi S , Borchert J , Shoemaker T , Nabatanzi S , Dahlke M , Brown V , Downing R , Makumbi I . Health Secur 2022 20 (5) 394-407 Uganda is highly vulnerable to public health emergencies (PHEs) due to its geographic location next to the Congo Basin epidemic hot spot, placement within multiple epidemic belts, high population growth rates, and refugee influx. In view of this, Uganda's Ministry of Health established the Public Health Emergency Operations Center (PHEOC) in September 2013, as a central coordination unit for all PHEs in the country. Uganda followed the World Health Organization's framework to establish the PHEOC, including establishing a steering committee, acquiring legal authority, developing emergency response plans, and developing a concept of operations. The same framework governs the PHEOC's daily activities. Between January 2014 and December 2021, Uganda's PHEOC coordinated response to 271 PHEs, hosted 207 emergency coordination meetings, trained all core staff in public health emergency management principles, participated in 21 simulation exercises, coordinated Uganda's Global Health Security Agenda activities, established 6 subnational PHEOCs, and strengthened the capacity of 7 countries in public health emergency management. In this article, we discuss the following lessons learned: PHEOCs are key in PHE coordination and thus mitigate the associated adverse impacts; although the functions of a PHEOC may be legalized by the existence of a National Institute of Public Health, their establishment may precede formally securing the legal framework; staff may learn public health emergency management principles on the job; involvement of leaders and health partners is crucial to the success of a public health emergency management program; subnational PHEOCs are resourceful in mounting regional responses to PHEs; and service on the PHE Strategic Committee may be voluntary. |
A generalizable one health framework for the control of zoonotic diseases.
Ghai RR , Wallace RM , Kile JC , Shoemaker TR , Vieira AR , Negron ME , Shadomy SV , Sinclair JR , Goryoka GW , Salyer SJ , Barton Behravesh C . Sci Rep 2022 12 (1) 8588 Effectively preventing and controlling zoonotic diseases requires a One Health approach that involves collaboration across sectors responsible for human health, animal health (both domestic and wildlife), and the environment, as well as other partners. Here we describe the Generalizable One Health Framework (GOHF), a five-step framework that provides structure for using a One Health approach in zoonotic disease programs being implemented at the local, sub-national, national, regional, or international level. Part of the framework is a toolkit that compiles existing resources and presents them following a stepwise schematic, allowing users to identify relevant resources as they are required. Coupled with recommendations for implementing a One Health approach for zoonotic disease prevention and control in technical domains including laboratory, surveillance, preparedness and response, this framework can mobilize One Health and thereby enhance and guide capacity building to combat zoonotic disease threats at the human-animal-environment interface. |
Prevalence of Crimean-Congo hemorrhagic fever virus among livestock and ticks in Zhambyl Region, Kazakhstan, 2017
Bryant-Genevier J , Bumburidi Y , Kazazian L , Seffren V , Head JR , Berezovskiy D , Zhakipbayeva B , Salyer SJ , Knust B , Klena JD , Chiang CF , Mirzabekova G , Rakhimov K , Koekeev J , Kartabayev K , Mamadaliyev S , Guerra M , Blanton C , Shoemaker T , Singer D , Moffett DB . Am J Trop Med Hyg 2022 106 (5) 1478-85 Crimean-Congo hemorrhagic fever (CCHF) is a highly fatal zoonotic disease endemic to Kazakhstan. Previous work estimated the seroprevalence of CCHF virus (CCHFV) among livestock owners in the Zhambyl region of southern Kazakhstan at 1.2%. To estimate CCHFV seroprevalence among cattle and sheep, we selected 15 villages with known history of CCHFV circulation (endemic) and 15 villages without known circulation (nonendemic) by cluster sampling with probability proportional to livestock population size. We collected whole blood samples from 521 sheep and 454 cattle from randomly selected households within each village and collected ticks found on the animals. We tested livestock blood for CCHFV-specific IgG antibodies by ELISA; ticks were screened for CCHFV RNA by real-time reverse transcription polymerase chain reaction and CCHFV antigen by antigen-capture ELISA. We administered questionnaires covering animal demographics and livestock herd characteristics to an adult in each selected household. Overall weighted seroprevalence was 5.7% (95% CI: 3.1, 10.3) among sheep and 22.5% (95% CI: 15.8, 31.2) among cattle. CCHFV-positive tick pools were found on two sheep (2.4%, 95% CI: 0.6, 9.5) and three cattle (3.8%, 95% CI: 1.2, 11.5); three CCHFV-positive tick pools were found in nonendemic villages. Endemic villages reported higher seroprevalence among sheep (15.5% versus 2.8%, P < 0.001) but not cattle (25.9% versus 20.1%, P = 0.42). Findings suggest that the current village classification scheme may not reflect the geographic distribution of CCHFV in Zhambyl and underscore that public health measures must address the risk of CCHF even in areas without a known history of circulation. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Nov 22, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure