Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-1 (of 1 Records) |
Query Trace: Sharma HN[original query] |
---|
A chemo-mechanical model for describing sorption hysteresis in a glassy polyurethane
Foley BL , Matt SM , Castonguay ST , Sun Y , Roy P , Glascoe EA , Sharma HN . Sci Rep 2024 14 (1) 5640 Hysteretic sorption and desorption of water is observed from 0 to 95% relative humidity and 298-333 K on a glassy polyurethane foam. It is postulated that sorption-induced swelling of the glassy polyurethane increases the concentration of accessible hydrogen-bonding adsorption sites for water. The accessibility of sites is kinetically controlled due to the restricted thermal motions of chains in the glassy polymer, causing a difference in accessible site concentrations during sorption and desorption. This discrepancy leads to hysteresis in the sorbed concentrations of water. A coupled chemo-mechanical model relating volumetric strain, adsorption site concentration, and sorbed water concentration is employed to describe water sorption hysteresis in the glassy polyurethane. This model not only describes the final mass uptake for each relative humidity step, but also captures the dynamics of water uptake, which exhibit diffusion and relaxation rate-controlled regimes. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure