Last data update: Mar 21, 2025. (Total: 48935 publications since 2009)
Records 1-30 (of 58 Records) |
Query Trace: Schaefer M[original query] |
---|
Risk period for transmission of SARS-CoV-2 and seasonal influenza: a rapid review
Stone EC , Okasako-Schmucker DL , Taliano J , Schaefer M , Kuhar DT . Infect Control Hosp Epidemiol 2025 1-9 ![]() ![]() BACKGROUND: Restricting infectious healthcare workers (HCWs) from the workplace is an important infection prevention strategy. The duration of viral shedding or symptoms are often used as proxies for the infectious period in adults but may not accurately estimate it. OBJECTIVE: To determine the risk period for transmission among previously healthy adults infected with SARS-CoV-2 omicron variant (omicron) or influenza A (influenza) by examining the duration of shedding and symptoms, and day of symptom onset in secondary cases of transmission pairs. DESIGN: Rapid review. METHODS: This rapid review adhered to PRISMA-ScR; five databases were searched. The cumulative daily proportion of participants with an outcome of interest was calculated for each study and summarized. RESULTS: Forty-three studies were included. Shedding resolved among ≥ 70% of participants by the end of day nine post symptom onset for omicron, and day seven for influenza; and for ≥ 90% of participants, by the end of day 10 for omicron and day nine for influenza. Two studies suggested shedding continues > 24 hours post-fever resolution for both viruses. Symptom onset occurred in ≥ 80% of secondary cases by the end of day seven post-primary case symptom onset for omicron and day six for influenza. CONCLUSIONS: Omicron shedding is consistent with previous recommendations to exclude infected HCWs from work for 10 days; and influenza follows a similar trend. Earlier symptom onset in most secondary cases for both pathogens indicates that, despite persistent viral shedding, most transmission occurs earlier; and the cumulative serial interval might better approximate the duration of infectiousness. |
Risk reduction in SARS-CoV-2 infection and reinfection conferred by humoral antibody levels among essential workers during Omicron predominance
Hollister J , Porter C , Sprissler R , Beitel SC , Romine JK , Uhrlaub JL , Grant L , Yoo YM , Fowlkes A , Britton A , Olsho LEW , Newes-Adeyi G , Fuller S , Zheng PQ , Gaglani M , Rose S , Dunnigan K , Naleway AL , Gwynn L , Caban-Martinez A , Schaefer Solle N , Tyner HL , Philips AL , Hegmann KT , Yoon S , Lutrick K , Burgess JL , Ellingson KD . PLoS One 2024 19 (12) e0306953 ![]() The extent to which semi-quantitative antibody levels confer protection against SARS-CoV-2 infection in populations with heterogenous immune histories is unclear. Two nested case-control studies were designed within the multisite HEROES/RECOVER prospective cohort of frontline workers to study the relationship between antibody levels and protection against first-time post-vaccination infection and reinfection with SARS-CoV-2 from December 2021 to January 2023. All participants submitted weekly nasal swabs for rRT-PCR testing and blood samples quarterly and following infection or vaccination. Cases of first-time post-vaccination infection following a third dose of monovalent (origin strain WA-1) mRNA vaccine (n = 613) and reinfection (n = 350) were 1:1 matched to controls based on timing of blood draw and other potential confounders. Conditional logistic regression models were fit to estimate infection risk reductions associated with 3-fold increases in end titers for receptor binding domain (RBD). In first-time post-vaccination and reinfection study samples, most were female (67%, 57%), non-Hispanic (82%, 68%), and without chronic conditions (65%, 65%). The odds of first-time post-vaccination infection were reduced by 21% (aOR = 0.79, 95% CI = [0.66-0.96]) for each 3-fold increase in RBD end titers. The odds of reinfection associated with a 3-fold increase in RBD end titers were reduced by 23% (aOR = 0.77, 95% CI = [0.65-0.92] for unvaccinated individuals and 58% (aOR = 0.42, 95% CI = [0.22-0.84]) for individuals with three mRNA vaccine doses following their first infection. Frontline workers with higher antibody levels following a third dose of mRNA COVID-19 vaccine were at reduced risk of SARS-CoV-2 during Omicron predominance. Among those with previous infections, the point estimates of risk reduction associated with antibody levels was greater for those with three vaccine doses compared to those who were unvaccinated. |
Promising results of HIV prevention trials highlight the benefits of collaboration in global health: The perspective of the Forum HIV Recency Assay Working Group
Schaefer R , Donaldson L , Leus M , Osakwe CE , Chimukangara B , Dalal S , Duerr A , Gao F , Glidden DV , Grinsztejn B , Justman J , Kumwenda G , Laeyendecker O , Lee HY , Maldarelli F , Mayer KH , Murray J , Parekh BS , Rice B , Robertson MN , Saito S , Vannappagari V , Warren M , Zeballos D , Zinserling J , Miller V . PLOS Glob Public Health 2024 4 (10) e0003878 ![]() |
Factors associated with venous thromboembolism pharmacoprophylaxis initiation in hospitalized medical patients: The Medical Inpatients Thrombosis and Hemostasis (MITH) Study
Repp AB , Sparks AD , Wilkinson K , Roetker NS , Schaefer JK , Li A , McClure LA , Terrell DR , Ferraris A , Adamski A , Smith NL , Zakai NA . J Thromb Haemost 2024 BACKGROUND: Although guidelines recommend risk assessment for hospital-acquired venous thromboembolism (HA-VTE) to inform prophylaxis decisions, studies demonstrate inappropriate utilization of pharmacoprophylaxis in hospitalized medical patients. Predictors of pharmacoprophylaxis initiation in medical inpatients remain largely unknown. OBJECTIVE: To determine factors associated with HA-VTE pharmacoprophylaxis initiation in adults hospitalized on medical services. DESIGN: Cohort study using electronic health record data from adult patients hospitalized on medical services at four academic medical centers between 2016 and 2019. PARTICIPANTS: Among 111,550 admissions not on intermediate or full-dose anticoagulation, 48,520 (43.5%) received HA-VTE pharmacoprophylaxis on the day of or the day after admission. MAIN MEASURES: Candidate predictors of HA-VTE pharmacoprophylaxis initiation, including known HA-VTE risk factors, predicted HA-VTE risk, and bleeding diagnoses present on admission. KEY RESULTS: After adjustment for age, sex, race/ethnicity, and study site, the strongest clinical predictors of HA-VTE pharmacoprophylaxis initiation were malnutrition and chronic obstructive pulmonary disease. Thrombocytopenia and history of gastrointestinal bleeding were associated with decreased odds of HA-VTE pharmacoprophylaxis initiation. Patients in the highest two tertiles of predicted HA-VTE risk were less likely to receive HA-VTE pharmacoprophylaxis than patients in the lowest (1(st)) tertile (OR 0.84, 95% CI [0.81, 0.86] for 2(nd) tertile, OR 0.95, 95% CI [0.92, 0.98] for 3(rd) tertile). CONCLUSIONS: Among patients not already receiving anticoagulants, HA-VTE pharmacoprophylaxis initiation during the first two hospital days was lower in patients with higher predicted HA-VTE risk and those with risk factors for bleeding. Reasons for not initiating pharmacoprophylaxis in those with higher predicted risk could not be assessed. |
In silico approaches in organ toxicity hazard assessment: Current status and future needs for predicting heart, kidney and lung toxicities
Bassan A , Alves VM , Amberg A , Anger LT , Beilke L , Bender A , Bernal A , Cronin MTD , Hsieh JH , Johnson C , Kemper R , Mumtaz M , Neilson L , Pavan M , Pointon A , Pletz J , Ruiz P , Russo DP , Sabnis Y , Sandhu R , Schaefer M , Stavitskaya L , Szabo DT , Valentin JP , Woolley D , Zwickl C , Myatt GJ . Comput Toxicol 12/28/2021 20 The kidneys, heart and lungs are vital organ systems evaluated as part of acute or chronic toxicity assessments. New methodologies are being developed to predict these adverse effects based on in vitro and in silico approaches. This paper reviews the current state of the art in predicting these organ toxicities. It outlines the biological basis, processes and endpoints for kidney toxicity, pulmonary toxicity, respiratory irritation and sensitization as well as functional and structural cardiac toxicities. The review also covers current experimental approaches, including off-target panels from secondary pharmacology batteries. Current in silico approaches for prediction of these effects and mechanisms are described as well as obstacles to the use of in silico methods. Ultimately, a commonly accepted protocol for performing such assessment would be a valuable resource to expand the use of such approaches across different regulatory and industrial applications. However, a number of factors impede their widespread deployment including a lack of a comprehensive mechanistic understanding, limited in vitro testing approaches and limited in vivo databases suitable for modeling, a limited understanding of how to incorporate absorption, distribution, metabolism, and excretion (ADME) considerations into the overall process, a lack of in silico models designed to predict a safe dose and an accepted framework for organizing the key characteristics of these organ toxicants. |
Development and validation of a risk model for hospital-acquired venous thrombosis: The Medical Inpatients Thrombosis and Hemostasis (MITH) Study
Zakai NA , Wilkinson K , Sparks AD , Packer RT , Koh I , Roetker NS , Repp AB , Thomas R , Holmes CE , Cushman M , Plante TB , Al-Samkari H , Pishko AM , Wood WA , Masias C , Gangaraju R , Li A , Garcia D , Wiggins KL , Schaefer JK , Hooper C , Smith NL , McClure LA . J Thromb Haemost 2023 ![]() BACKGROUND: Regulatory organizations recommend assessing hospital-acquired (HA) venous thromboembolism (VTE) risk for medical inpatients. OBJECTIVES: To develop and validate a risk assessment model (RAM) for HA-VTE in medical inpatients using objective and assessable risk factors knowable at admission. PATIENTS/METHODS: The development cohort included people admitted to medical services at the University of Vermont Medical Center (Burlington, VT, USA) between 2010-19 and the validation cohorts people admitted to Hennepin County Medical Center (Minneapolis, MN, USA), University of Michigan Medical Center (Ann Arbor, MI, USA), and Harris Health Systems (Houston, TX, USA). Individuals with VTE at admission, <18-years old, and admitted for <1 midnight were excluded. We used a Bayesian penalized regression technique to selected candidate HA-VTE risk factors for final inclusion in the RAM. RESULTS: The development cohort included 60,633 admissions and 227 HA-VTE and the validation cohorts 111,269 admissions and 651 HA-VTE. Seven HA-VTE risk factors with t-statistics ≥1.5 were included in the RAM: prior history of VTE, low hemoglobin, elevated creatinine, active cancer, hyponatremia, elevated red cell distribution width, and malnutrition. The AUC and calibration slope were 0.72 and 1.10. The AUC and calibration slopes were 0.70 and 0.93 at Hennepin County Medical Center, 0.70 and 0.87 at the University of Michigan Medical Center, and 0.71 and 1.00 at Harris Health Systems. The RAM performed well stratified by age, sex, and race. CONCLUSIONS: We developed and validated a RAM for HA-VTE in medical inpatients. By quantifying risk, clinicians can determine the potential benefits of measures to reduce HA-VTE. |
Serum per- and polyfluoroalkyl substance concentrations and longitudinal change in post-infection and post-vaccination SARS-CoV-2 antibodies
Hollister J , Caban-Martinez AJ , Ellingson KD , Beitel S , Fowlkes AL , Lutrick K , Tyner H , Naleway AL , Yoon SK , Gaglani M , Hunt D , Meece J , Mayo Lamberte J , Schaefer Solle N , Rose S , Dunnigan K , Khan SM , Kuntz JL , Fisher JM , Coleman A , Britton A , Thiese M , Hegmann K , Pavuk M , Ramadan F , Fuller S , Nematollahi A , Sprissler R , Burgess JL . Environ Res 2023 239 117297 Per- and polyfluoroalkyl substances (PFAS) are ubiquitous throughout the United States. Previous studies have shown PFAS exposure to be associated with a reduced immune response. However, the relationship between serum PFAS and antibody levels following SARS-CoV-2 infection or COVID-19 vaccination has not been examined. We examined differences in peak immune response and the longitudinal decline of antibodies following SARS-CoV-2 infection and COVID-19 vaccination by serum PFAS levels in a cohort of essential workers in the United States. We measured serum antibodies using an in-house semi-quantitative enzyme-linked immunosorbent assay (ELISA). Two cohorts contributed blood samples following SARS-CoV-2 infection or COVID-19 vaccination. We used linear mixed regression models, adjusting for age, race/ethnicity, gender, presence of chronic conditions, location, and occupation, to estimate differences in immune response with respect to serum PFAS levels. Our study populations included 153 unvaccinated participants that contributed 316 blood draws over a 14-month period following infection, and 860 participants and 2451 blood draws over a 12-month period following vaccination. Higher perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) concentrations were associated with a lower peak antibody response after infection (p = 0.009, 0.031, 0.015). Higher PFOS, perfluorooctanoic acid (PFOA), PFHxS, and PFNA concentrations were associated with slower declines in antibodies over time after infection (p = 0.003, 0.014, 0.026, 0.025). PFOA, PFOS, PFHxS, and PFNA serum concentrations prior to vaccination were not associated with differences in peak antibody response after vaccination or with differences in decline of antibodies over time after vaccination. These results suggest that elevated PFAS may impede potential immune response to SARS-CoV-2 infection by blunting peak antibody levels following infection; the same finding was not observed for immune response to vaccination. |
Neutralizing Antibody Response to Pseudotype SARS-CoV-2 Differs between mRNA-1273 and BNT162b2 COVID-19 Vaccines and by History of SARS-CoV-2 Infection (preprint)
Tyner HL , Burgess JL , Grant L , Gaglani M , Kuntz JL , Naleway AL , Thornburg NJ , Caban-Martinez AJ , Yoon SK , Herring MK , Beitel SC , Blanton L , Nikolich-Zugich J , Thiese MS , Pleasants JF , Fowlkes AL , Lutrick K , Dunnigan K , Yoo YM , Rose S , Groom H , Meece J , Wesley MG , Schaefer-Solle N , Louzado-Feliciano P , Edwards LJ , Olsho LEW , Thompson MG . medRxiv 2021 2021.10.20.21265171 Background Data on the development of neutralizing antibodies against SARS-CoV-2 after SARS-CoV-2 infection and after vaccination with messenger RNA (mRNA) COVID-19 vaccines are limited.Methods From a prospective cohort of 3,975 adult essential and frontline workers tested weekly from August, 2020 to March, 2021 for SARS-CoV-2 infection by Reverse Transcription- Polymerase Chain Reaction (RT-PCR) assay irrespective of symptoms, 497 participants had sera drawn after infection (170), vaccination (327), and after both infection and vaccination (50 from the infection population). Serum was collected after infection and each vaccine dose. Serum- neutralizing antibody titers against USA-WA1/2020-spike pseudotype virus were determined by the 50% inhibitory dilution. Geometric mean titers (GMTs) and corresponding fold increases were calculated using t-tests and linear mixed effects models.Results Among 170 unvaccinated participants with SARS-CoV-2 infection, 158 (93%) developed neutralizing antibodies (nAb) with a GMT of 1,003 (95% CI=766-1,315). Among 139 previously uninfected participants, 138 (99%) developed nAb after mRNA vaccine dose-2 with a GMT of 3,257 (95% CI = 2,596-4,052). GMT was higher among those receiving mRNA-1273 vaccine (GMT =4,698, 95%CI= 3,186-6,926) compared to BNT162b2 vaccine (GMT=2,309, 95%CI=1,825-2,919). Among 32 participants with prior SARS-CoV-2 infection, GMT was 21,655 (95%CI=14,766-31,756) after mRNA vaccine dose-1, without further increase after dose- 2.Conclusions A single dose of mRNA vaccine after SARS-CoV-2 infection resulted in the highest observed nAb response. Two doses of mRNA vaccine in previously uninfected participants resulted in higher nAb to SARS-CoV-2 than after one dose of vaccine or SARS- CoV-2 infection alone. Neutralizing antibody response also differed by mRNA vaccine product.Main Point Summary One dose of mRNA COVID-19 vaccine after previous SARS-CoV-2 infection produced the highest neutralizing antibody titers; among those without history of infection, two doses of mRNA vaccine produced the most robust response.Competing Interest StatementAllison Naleway receives research funding from Pfizer and Vir Biotechnology and Jennifer Kuntz receives research funding from Pfizer, Novartis, and Vir Biotechnology for unrelated studies. All other authors: No conflicts. Funding StatementThis work was supported by the Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases [contracts 75D30120R68013 to Marshfield Clinic Research Institute, 75D30120C08379 to the University of Arizona, and 75D30120C08150 to Abt Associates].Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study is governed by Centers for Disease Control and Prevention IRB review board and gave ethical approval for this work.I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAll data produced in the pres nt work are contained in the manuscript |
Prevention and Attenuation of COVID-19 by BNT162b2 and mRNA-1273 Vaccines (preprint)
Thompson MG , Burgess JL , Naleway AL , Tyner H , Yoon SK , Meece J , Olsho LEW , Caban-Martinez AJ , Fowlkes AL , Lutrick K , Groom HC , Dunnigan K , Odean MJ , Hegmann K , Stefanski E , Edwards LJ , Schaefer-Solle N , Grant L , Ellingson K , Kuntz JL , Zunie T , Thiese MS , Ivacic L , Wesley MG , Mayo Lamberte J , Sun X , Smith ME , Phillips AL , Groover KD , Yoo YM , Gerald J , Brown RT , Herring MK , Joseph G , Beitel S , Morrill TC , Mak J , Rivers P , Poe BP , Lynch B , Zhou Y , Zhang J , Kelleher A , Li Y , Dickerson M , Hanson E , Guenther K , Tong S , Bateman A , Reisdorf E , Barnes J , Azziz-Baumgartner E , Hunt DR , Arvay ML , Kutty P , Fry AM , Gaglani M . medRxiv 2021 2021.06.01.21257987 BACKGROUND Information is limited on messenger RNA (mRNA) BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccine effectiveness (VE) in preventing SARS-CoV-2 infection or attenuating disease when administered in real-world conditions.METHODS Prospective cohorts of 3,975 healthcare personnel, first responders, and other essential and frontline workers completed weekly SARS-CoV-2 testing during December 14 2020—April 10 2021. Self-collected mid-turbinate nasal swabs were tested by qualitative and quantitative reverse-transcription–polymerase-chain-reaction (RT-PCR). VE was calculated as 100%×(1−hazard ratio); adjusted VE was calculated using vaccination propensity weights and adjustments for site, occupation, and local virus circulation.RESULTS SARS-CoV-2 was detected in 204 (5.1%) participants; 16 were partially (≥14 days post-dose-1 to 13 days after dose-2) or fully (≥14 days post-dose-2) vaccinated, and 156 were unvaccinated; 32 with indeterminate status (<14 days after dose-1) were excluded. Adjusted mRNA VE of full vaccination was 91% (95% confidence interval [CI]=76%–97%) against symptomatic or asymptomatic SARS-CoV-2 infection; VE of partial vaccination was 81% (95% CI=64%-90%). Among partially or fully vaccinated participants with SARS-CoV-2 infection, mean viral RNA load (Log10 copies/mL) was 40% lower (95% CI=16%-57%), the risk of self-reported febrile COVID-19 was 58% lower (Risk Ratio=0.42, 95% CI=0.18-0.98), and 2.3 fewer days (95% CI=0.8-3.7) were spent sick in bed compared to unvaccinated infected participants.CONCLUSIONS Authorized mRNA vaccines were highly effective among working-age adults in preventing SARS-CoV-2 infections when administered in real-world conditions and attenuated viral RNA load, febrile symptoms, and illness duration among those with breakthrough infection despite vaccination.Competing Interest StatementAllison L. Naleway reported funding from Pfizer for a meningococcal B vaccine study unrelated to the submitted work. Kurt T. Hegmann serves at the Editor of the American College of Occupational and Environmental Medicine evidence-based practice guidelines. Matthew S. These reported grants and personal fees from Reed Group and the American College of Occupational and Environmental Medicine, outside the submitted work. Other authors have reported no conflicts of interest.Funding StatementFunding provided in whole or in part by federal funds from the National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention under contract numbers 75D30120R68013 awarded to Marshfield Clinic Research Laboratory, 75D30120C08379 to University of Arizona, and 75D30120C08150 awarded to Abt Associates, Inc.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:This study was reviewed and approved by the University of Arizona IRB as the single IRB for this studyAll necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesSummary data will be available once all study objectives are met. |
High Burden of COVID-19 among Unvaccinated Law Enforcement Officers and Firefighters (preprint)
Caban-Martinez AJ , Gaglani M , Olsho LEW , Grant L , Schaefer-Solle N , Louzado-Feliciano P , Tyner HL , Yoon SK , Naleway AL , Smith M , Sokol BE , Lutrick K , Fowlkes AL , Meece J , Noriega R , Odean M , Phillips AL , Groom HC , Murthy K , Edwards LJ , Ellingson KD , Yoo YM , Cruz A , Respet K , Thiese MS , Kuntz JL , Rose S , Hadden LS , Gerald JK , Mak J , Gallimore-Wilson D , Lundgren J , Hegmann KT , Dunnigan K , Wesley MG , Bedrick EJ , Lamberte JM , Jones JM , Hunt A , Bruner MM , Groover K , Kutty PK , Testoff AC , LeClair LB , Etolue JM , Thompson MG , Burgess JL . medRxiv 2021 26 Law Enforcement Officers (LEOs), firefighters, and other first responders are at increased risk of SARS-CoV-2 infection compared to healthcare personnel but have relatively low COVID-19 vaccine uptake. Resistance to COVID-19 vaccine mandates among first responders has the potential to disrupt essential public services and threaten public health and safety. Using data from the HEROES-RECOVER prospective cohorts, we report on the increased illness burden of COVID-19 among unvaccinated first responders. From January to September 2021, first responders contributed to weekly active surveillance for COVID-19-like illness (CLI). Self-collected respiratory specimens collected weekly, irrespective of symptoms, and at the onset CLI were tested by Reverse Transcription Polymerase Chain Reaction (RT-PCR) assay for SARSCoV-2. Among 1415 first responders, 17% were LEOs, 68% firefighters, and 15% had other first responder occupations. Unvaccinated (41%) compared to fully vaccinated (59%) first responders were less likely to believe COVID-19 vaccines are very or extremely effective (17% versus 54%) or very or extremely safe (15% versus 54%). From January through September 2021, among unvaccinated LEOs, the incidence of COVID-19 was 11.9 per 1,000 person-weeks (95%CI=7.0-20.1) compared to only 0.6 (95%CI=0.2-2.5) among vaccinated LEOs. Incidence of COVID-19 was also higher among unvaccinated firefighters (9.0 per 1,000 person-weeks; 95%CI=6.4-12.7) compared to those vaccinated (1.8 per 1,000; 95%CI=1.1-2.8). Once they had laboratory-confirmed COVID-19, unvaccinated first responders were sick for a mean+/-SD of 14.7+/-21.7 days and missed a mean of 38.0+/-46.0 hours of work. These findings suggest that state and local governments with large numbers of unvaccinated first responders may face major disruptions in their workforce due to COVID-19 illness. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. |
Self-Reported Mask Use among Persons with or without SARS CoV-2 Vaccination -United States, December 2020-August 2021 (preprint)
Calamari LE , Weintraub WS , Santos R , Gibbs M , Bertoni AG , Ward LM , Saydah S , Plumb ID , Runyon MS , Wierzba TF , Sanders JW , Herrington D , Espeland MA , Williamson J , Mongraw-Chaffin M , Bertoni A , Alexander-Miller MA , Castri P , Mathews A , Munawar I , Seals AL , Ostasiewski B , Ballard CAP , Gurcan M , Ivanov A , Zapata GM , Westcott M , Blinson K , Blinson L , Mistysyn M , Davis D , Doomy L , Henderson P , Jessup A , Lane K , Levine B , McCanless J , McDaniel S , Melius K , O'Neill C , Pack A , Rathee R , Rushing S , Sheets J , Soots S , Wall M , Wheeler S , White J , Wilkerson L , Wilson R , Wilson K , Burcombe D , Saylor G , Lunn M , Ordonez K , O'Steen A , Wagner L , McCurdy LH , Gibbs MA , Taylor YJ , Calamari L , Tapp H , Ahmed A , Brennan M , Munn L , Dantuluri KL , Hetherington T , Lu LC , Dunn C , Hogg M , Price A , Leonidas M , Manning M , Rossman W , Gohs FX , Harris A , Priem JS , Tochiki P , Wellinsky N , Silva C , Ludden T , Hernandez J , Spencer K , McAlister L , Weintraub W , Miller K , Washington C , Moses A , Dolman S , Zelaya-Portillo J , Erkus J , Blumenthal J , Romero Barrientos RE , Bennett S , Shah S , Mathur S , Boxley C , Kolm P , Franklin E , Ahmed N , Larsen M , Oberhelman R , Keating J , Kissinger P , Schieffelin J , Yukich J , Beron A , Teigen J , Kotloff K , Chen WH , Friedman-Klabanoff D , Berry AA , Powell H , Roane L , Datar R , Correa A , Navalkele B , Min YI , Castillo A , Ward L , Santos RP , Anugu P , Gao Y , Green J , Sandlin R , Moore D , Drake L , Horton D , Johnson KL , Stover M , Lagarde WH , Daniel L , Maguire PD , Hanlon CL , McFayden L , Rigo I , Hines K , Smith L , Harris M , Lissor B , Cook V , Eversole M , Herrin T , Murphy D , Kinney L , Diehl P , Abromitis N , Pierre TSt , Heckman B , Evans D , March J , Whitlock B , Moore W , Arthur S , Conway J , Gallaher TR , Johanson M , Brown S , Dixon T , Reavis M , Henderson S , Zimmer M , Oliver D , Jackson K , Menon M , Bishop B , Roeth R , King-Thiele R , Hamrick TS , Ihmeidan A , Hinkelman A , Okafor C , Bray Brown RB , Brewster A , Bouyi D , Lamont K , Yoshinaga K , Vinod P , Peela AS , Denbel G , Lo J , Mayet-Khan M , Mittal A , Motwani R , Raafat M , Schultz E , Joseph A , Parkeh A , Patel D , Afridi B , Uschner D , Edelstein SL , Santacatterina M , Strylewicz G , Burke B , Gunaratne M , Turney M , Zhou SQ , Tjaden AH , Fette L , Buahin A , Bott M , Graziani S , Soni A , Mores C , Porzucek A , Laborde R , Acharya P , Guill L , Lamphier D , Schaefer A , Satterwhite WM , McKeague A , Ward J , Naranjo DP , Darko N , Castellon K , Brink R , Shehzad H , Kuprianov D , McGlasson D , Hayes D , Edwards S , Daphnis S , Todd B , Goodwin A , Berkelman R , Hanson K , Zeger S , Hopkins J , Reilly C , Edwards K , Gayle H , Redd S . medRxiv 2022 10 Wearing a facemask can help to decrease the transmission of COVID-19. We investigated self-reported mask use among subjects aged 18 years and older participating in the COVID-19 Community Research Partnership (CRP), a prospective longitudinal COVID-19 surveillance study in the mid-Atlantic and southeastern United States. We included those participants who completed >=5 daily surveys each month from December 1, 2020 through August 31, 2021. Mask use was defined as self-reported use of a face mask or face covering on every interaction with others outside the household within a distance of less than 6 feet. Participants were considered vaccinated if they reported receiving >=1 COVID-19 vaccine dose. Participants (n=17,522) were 91% non-Hispanic White, 68% female, median age 57 years, 26% healthcare workers, with 95% self-reported receiving >=1 COVID-19 vaccine dose through August; mean daily survey response was 85%. Mask use was higher among vaccinated than unvaccinated participants across the study period, regardless of the month of the first dose. Mask use remained relatively stable from December 2020 through April (range 71-80% unvaccinated; 86-93% vaccinated) and declined in both groups beginning in mid-May 2021 to 34% and 42% respectively in June 2021; mask use has increased again since July 2021. Mask use by all was lower during weekends and on Christmas and Easter, regardless of vaccination status. Independent predictors of higher mask use were vaccination, age >=65 years, female sex, racial or ethnic minority group, and healthcare worker occupation, whereas a history of self-reported prior COVID-19 illness was associated with lower use. Copyright The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. |
Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers - Eight U.S. Locations, December 2020-March 2021.
Thompson MG , Burgess JL , Naleway AL , Tyner HL , Yoon SK , Meece J , Olsho LEW , Caban-Martinez AJ , Fowlkes A , Lutrick K , Kuntz JL , Dunnigan K , Odean MJ , Hegmann KT , Stefanski E , Edwards LJ , Schaefer-Solle N , Grant L , Ellingson K , Groom HC , Zunie T , Thiese MS , Ivacic L , Wesley MG , Lamberte JM , Sun X , Smith ME , Phillips AL , Groover KD , Yoo YM , Gerald J , Brown RT , Herring MK , Joseph G , Beitel S , Morrill TC , Mak J , Rivers P , Harris KM , Hunt DR , Arvay ML , Kutty P , Fry AM , Gaglani M . MMWR Morb Mortal Wkly Rep 2021 70 (13) 495-500 Messenger RNA (mRNA) BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccines have been shown to be effective in preventing symptomatic COVID-19 in randomized placebo-controlled Phase III trials (1,2); however, the benefits of these vaccines for preventing asymptomatic and symptomatic SARS-CoV-2 (the virus that causes COVID-19) infection, particularly when administered in real-world conditions, is less well understood. Using prospective cohorts of health care personnel, first responders, and other essential and frontline workers* in eight U.S. locations during December 14, 2020-March 13, 2021, CDC routinely tested for SARS-CoV-2 infections every week regardless of symptom status and at the onset of symptoms consistent with COVID-19-associated illness. Among 3,950 participants with no previous laboratory documentation of SARS-CoV-2 infection, 2,479 (62.8%) received both recommended mRNA doses and 477 (12.1%) received only one dose of mRNA vaccine.(†) Among unvaccinated participants, 1.38 SARS-CoV-2 infections were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) per 1,000 person-days.(§) In contrast, among fully immunized (≥14 days after second dose) persons, 0.04 infections per 1,000 person-days were reported, and among partially immunized (≥14 days after first dose and before second dose) persons, 0.19 infections per 1,000 person-days were reported. Estimated mRNA vaccine effectiveness for prevention of infection, adjusted for study site, was 90% for full immunization and 80% for partial immunization. These findings indicate that authorized mRNA COVID-19 vaccines are effective for preventing SARS-CoV-2 infection, regardless of symptom status, among working-age adults in real-world conditions. COVID-19 vaccination is recommended for all eligible persons. |
In silico approaches in organ toxicity hazard assessment: current status and future needs in predicting liver toxicity.
Bassan A , Alves VM , Amberg A , Anger LT , Auerbach S , Beilke L , Bender A , Cronin MTD , Cross KP , Hsieh JH , Greene N , Kemper R , Kim MT , Mumtaz M , Noeske T , Pavan M , Pletz J , Russo DP , Sabnis Y , Schaefer M , Szabo DT , Valentin JP , Wichard J , Williams D , Woolley D , Zwickl C , Myatt GJ . Comput Toxicol 2021 20 ![]() Hepatotoxicity is one of the most frequently observed adverse effects resulting from exposure to a xenobiotic. For example, in pharmaceutical research and development it is one of the major reasons for drug withdrawals, clinical failures, and discontinuation of drug candidates. The development of faster and cheaper methods to assess hepatotoxicity that are both more sustainable and more informative is critically needed. The biological mechanisms and processes underpinning hepatotoxicity are summarized and experimental approaches to support the prediction of hepatotoxicity are described, including toxicokinetic considerations. The paper describes the increasingly important role of in silico approaches and highlights challenges to the adoption of these methods including the lack of a commonly agreed upon protocol for performing such an assessment and the need for in silico solutions that take dose into consideration. A proposed framework for the integration of in silico and experimental information is provided along with a case study describing how computational methods have been used to successfully respond to a regulatory question concerning non-genotoxic impurities in chemically synthesized pharmaceuticals. |
Predicted effects of the introduction of long-acting injectable cabotegravir pre-exposure prophylaxis in sub-Saharan Africa: a modelling study
Smith J , Bansi-Matharu L , Cambiano V , Dimitrov D , Bershteyn A , van de Vijver D , Kripke K , Revill P , Boily MC , Meyer-Rath G , Taramusi I , Lundgren JD , van Oosterhout JJ , Kuritzkes D , Schaefer R , Siedner MJ , Schapiro J , Delany-Moretlwe S , Landovitz RJ , Flexner C , Jordan M , Venter F , Radebe M , Ripin D , Jenkins S , Resar D , Amole C , Shahmanesh M , Gupta RK , Raizes E , Johnson C , Inzaule S , Shafer R , Warren M , Stansfield S , Paredes R , Phillips AN . Lancet HIV 2023 10 (4) e254-e265 BACKGROUND: Long-acting injectable cabotegravir pre-exposure prophylaxis (PrEP) is recommended by WHO as an additional option for HIV prevention in sub-Saharan Africa, but there is concern that its introduction could lead to an increase in integrase-inhibitor resistance undermining treatment programmes that rely on dolutegravir. We aimed to project the health benefits and risks of cabotegravir-PrEP introduction in settings in sub-Saharan Africa. METHODS: With HIV Synthesis, an individual-based HIV model, we simulated 1000 setting-scenarios reflecting both variability and uncertainty about HIV epidemics in sub-Saharan Africa and compared outcomes for each with and without cabotegravir-PrEP introduction. PrEP use is assumed to be risk-informed and to be used only in 3-month periods (the time step for the model) when having condomless sex. We consider three groups at risk of integrase-inhibitor resistance emergence: people who start cabotegravir-PrEP after (unknowingly) being infected with HIV, those who seroconvert while on PrEP, and those with HIV who have residual cabotegravir drugs concentrations during the early tail period after recently stopping PrEP. We projected the outcomes of policies of cabotegravir-PrEP introduction and of no introduction in 2022 across 50 years. In 50% of setting-scenarios we considered that more sensitive nucleic-acid-based HIV diagnostic testing (NAT), rather than regular antibody-based HIV rapid testing, might be used to reduce resistance risk. For cost-effectiveness analysis we assumed in our base case a cost of cabotegravir-PrEP drug to be similar to oral PrEP, resulting in a total annual cost of USD$144 per year ($114 per year and $264 per year considered in sensitivity analyses), a cost-effectiveness threshold of $500 per disability-adjusted life years averted, and a discount rate of 3% per year. FINDINGS: Reflecting our assumptions on the appeal of cabotegravir-PrEP, its introduction is predicted to lead to a substantial increase in PrEP use with approximately 2·6% of the adult population (and 46% of those with a current indication for PrEP) receiving PrEP compared with 1·5% (28%) without cabotegravir-PrEP introduction across 20 years. As a result, HIV incidence is expected to be lower by 29% (90% range across setting-scenarios 6-52%) across the same period compared with no introduction of cabotegravir-PrEP. In people initiating antiretroviral therapy, the proportion with integrase-inhibitor resistance after 20 years is projected to be 1·7% (0-6·4%) without cabotegravir-PrEP introduction but 13·1% (4·1-30·9%) with. Cabotegravir-PrEP introduction is predicted to lower the proportion of all people on antiretroviral therapy with viral loads less than 1000 copies per mL by 0·9% (-2·5% to 0·3%) at 20 years. For an adult population of 10 million an overall decrease in number of AIDS deaths of about 4540 per year (-13 000 to -300) across 50 years is predicted, with little discernible benefit with NAT when compared with standard antibody-based rapid testing. AIDS deaths are predicted to be averted with cabotegravir-PrEP introduction in 99% of setting-scenarios. Across the 50-year time horizon, overall HIV programme costs are predicted to be similar regardless of whether cabotegravir-PrEP is introduced (total mean discounted annual HIV programme costs per year across 50 years is $151·3 million vs $150·7 million), assuming the use of standard antibody testing. With antibody-based rapid HIV testing, the introduction of cabotegravir-PrEP is predicted to be cost-effective under an assumed threshold of $500 per disability-adjusted life year averted in 82% of setting-scenarios at the cost of $144 per year, in 52% at $264, and in 87% at $114. INTERPRETATION: Despite leading to increases in integrase-inhibitor drug resistance, cabotegravir-PrEP introduction is likely to reduce AIDS deaths in addition to HIV incidence. Long-acting cabotegravir-PrEP is predicted to be cost-effective if delivered at similar cost to oral PrEP with antibody-based rapid HIV testing. FUNDING: Bill & Melinda Gates Foundation, National Institute of Allergy and Infectious Diseases of the National Institutes of Health. |
SARS-CoV-2 infection history and antibody response to three COVID-19 mRNA vaccine doses.
Herring MK , Romine JK , Wesley MG , Ellingson KD , Yoon SK , Caban-Martinez AJ , Meece J , Gaglani M , Grant L , Olsho LEW , Tyner HL , Naleway AL , Khan SM , Phillips AL , Schaefer Solle N , Rose S , Mak J , Fuller SB , Hunt A , Kuntz JL , Beitel S , Yoo YM , Zheng PQ , Arani G , Mayo Lamberte J , Edwards T , Thompson MG , Sprissler R , Thornburg NJ , Lowe AA , Pilishvili T , Uhrlaub JL , Lutrick K , Burgess JL , Fowlkes AL . Clin Infect Dis 2022 76 (10) 1822-1831 ![]() ![]() BACKGROUND: Three doses of coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccines produce robust antibody responses, but data are limited among individuals previously infected with SARS-CoV-2. From a cohort of health care personnel (75.5%), first responders (4.6%), and other frontline workers (19.8%) in 6 US states, we longitudinally assessed antibody waning after dose-2, and response to dose-3, according to SARS-CoV-2 infection history. METHODS: Participants submitted sera every three months, after SARS-CoV-2 infection, and after each COVID-19 vaccine dose. Sera were tested for antibodies and reported quantitatively as area under the serial dilution curve (AUC). Changes in the AUC values over time were compared as fold-changes using a linear mixed model. RESULTS: Analysis included 388 participants who received dose-3 by November 2021. Three comparison groups: (1) vaccine only with no known prior SARS-CoV-2 infection (n = 224); (2) infection prior to dose-1 (n = 123); and (3) infection after dose 2 and before dose-3 (n = 41). The interval from dose 2 and dose 3 was approximately 8-months. After dose-3, antibody levels rose 2.5-fold (95%CI = 2.2-3.0) in group 2, and 2.9-fold (95%CI = 2.6-3.3) in group 1. Those infected within 90 days before dose-3 (and median 233 days (IQR = 213-246) after dose-2) did not increase significantly after dose-3. CONCLUSIONS: A third dose of mRNA vaccine typically elicited a robust humoral immune response among those with primary vaccination regardless of SARS-CoV-2 infection >3 months prior to boosting. Those with infection < 3 months prior to boosting did not have a significant increase in antibody concentrations in response to a booster. |
Measurement of microcystin activity in human plasma using immunocapture and protein phosphatase inhibition assay
Cunningham BR , Wharton RE , Lee C , Mojica MA , Krajewski LC , Gordon SC , Schaefer AM , Johnson RC , Hamelin EI . Toxins (Basel) 2022 14 (11) Microcystins are toxic chemicals generated by certain freshwater cyanobacteria. These chemicals can accumulate to dangerous levels during harmful algal blooms. When exposed to microcystins, humans are at risk of hepatic injury, including liver failure. Here, we describe a method to detect microcystins in human plasma by using immunocapture followed by a protein phosphatase inhibition assay. At least 279 microcystins have been identified, and most of these compounds share a common amino acid, the Adda side chain. We targeted this Adda side chain using a commercial antibody and extracted microcystins from human samples for screening and analysis. To quantitate the extracted microcystins, we fortified plasma with microcystin-LR, one of the most well-studied, commonly detected, and toxic microcystin congeners. The quantitation range for the detection of microcystin in human plasma using this method is 0.030-0.50 ng/mL microcystin-LR equivalents. This method detects unconjugated and conjugated forms (cysteine and glutathione) of microcystins. Quality control sample accuracies varied between 98.9% and 114%, with a precision of 7.18-15.8%. Finally, we evaluated plasma samples from a community health surveillance project of Florida residents living or working near harmful algae blooms. |
Serum per- and polyfluoroalkyl substance concentrations in four municipal US fire departments
Burgess JL , Fisher JM , Nematollahi A , Jung AM , Calkins MM , Graber JM , Grant CC , Beitel SC , Littau SR , Gulotta JJ , Wallentine DD , Hughes RJ , Popp C , Calafat AM , Botelho JC , Coleman AD , Schaefer-Solle N , Louzado-Feliciano P , Oduwole SO , Caban-Martinez AJ . Am J Ind Med 2022 66 (5) 411-423 BACKGROUND: Firefighters have occupational and environmental exposures to per- and polyfluoroalkyl substances (PFAS). The goal of this study was to compare serum PFAS concentrations across multiple United States fire departments to National Health and Nutrition Examination Survey (NHANES) participants. METHODS: Nine serum PFAS were compared in 290 firefighters from four municipal fire departments (coded A-D) and three NHANES participants matched to each firefighter on sex, ethnicity, age, and PFAS collection year. Only Departments A and C had sufficient women study participants (25 and six, respectively) to compare with NHANES. RESULTS: In male firefighters compared with NHANES, geometric mean perfluorohexane sulfonate (PFHxS) was elevated in Departments A-C, sum of branched perfluoromethylheptane sulfonate isomers (Sm-PFOS) was elevated in all four departments, linear perfluorooctane sulfonate (n-PFOS) was elevated in Departments B and C, linear perfluorooctanoate (n-PFOA) was elevated in Departments B-D, and perfluorononanoate (PFNA) was elevated in Departments B-D, but lower in A. In male firefighters compared with NHANES, perfluoroundecanoate (PFUnDA) was more frequently detected in Departments B and D, and 2-(N-methyl-perfluorooctane sulfonamido) acetate (MeFOSAA) was less frequently detected in Departments B-D. In female firefighters compared with NHANES, PFHxS and Sm-PFOS concentrations were elevated in Departments A and C. Other PFAS concentrations were elevated and/or reduced in only one department or not significantly different from NHANES in any department. CONCLUSIONS: Serum PFHxS, Sm-PFOS, n-PFOS, n-PFOA, and PFNA concentrations were increased in at least two of four fire departments in comparison to NHANES. |
COVID-19 Vaccination Perspectives and Illnesses Among Law Enforcement Officers, Firefighters, and Other First Responders in the US, January to September 2021.
Caban-Martinez AJ , Gaglani M , Olsho LEW , Grant L , Schaefer-Solle N , Thompson MG , Burgess JL . JAMA Netw Open 2022 5 (7) e2222640 This cohort study assesses attitudes toward COVID-19 vaccination and illness burden among vaccinated and unvaccinated law enforcement officers, firefighters, and other first responders in the US. |
Detection and Stability of SARS-CoV-2 in Three Self-Collected Specimen Types: Flocked Midturbinate Swab (MTS) in Viral Transport Media, Foam MTS, and Saliva.
Veguilla V , Fowlkes AL , Bissonnette A , Beitel S , Gaglani M , Porucznik CA , Stockwell MS , Tyner HL , Naleway AL , Yoon SK , Caban-Martinez AJ , Wesley MG , Duque J , Jeddy Z , Stanford JB , Daugherty M , Dixon A , Burgess JL , Odean M , Groom HC , Phillips AL , Schaefer-Solle N , Mistry P , Rolfes MA , Thompson M , Dawood FS , Meece J . Microbiol Spectr 2022 10 (3) e0103322 ![]() Respiratory specimen collection materials shortages hampers severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. We compared specimen alternatives and evaluated SARS-CoV-2 RNA stability under simulated shipping conditions. We compared concordance of RT-PCR detection of SARS-CoV-2 from flocked midturbinate swabs (MTS) in viral transport media (VTM), foam MTS without VTM, and saliva. Specimens were collected between August 2020 and April 2021 from three prospective cohorts. We compared RT-PCR cycle quantification (C(q)) for Spike (S), Nucleocapsid (N), and the Open Reading Frame 1ab (ORF) genes for flocked MTS and saliva specimens tested before and after exposure to a range of storage temperatures (4-30C) and times (2, 3, and 7days). Of 1,900 illnesses with 2 specimen types tested, 335 (18%) had SARS-CoV-2 detected in 1 specimen; 304 (91%) were concordant across specimen types. Among illnesses with SARS-CoV-2 detection, 97% (95% confidence interval [CI]: 94-98%) were positive on flocked MTS, 99% (95% CI: 97-100%) on saliva, and 89% (95% CI: 84-93%) on foam MTS. SARS-CoV-2 RNA was detected in flocked MTS and saliva stored up to 30C for 7days. All specimen types provided highly concordant SARS-CoV-2 results. These findings support a range of viable options for specimen types, collection, and transport methods that may facilitate SARS-CoV-2 testing during supply and personnel shortages. IMPORTANCE Findings from this analysis indicate that (1) self-collection of flocked and foam MTS and saliva samples is feasible in both adults and children, (2) foam MTS with VTM and saliva are both viable and reasonable alternatives to traditional flocked MTS in VTM for SARS-CoV-2 detection, and (3) these sample types may be stored and transported at ambient temperatures for up to 7days without compromising sample quality. These findings support methods of sample collection for SARS-CoV-2 detection that may facilitate widespread community testing in the setting of supply and personnel shortages during the current pandemic. |
Pediatric Research Observing Trends and Exposures in COVID-19 Timelines (PROTECT): Protocol for a Multisite Longitudinal Cohort Study.
Burns J , Rivers P , LeClair LB , Jovel K , Rai RP , Lowe AA , Edwards LJ , Khan SM , Mathenge C , Ferraris M , Kuntz JL , Lamberte JM , Hegmann KT , Odean MJ , McLeland-Wieser H , Beitel S , Odame-Bamfo L , Schaefer Solle N , Mak J , Phillips AL , Sokol BE , Hollister J , Ochoa JS , Grant L , Thiese MS , Jacoby KB , Lutrick K , Pubillones FA , Yoo YM , Rentz Hunt D , Ellingson K , Berry MC , Gerald JK , Lopez J , Gerald L , Wesley MG , Krupp K , Herring MK , Madhivanan P , Caban-Martinez AJ , Tyner HL , Meece JK , Yoon SK , Fowlkes AL , Naleway AL , Gwynn L , Burgess JL , Thompson MG , Olsho LE , Gaglani M . JMIR Res Protoc 2022 11 (7) e37929 BACKGROUND: Assessing the real-world effectiveness of COVID-19 vaccines and understanding the incidence and severity of SARS-CoV-2 illness in children is essential to inform policy and guide healthcare professionals advising parents and caregivers of children who test positive for SARS-CoV-2. OBJECTIVE: This report describes the objectives and methods for conducting the Pediatric Research Observing Trends and Exposures in COVID-19 Timelines (PROTECT) study. PROTECT is a longitudinal prospective pediatric cohort study designed to estimate SARS-CoV-2 incidence and COVID-19 vaccine effectiveness (VE) against infection among children aged 6 months to 17 years as well as differences in SARS-CoV-2 infection and vaccine response between children and adolescents. METHODS: The PROTECT multisite network was initiated in July 2021 and aims to enroll approximately 2,305 children across four U.S. locations and collect data over a two-year surveillance period; the enrollment target was based on prospective power calculations and account for expected attrition and nonresponse. Study sites recruit parents and legal guardians (PLGs) of age-eligible children participating in the existing HEROES-RECOVER network as well as from surrounding communities. Child demographics, medical history, COVID-19 exposure, vaccination history, and PLGs' knowledge and attitudes about COVID-19 are collected at baseline and throughout the study. Mid-turbinate nasal specimens are self- or PLG-collected weekly, regardless of symptoms, for SARS-CoV-2 and influenza testing via reverse transcription-polymerase chain reaction (RT-PCR) assay, and the presence of COVID-like-illness (CLI) is reported. Children who test positive for SARS-CoV-2 or influenza or report CLI are monitored weekly by online surveys to report exposure and medical utilization until no longer ill. Children, with their PLG's permission, may elect to contribute blood at enrollment, following SARS-CoV-2 infection, following COVID-19 vaccination, and at the end of the study period. PROTECT uses electronic medical records (EMR) linkages where available and verifies COVID-19 and influenza vaccinations through EMR or state vaccine registries. RESULTS: Data collection began in July 2021 and is expected to continue through Spring 2023. As of 05/13/2022, 2,371 children are enrolled in PROTECT. Enrollment is ongoing at all study sites. CONCLUSIONS: As COVID-19 vaccine products are authorized for use in pediatric populations, PROTECT study data will provide real-world estimates of VE in preventing infection. In addition, this prospective cohort provides a unique opportunity to further understand SARS-CoV-2 incidence, clinical course, and key knowledge gaps that may inform public health. |
Remote Infection Control Assessments of US Nursing Homes During the COVID-19 Pandemic, April to June 2020.
Walters MS , Prestel C , Fike L , Shrivastwa N , Glowicz J , Benowitz I , Bulens S , Curren E , Dupont H , Marcenac P , Mahon G , Moorman A , Ogundimu A , Weil LM , Kuhar D , Cochran R , Schaefer M , Slifka KJ , Kallen A , Perz JF . J Am Med Dir Assoc 2022 23 (6) 909-916 e2 BACKGROUND: Nursing homes (NHs) provide care in a congregate setting for residents at high risk of severe outcomes from SARS-CoV-2 infection. In spring 2020, NHs were implementing new guidance to minimize SARS-CoV-2 spread among residents and staff. OBJECTIVE: To assess whether telephone and video-based infection control assessment and response (TeleICAR) strategies could efficiently assess NH preparedness and help resolve gaps. DESIGN: We incorporated Centers for Disease Control and Prevention COVID-19 guidance for NH into an assessment tool covering 6 domains: visitor restrictions; health care personnel COVID-19 training; resident education, monitoring, screening, and cohorting; personal protective equipment supply; core infection prevention and control (IPC); and communication to public health. We performed TeleICAR consultations on behalf of health departments. Adherence to each element was documented and recommendations provided to the facility. SETTING AND PARTICIPANTS: Health department-referred NHs that agreed to TeleICAR consultation. METHODS: We assessed overall numbers and proportions of NH that had not implemented each infection control element (gap) and proportion of NH that reported making ≥1 change in practice following the assessment. RESULTS: During April 13 to June 12, 2020, we completed TeleICAR consultations in 629 NHs across 19 states. Overall, 524 (83%) had ≥1 implementation gaps identified; the median number of gaps was 2 (interquartile range: 1-4). The domains with the greatest number of facilities with gaps were core IPC practices (428/625; 68%) and COVID-19 education, monitoring, screening, and cohorting of residents (291/620; 47%). CONCLUSIONS AND IMPLICATIONS: TeleICAR was an alternative to onsite infection control assessments that enabled public health to efficiently reach NHs across the United States early in the COVID-19 pandemic. Assessments identified widespread gaps in core IPC practices that put residents and staff at risk of infection. TeleICAR is an important strategy that leverages infection control expertise and can be useful in future efforts to improve NH IPC. |
Protection with a Third Dose of mRNA Vaccine against SARS-CoV-2 Variants in Frontline Workers.
Yoon SK , Hegmann KT , Thiese MS , Burgess JL , Ellingson K , Lutrick K , Olsho LEW , Edwards LJ , Sokol B , Caban-Martinez AJ , Schaefer-Solle N , Jones JM , Tyner H , Hunt A , Respet K , Gaglani M , Dunnigan K , Rose S , Naleway A , Groom H , Kuntz J , Fowlkes AL , Thompson MG , Yoo YM . N Engl J Med 2022 386 (19) 1855-1857 ![]() ![]() Data are needed regarding the effectiveness of a third dose of a messenger RNA (mRNA) vaccine against the B.1.1.529 (omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that are based on scientifically rigorous, population-level surveillance. Health care personnel, first responders, and other essential and frontline workers who are being evaluated in the HEROES-RECOVER cohorts at eight sites in six states across the United States underwent weekly reverse-transcriptase–polymerase-chain-reaction (RT-PCR) testing regardless of the presence or absence of coronavirus disease 2019 (Covid-19) symptoms.1-3 Here, we report the vaccine effectiveness of two or three doses of an mRNA vaccine against infection caused by the omicron and B.1.617.2 (delta) variants. |
Incidence of SARS-CoV-2 infection among COVID-19 vaccinated and unvaccinated healthcare personnel, first responders, and other essential and frontline workers: Eight US locations, January-September 2021.
Naleway AL , Grant L , Caban-Martinez AJ , Wesley MG , Burgess JL , Groover K , Gaglani M , Yoon SK , Tyner HL , Meece J , Kuntz JL , Yoo YM , Schaefer-Solle N , Olsho LEW , Gerald JK , Rose S , Thiese MS , Lundgren J , Groom HC , Mak J , Louzado Feliciano P , Edwards LJ , Lutrick K , Dunnigan K , Phillips AL , Lamberte JM , Noriega R , Sokol BE , Odean M , Ellingson KD , Smith M , Hegmann KT , Respet K , Dickerson M , Cruz A , Fleary DE , Murthy K , Hunt A , Azziz-Baumgartner E , Gallimore-Wilson D , Harder JA , Odame-Bamfo L , Viergutz J , Arvay M , Jones JM , Mistry P , Thompson MG , Fowlkes AL . Influenza Other Respir Viruses 2022 16 (3) 585-593 ![]() BACKGROUND: We sought to evaluate the impact of changes in estimates of COVID-19 vaccine effectiveness on the incidence of laboratory-confirmed infection among frontline workers at high risk for SARS-CoV-2. METHODS: We analyzed data from a prospective frontline worker cohort to estimate the incidence of COVID-19 by month as well as the association of COVID-19 vaccination, occupation, demographics, physical distancing, and mask use with infection risk. Participants completed baseline and quarterly surveys, and each week self-collected mid-turbinate nasal swabs and reported symptoms. RESULTS: Among 1018 unvaccinated and 3531 fully vaccinated workers, the monthly incidence of laboratory-confirmed SARS-CoV-2 infection in January 2021 was 13.9 (95% confidence interval [CI]: 10.4-17.4), declining to 0.5 (95% CI -0.4-1.4) per 1000 person-weeks in June. By September 2021, when the Delta variant predominated, incidence had once again risen to 13.6 (95% CI 7.8-19.4) per 1000 person-weeks. In contrast, there was no reportable incidence among fully vaccinated participants at the end of January 2021, and incidence remained low until September 2021 when it rose modestly to 4.1 (95% CI 1.9-3.8) per 1000. Below average facemask use was associated with a higher risk of infection for unvaccinated participants during exposure to persons who may have COVID-19 and vaccinated participants during hours in the community. CONCLUSIONS: COVID-19 vaccination was significantly associated with a lower risk of SARS-CoV-2 infection despite Delta variant predominance. Our data demonstrate the added protective benefit of facemask use among both unvaccinated and vaccinated frontline workers. |
A memorandum of understanding has facilitated guideline development involving collaborating groups
Alam M , Getchius TS , Schünemann H , Amer YS , Bak A , Fatheree LA , Ginex P , Jakhmola P , Marsden GL , McFarlane E , Meremikwu M , Taske N , Temple-Smolkin RL , Ventura C , Burgers J , Bradfield L , O'Brien MD , Einhaus K , Kopp IB , Munn Z , Scudeller L , Schaefer C , Ibrahim SA , Kang BY , Ogunremi T , Morgan RL . J Clin Epidemiol 2021 144 8-15 OBJECTIVE: Collaboration between groups can facilitate the development of high-quality guidelines. While collaboration is often desirable, misunderstandings can occur. One method to minimize misunderstandings is the pre-specification of terms of engagement in a memorandum of understanding (MOU). This study considered when an MOU may be most helpful, and which key elements should be included. STUDY DESIGN AND SETTING: An international panel of representatives from guideline groups was convened. A literature review to identify publications and other documents relevant to the establishment of MOUs between two or more guideline groups, supplemented by available source documents, was used to inform development of a draft MOU resource. This was iteratively refined until consensus was achieved. RESULTS: The level of detail in an MOU may vary based on institutional preferences and the particular collaboration. Elements within an MOU include those pertaining to: (1) scope and purpose; (2) leadership and team; (3) methods and commitment; (4) review and endorsement; and (5) publication and dissemination. CONCLUSION: Since groups may have different expectations regarding how a collaboration will unfold, an MOU may mitigate preventable misunderstandings. The result may be a higher likelihood of producing a guideline without disruption and delay. |
Neutralizing Antibody Response to Pseudotype SARS-CoV-2 Differs between mRNA-1273 and BNT162b2 COVID-19 Vaccines and by History of SARS-CoV-2 Infection.
Tyner HL , Burgess JL , Grant L , Gaglani M , Kuntz JL , Naleway AL , Thornburg NJ , Caban-Martinez AJ , Yoon SK , Herring MK , Beitel SC , Blanton L , Nikolich-Zugich J , Thiese MS , Pleasants JF , Fowlkes AL , Lutrick K , Dunnigan K , Yoo YM , Rose S , Groom H , Meece J , Wesley MG , Schaefer-Solle N , Louzado-Feliciano P , Edwards LJ , Olsho LEW , Thompson MG . Clin Infect Dis 2021 75 (1) e827-e837 ![]() BACKGROUND: Data on the development of neutralizing antibodies against SARS-CoV-2 after SARS-CoV-2 infection and after vaccination with messenger RNA (mRNA) COVID-19 vaccines are limited. METHODS: From a prospective cohort of 3,975 adult essential and frontline workers tested weekly from August 2020 to March 2021 for SARS-CoV-2 infection by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assay irrespective of symptoms, 497 participants had sera drawn after infection (170), vaccination (327), and after both infection and vaccination (50 from the infection population). Serum was collected after infection and each vaccine dose. Serum-neutralizing antibody titers against USA-WA1/2020-spike pseudotype virus were determined by the 50% inhibitory dilution. Geometric mean titers (GMTs) and corresponding fold increases were calculated using t-tests and linear mixed effects models. RESULTS: Among 170 unvaccinated participants with SARS-CoV-2 infection, 158 (93%) developed neutralizing antibodies (nAb) with a GMT of 1,003 (95% CI=766-1,315). Among 139 previously uninfected participants, 138 (99%) developed nAb after mRNA vaccine dose-2 with a GMT of 3,257 (95% CI = 2,596-4,052). GMT was higher among those receiving mRNA-1273 vaccine (GMT =4,698, 95%CI= 3,186-6,926) compared to BNT162b2 vaccine (GMT=2,309, 95%CI=1,825-2,919). Among 32 participants with prior SARS-CoV-2 infection, GMT was 21,655 (95%CI=14,766-31,756) after mRNA vaccine dose-1, without further increase after dose-2. CONCLUSIONS: A single dose of mRNA vaccine after SARS-CoV-2 infection resulted in the highest observed nAb response. Two doses of mRNA vaccine in previously uninfected participants resulted in higher nAb to SARS-CoV-2 than after one dose of vaccine or SARS-CoV-2 infection alone. Neutralizing antibody response also differed by mRNA vaccine product. |
Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER): Protocol for a Multisite Longitudinal Cohort Study.
Edwards LJ , Fowlkes AL , Wesley MG , Kuntz JL , Odean MJ , Caban-Martinez AJ , Dunnigan K , Phillips AL , Grant L , Herring MK , Groom HC , Respet K , Beitel S , Zunie T , Hegmann KT , Kumar A , Joseph G , Poe B , Louzado-Feliciano P , Smith ME , Thiese MS , Schaefer-Solle N , Yoo YM , Silvera CA , Mayo Lamberte J , Mak J , McDonald LC , Stuckey MJ , Kutty P , Arvay ML , Yoon SK , Tyner HL , Burgess JL , Hunt DR , Meece J , Gaglani M , Naleway AL , Thompson MG . JMIR Res Protoc 2021 10 (12) e31574 BACKGROUND: Workers critical to emergency response and continuity of essential services during the coronavirus disease 2019 (COVID-19) pandemic are at a disproportionally high risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Prospective cohort studies are needed to enhance understanding the incidence of symptomatic and asymptomatic SARS-CoV-2 infection, identifying risk factors, assessing clinical outcomes, and determining the effectiveness of vaccination. OBJECTIVE: The Research on the Epidemiology of SARS-CoV-2 in Essential Response personnel (RECOVER) prospective cohort study was designed to estimate the incidence of symptomatic and asymptomatic SARS-CoV-2 infection, examine risk factors for infection and clinical spectrum of illness, and assess effectiveness of vaccination among essential workers. METHODS: The RECOVER multi-site network was initiated in August 2020 and aims to enroll 3,000 healthcare personnel (HCP), first responders, and other essential and frontline workers (EFW) in six U.S. locations. Data on participant demographics, medical history, and vaccination history are collected at baseline and throughout the study. Active surveillance for symptoms of COVID-19-like illness (CLI), accessing medical care, and symptom duration are ascertained by text messages, e-mails, and direct participant or medical record reports. Participants self-collect a mid-turbinate nasal swab weekly, regardless of symptoms, and two additional respiratory specimens at the onset of CLI. Blood is collected upon enrollment, every three months, approximately 28 days after a reverse-transcription-polymerase-chain-reaction (RT-PCR)-confirmed SARS-CoV-2 infection, and 14-28 days after a dose of any COVID-19 vaccine. Beginning in February 2021, household members of RT-PCR-confirmed participants self-collect mid-turbinate nasal swabs daily for ten days. RESULTS: The study observation period began in August 2020 and is currently expected to continue through spring 2022. There are 2,623 actively enrolled RECOVER participants, including 252 participants who were found to be positive for SARS-CoV-2 by RT-PCR. Enrollment is ongoing at three of six study site locations. CONCLUSIONS: Data collected through the cohort are expected to provide important public health information for essential workers at high risk for occupational exposure to SARS-CoV-2 and allow early evaluation of COVID-19 vaccine effectiveness. INTERNATIONAL REGISTERED REPORT: DERR1-10.2196/31574. |
Prevention and Attenuation of Covid-19 with the BNT162b2 and mRNA-1273 Vaccines.
Thompson MG , Burgess JL , Naleway AL , Tyner H , Yoon SK , Meece J , Olsho LEW , Caban-Martinez AJ , Fowlkes AL , Lutrick K , Groom HC , Dunnigan K , Odean MJ , Hegmann K , Stefanski E , Edwards LJ , Schaefer-Solle N , Grant L , Ellingson K , Kuntz JL , Zunie T , Thiese MS , Ivacic L , Wesley MG , Mayo Lamberte J , Sun X , Smith ME , Phillips AL , Groover KD , Yoo YM , Gerald J , Brown RT , Herring MK , Joseph G , Beitel S , Morrill TC , Mak J , Rivers P , Poe BP , Lynch B , Zhou Y , Zhang J , Kelleher A , Li Y , Dickerson M , Hanson E , Guenther K , Tong S , Bateman A , Reisdorf E , Barnes J , Azziz-Baumgartner E , Hunt DR , Arvay ML , Kutty P , Fry AM , Gaglani M . N Engl J Med 2021 385 (4) 320-329 ![]() ![]() BACKGROUND: Information is limited regarding the effectiveness of the two-dose messenger RNA (mRNA) vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) in preventing infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and in attenuating coronavirus disease 2019 (Covid-19) when administered in real-world conditions. METHODS: We conducted a prospective cohort study involving 3975 health care personnel, first responders, and other essential and frontline workers. From December 14, 2020, to April 10, 2021, the participants completed weekly SARS-CoV-2 testing by providing mid-turbinate nasal swabs for qualitative and quantitative reverse-transcriptase-polymerase-chain-reaction (RT-PCR) analysis. The formula for calculating vaccine effectiveness was 100% × (1 - hazard ratio for SARS-CoV-2 infection in vaccinated vs. unvaccinated participants), with adjustments for the propensity to be vaccinated, study site, occupation, and local viral circulation. RESULTS: SARS-CoV-2 was detected in 204 participants (5%), of whom 5 were fully vaccinated (≥14 days after dose 2), 11 partially vaccinated (≥14 days after dose 1 and <14 days after dose 2), and 156 unvaccinated; the 32 participants with indeterminate vaccination status (<14 days after dose 1) were excluded. Adjusted vaccine effectiveness was 91% (95% confidence interval [CI], 76 to 97) with full vaccination and 81% (95% CI, 64 to 90) with partial vaccination. Among participants with SARS-CoV-2 infection, the mean viral RNA load was 40% lower (95% CI, 16 to 57) in partially or fully vaccinated participants than in unvaccinated participants. In addition, the risk of febrile symptoms was 58% lower (relative risk, 0.42; 95% CI, 0.18 to 0.98) and the duration of illness was shorter, with 2.3 fewer days spent sick in bed (95% CI, 0.8 to 3.7). CONCLUSIONS: Authorized mRNA vaccines were highly effective among working-age adults in preventing SARS-CoV-2 infection when administered in real-world conditions, and the vaccines attenuated the viral RNA load, risk of febrile symptoms, and duration of illness among those who had breakthrough infection despite vaccination. (Funded by the National Center for Immunization and Respiratory Diseases and the Centers for Disease Control and Prevention.). |
Detection of brevetoxin in human plasma by ELISA
Cunningham BR , Coleman RM , Schaefer AM , Hamelin EI , Johnson RC . J Anal Toxicol 2021 46 (3) 322-327 Florida red tides have become more common and persistent in and around the Gulf of Mexico. When in bloom, red tides can produce brevetoxins in high concentrations, leading to human exposures primarily through contaminated food and ocean spray. The research described here includes adapting and validating a commercial brevetoxin water test kit for human plasma testing. Pooled plasma was fortified with a model brevetoxin, brevetoxin 3, at concentrations from 0.00500 to 3.00 ng/mL to generate calibration curves and quality control samples. The quantitative detection range was determined to be 0.0400-2.00 ng/mL brevetoxin 3 equivalents with inter- and intraday accuracies ranging from 94.0% to 109% and relative standard deviations <20%, which is within the US Food and Drug Administration guidelines for receptor-binding assays. Additionally, cross-reactivity was tested using 4 of the 10 known brevetoxins and 12 paralytic shellfish toxins. The cross-reactivity varied from 0.173% to 144% for the commercially available brevetoxin standards and 0% for the commercially available paralytic shellfish toxin standards. Fifty individual unexposed human plasma samples were measured to determine the limit of detection and endogenous interferences to the test. The validated method was used to test 31 plasma samples collected from humans potentially exposed to brevetoxins, detecting 11 positives. This method has been proven useful to measure human exposure to brevetoxins and can be applied to future exposure events. |
Outbreaks and infection control breaches in health care settings: Considerations for patient notification
Schaefer MK , Perkins KM , Link-Gelles R , Kallen AJ , Patel PR , Perz JF . Am J Infect Control 2020 48 (6) 718-724 The Division of Healthcare Quality Promotion (DHQP), within the Centers for Disease Control and Prevention (CDC), provides assistance to health departments and health care facilities investigating potential outbreaks and infection control breaches.1–3 These consultations typically involve assessments regarding potential risk of pathogen transmission and need for patient notification (ie, informing affected individuals about the outbreak or breach).4–6 These assessments can be challenging. The available information might not be sufficient to clearly characterize patient harms and infection risks. Accepted standards regarding patient notification in these situations are lacking. Stakeholder consensus on the best path forward can be difficult to obtain as the expectations of patients, health care providers, health care facilities, and public health do not always align. |
Characterizing healthcare delivery in the United States using Census Bureau's County Business Patterns (2000-2016)
Astha KC , Schaefer MK , Stone ND , Perz J . Infect Control Hosp Epidemiol 2020 41 (6) 1-6 BACKGROUND: The US Census Bureau's County Business Patterns (CBP) series provides a unique opportunity to describe the healthcare sector using a single, national data source. METHODS: We analyzed CBP data on business establishments in the healthcare industry for 2000-2016 for all 50 states and the District of Columbia. Setting and facility types were defined using the North American Industry Classification System. RESULTS: In 2016, CBP enumerated 707,634 US healthcare establishments (a 34% increase from 2000); 86.5% were outpatient facilities and services followed by long-term care facilities (12.5%) and acute-care facilities (1.0%). Between 2000 and 2016, traditional facilities such as general medical surgical and surgical hospitals (-0.4%) and skilled nursing facilities (+0.1%) decreased or remained flat, while other long-term care and outpatient providers grew rapidly. CONCLUSION: This analysis highlights the steady growth and increased specialization of the US healthcare sector, particularly in long-term care and outpatient settings. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Mar 21, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure