Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-7 (of 7 Records) |
Query Trace: Sammons SA[original query] |
---|
Finished Annotated Genome Sequence of Burkholderia pseudomallei Strain Bp1651, a Multidrug-Resistant Clinical Isolate.
Bugrysheva JV , Sue D , Hakovirta J , Loparev VN , Knipe K , Sammons SA , Ranganathan-Ganakammal S , Changayil S , Srinivasamoorthy G , Weil MR , Tatusov RL , Gee JE , Elrod MG , Hoffmaster AR , Weigel LM . Genome Announc 2015 3 (6) Burkholderia pseudomallei strain Bp1651, a human isolate, is resistant to all clinically relevant antibiotics. We report here on the finished genome sequence assembly and annotation of the two chromosomes of this strain. This genome sequence may assist in understanding the mechanisms of antimicrobial resistance for this pathogenic species. |
vanG element insertions within a conserved chromosomal site conferring vancomycin resistance to Streptococcus agalactiae and Streptococcus anginosus
Srinivasan V , Metcalf BJ , Knipe KM , Ouattara M , McGee L , Shewmaker PL , Glennen A , Nichols M , Harris C , Brimmage M , Ostrowsky B , Park CJ , Schrag SJ , Frace MA , Sammons SA , Beall B . mBio 2014 5 (4) e01386-14 Three vancomycin-resistant streptococcal strains carrying vanG elements (two invasive Streptococcus agalactiae isolates [GBS-NY and GBS-NM, both serotype II and multilocus sequence type 22] and one Streptococcus anginosus [Sa]) were examined. The 45,585-bp elements found within Sa and GBS-NY were nearly identical (together designated vanG-1) and shared near-identity over an ~15-kb overlap with a previously described vanG element from Enterococcus faecalis. Unexpectedly, vanG-1 shared much less homology with the 49,321-bp vanG-2 element from GBS-NM, with widely different levels (50% to 99%) of sequence identity shared among 44 related open reading frames. Immediately adjacent to both vanG-1 and vanG-2 were 44,670-bp and 44,680-bp integrative conjugative element (ICE)-like sequences, designated ICE-r, that were nearly identical in the two group B streptococcal (GBS) strains. The dual vanG and ICE-r elements from both GBS strains were inserted at the same position, between bases 1328 and 1329, within the identical RNA methyltransferase (rumA) genes. A GenBank search revealed that although most GBS strains contained insertions within this specific site, only sequence type 22 (ST22) GBS strains contained highly related ICE-r derivatives. The vanG-1 element in Sa was also inserted within this position corresponding to its rumA homolog adjacent to an ICE-r derivative. vanG-1 insertions were previously reported within the same relative position in the E. faecalis rumA homolog. An ICE-r sequence perfectly conserved with respect to its counterpart in GBS-NY was apparent within the same site of the rumA homolog of a Streptococcus dysgalactiae subsp. equisimilis strain. Additionally, homologous vanG-like elements within the conserved rumA target site were evident in Roseburia intestinalis. IMPORTANCE: These three streptococcal strains represent the first known vancomycin-resistant strains of their species. The collective observations made from these strains reveal a specific hot spot for insertional elements that is conserved between streptococci and different Gram-positive species. The two GBS strains potentially represent a GBS lineage that is predisposed to insertion of vanG elements. |
Draft Genome Sequence of Bacillus cereus Strain BcFL2013, a Clinical Isolate Similar to G9241.
Gee JE , Marston CK , Sammons SA , Burroughs MA , Hoffmaster AR . Genome Announc 2014 2 (3) Bacillus cereus strains, such as G9241, causing anthrax-like illnesses have recently been discovered. We report the genome sequence of a clinical strain, B. cereus BcFL2013, which is similar to G9241, recovered from a patient in Florida. |
Phylogenetic and ecologic perspectives of a monkeypox outbreak, southern Sudan, 2005.
Nakazawa Y , Emerson GL , Carroll DS , Zhao H , Li Y , Reynolds MG , Karem KL , Olson VA , Lash RR , Davidson WB , Smith SK , Levine RS , Regnery RL , Sammons SA , Frace MA , Mutasim EM , Karsani ME , Muntasir MO , Babiker AA , Opoka L , Chowdhary V , Damon IK . Emerg Infect Dis 2013 19 (2) 237-45 Identification of human monkeypox cases during 2005 in southern Sudan (now South Sudan) raised several questions about the natural history of monkeypox virus (MPXV) in Africa. The outbreak area, characterized by seasonally dry riverine grasslands, is not identified as environmentally suitable for MPXV transmission. We examined possible origins of this outbreak by performing phylogenetic analysis of genome sequences of MPXV isolates from the outbreak in Sudan and from differing localities. We also compared the environmental suitability of study localities for monkeypox transmission. Phylogenetically, the viruses isolated from Sudan outbreak specimens belong to a clade identified in the Congo Basin. This finding, added to the political instability of the area during the time of the outbreak, supports the hypothesis of importation by infected animals or humans entering Sudan from the Congo Basin, and person-to-person transmission of virus, rather than transmission of indigenous virus from infected animals to humans. |
Elucidating the role of the complement control protein in monkeypox pathogenicity
Hudson PN , Self J , Weiss S , Braden Z , Xiao Y , Girgis NM , Emerson G , Hughes C , Sammons SA , Isaacs SN , Damon IK , Olson VA . PLoS One 2012 7 (4) e35086 Monkeypox virus (MPXV) causes a smallpox-like disease in humans. Clinical and epidemiological studies provide evidence of pathogenicity differences between two geographically distinct monkeypox virus clades: the West African and Congo Basin. Genomic analysis of strains from both clades identified a approximately 10 kbp deletion in the less virulent West African isolates sequenced to date. One absent open reading frame encodes the monkeypox virus homologue of the complement control protein (CCP). This modulatory protein prevents the initiation of both the classical and alternative pathways of complement activation. In monkeypox virus, CCP, also known as MOPICE, is a approximately 24 kDa secretory protein with sequence homology to this superfamily of proteins. Here we investigate CCP expression and its role in monkeypox virulence and pathogenesis. CCP was incorporated into the West African strain and removed from the Congo Basin strain by homologous recombination. CCP expression phenotypes were confirmed for both wild type and recombinant monkeypox viruses and CCP activity was confirmed using a C4b binding assay. To characterize the disease, prairie dogs were intranasally infected and disease progression was monitored for 30 days. Removal of CCP from the Congo Basin strain reduced monkeypox disease morbidity and mortality, but did not significantly decrease viral load. The inclusion of CCP in the West African strain produced changes in disease manifestation, but had no apparent effect on disease-associated mortality. This study identifies CCP as an important immuno-modulatory protein in monkeypox pathogenesis but not solely responsible for the increased virulence seen within the Congo Basin clade of monkeypox virus. |
Using next generation sequencing to identify yellow fever virus in Uganda.
McMullan LK , Frace M , Sammons SA , Shoemaker T , Balinandi S , Wamala JF , Lutwama JJ , Downing RG , Stroeher U , Macneil A , Nichol ST . Virology 2011 422 (1) 1-5 In October and November 2010, hospitals in northern Uganda reported patients with suspected hemorrhagic fevers. Initial tests for Ebola viruses, Marburg virus, Rift Valley fever virus, and Crimean Congo hemorrhagic fever virus were negative. Unbiased PCR amplification of total RNA extracted directly from patient sera and next generation sequencing resulted in detection of yellow fever virus and generation of 98% of the virus genome sequence. This finding demonstrated the utility of next generation sequencing and a metagenomic approach to identify an etiological agent and direct the response to a disease outbreak. |
The phylogenetics and ecology of the orthopoxviruses endemic to North America
Emerson GL , Li Y , Frace MA , Olsen-Rasmussen MA , Khristova ML , Govil D , Sammons SA , Regnery RL , Karem KL , Damon IK , Carroll DS . PLoS One 2009 4 (10) e7666 The data presented herein support the North American orthopoxviruses (NA OPXV) in a sister relationship to all other currently described Orthopoxvirus (OPXV) species. This phylogenetic analysis reaffirms the identification of the NA OPXV as close relatives of "Old World" (Eurasian and African) OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. The natural reservoir host(s) for many of the described OPXV species remains unknown although a clear virus-host association exists between the genus OPXV and several mammalian taxa. The hypothesized host associations and the deep divergence of the OPXV/NA OPXV clades depicted in this study may reflect the divergence patterns of the mammalian faunas of the Old and New World and reflect a more ancient presence of OPXV on what are now the American continents. Genes from the central region of the poxvirus genome are generally more conserved than genes from either end of the linear genome due to functional constraints imposed on viral replication abilities. The relatively slower evolution of these genes may more accurately reflect the deeper history among the poxvirus group, allowing for robust placement of the NA OPXV within Chordopoxvirinae. Sequence data for nine genes were compiled from three NA OPXV strains plus an additional 50 genomes collected from Genbank. The current, gene sequence based phylogenetic analysis reaffirms the identification of the NA OPXV as the nearest relatives of "Old World" OPXV and presents high support for deeper nodes within the Chordopoxvirinae family. Additionally, the substantial genetic distances that separate the currently described NA OPXV species indicate that it is likely that many more undescribed OPXV/NA OPXV species may be circulating among wild animals in North America. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure