Last data update: Aug 15, 2025. (Total: 49733 publications since 2009)
| Records 1-30 (of 95 Records) |
| Query Trace: Sambhara S[original query] |
|---|
| Trained ILCs confer adaptive immunity-independent protection against influenza
Mboko WP , Wang Y , Cao W , Sayedahmed EE , Mishina M , Kumar A , Bohannon CD , Patton SK , Ray SD , Sharma SD , Kumari R , Liepkalns JS , Reber AJ , Kamal RP , McCoy J , Amoah S , Ranjan P , Burroughs M , Sheth M , Lee J , Batra D , Gangappa S , York IA , Knight PR , Pohl J , Mittal SK , Sambhara S . J Virol 2025 e0053225
Seasonal influenza causes 290,000-650,000 deaths annually, with vaccination efficacy ranging from 10 to 60%. The emergence of drug-resistant and highly pathogenic avian influenza viruses underscores the urgent need for novel protective strategies. Epidemiological observations have long suggested that certain vaccines, such as Bacillus Calmette-Guérin (BCG), can provide protection against diverse pathogens (S. Biering-Sørensen, P. Aaby, N. Lund, et al., Clin Infect Dis 65:1183-1190, 2017, https://doi.org/10.1093/cid/cix525; M.-L. Garly, C. L. Martins, C. Balé, et al., Vaccine 21:2782-2790, 2003, https://doi.org/10.1016/s0264-410x(03)00181-6; C. A. G. Timmermann, S. Biering-Sørensen, P. Aaby, et al., Trop Med Int Health 20:1733-1744, 2015, https://doi.org/10.1111/tmi.12614). While the cellular and molecular mechanisms underlying such protection remain incompletely understood, emerging research offers critical insights into innate immune system modulation (B. Cirovic, L. C. J. de Bree, L. Groh, et al., Cell Host Microbe 28:322-334, 2020, https://doi.org/10.1016/j.chom.2020.05.014; L. Kong, S. J. C. F. M. Moorlag, A. Lefkovith, et al., Cell Rep 37:110028, 2021, https://doi.org/10.1016/j.celrep.2021.110028; H. Mohammadi, N. Sharafkandi, M. Hemmatzadeh, et al., J Cell Physiol 233:4512-4529, 2018, https://doi.org/10.1002/jcp.26250; S. J. C. F. M. Moorlag, Y. A. Rodriguez-Rosales, J. Gillard, et al., Cell Rep 33:108387, 2021, https://doi.org/10.1016/j.celrep.2020.108387). We investigated whether a trained innate immune system with non-replicating adenoviruses could provide protection against diverse influenza virus strains. We demonstrated that replication-defective human adenoviruses can effectively train the innate immune system, conferring protective immunity in mice against multiple influenza virus strains, including H1N1, H3N2, H5N2, H7N9, and H9N2. In addition, bovine and chimpanzee adenoviruses can also activate human innate lymphoid cells (ILCs) and confer protection against challenge with influenza H3N2 virus in mice. Remarkably, this protection occurs in the complete absence of influenza-specific adaptive immune responses (influenza virus-specific hemagglutination-inhibiting antibodies, neutralizing antibodies, and influenza nucleoprotein-specific CD8 T cells). Key protective mechanisms include increased activation of ILC1, ILC2, and ILC3 populations, enhanced expression of interferon-stimulated genes (ISGs), upregulation of antiviral signaling pathways, and metabolic reprogramming of ILC subsets. Adoptive transfer experiments demonstrated that trained ILCs were sufficient to protect against influenza H1N1 infection in ILC-deficient mice. This research establishes a novel strategy for enhancing innate antiviral immunity, offering broad-spectrum protection against diverse influenza strains, a promising approach for not only pandemic preparedness but also against emerging infectious diseases. Training innate lymphoid cells through non-replicating adenoviral vectors represents a promising approach to enhancing broad-spectrum antiviral immunity, complementing traditional vaccination strategies.IMPORTANCEThe findings represent a potential game-changer for fighting influenza, which kills hundreds of thousands of people worldwide each year despite our best vaccination efforts. Current flu vaccines often provide limited protection because they must be reformulated annually to match circulating strains, and their effectiveness varies dramatically from year to year. The scientists discovered something remarkable: common adenoviruses (which typically cause mild cold-like symptoms) can essentially "train" our immune system's first line of defense to recognize and fight off multiple types of flu viruses simultaneously. This protection works through a completely different mechanism than traditional vaccines-it does not rely on creating specific antibodies against flu proteins. Instead, the treatment activates special immune cells called innate lymphoid cells (ILCs), which act like the body's rapid response team. These trained cells provide broad protection against various flu strains, including dangerous bird flu variants that could cause future pandemics. The significance lies in potentially creating a universal flu protection strategy that could work against unknown future flu strains, offering hope for better pandemic preparedness and reducing seasonal flu's devastating global impact. |
| A bovine adenoviral-vector-based universal influenza vaccine confers protection against influenza A and B viruses in mice and ferrets
Wang WC , Sayedahmed EE , Alhashimi M , Elkashif A , Gairola V , Murala MST , Sambhara S , Mittal SK . Mol Ther Nucl Acids 2025 36 (3) Current seasonal influenza vaccines offer strain-specific protection and, thus, are less effective against mismatched strains. A broadly protective influenza vaccine is desirable to provide comprehensive protection against a wide range of influenza viruses for seasonal and pandemic influenza preparedness. Here, we evaluated the vaccine candidates based on bovine adenoviral (BAd) vectors expressing nucleoprotein (NP) of influenza A (BAd-C5-NP/A) and B (BAd-C5-NP/B) viruses linked to the autophagy-inducing peptide C5 (AIP-C5 or C5) to develop a predominantly T-cell-based vaccine. Robust cellular immune responses and humoral responses were elicited in mice with a single intranasal inoculation. Mice immunized with the BAd Bivalent (BAd-C5-NP/A + BAd-C5-NP/B) vaccine formulation exhibited protective immunity, providing protection against a broad panel of homosubtypic and heterosubtypic influenza A and B viruses, as evidenced by the absence of morbidity and mortality, along with significant reductions in lung viral titers. Protective immunity against seasonal influenza viruses was observed in ferrets following the BAd Bivalent vaccine immunization. These findings support further investigation of the potential of a unique Ad vaccine platform for mucosal immunization expressing NP linked to AIP-C5 as a broadly protective influenza vaccine. © 2025 The Author(s) |
| Recombinant quadrivalent influenza vaccine (RIV) induces robust cell-mediated and HA-specific B cell humoral immune responses among healthcare personnel
Mishina M , Cao W , Ende Z , Sharma SS , Ray SD , Kumari R , Kumar A , Shanmugasundaram U , Bohannon CD , Ranjan P , Chang J , Carney P , Stevens J , Levine MZ , Kim S , Wesley M , Ball S , Pando MJ , Dobin S , Knight PR , Varadarajan R , Thompson M , Dawood FS , Naleway AL , Gaglani M , Gangappa S , Sambhara S . Vaccine 2025 61 127361 Egg-free influenza vaccines, specifically cell culture-based inactivated influenza vaccine (ccIIV) and recombinant influenza vaccine (RIV), represent a significant advancement over traditional egg-based inactivated influenza vaccines (IIV), particularly for populations with extensive vaccination histories. This comprehensive immunological study investigated the comparative efficacy of ccIIV, IIV, and RIV in healthcare personnel (HCP) with repeated vaccination histories, examining both cellular and humoral immune responses through multiple analytical approaches. Our investigation employed a multi-faceted analytical framework, combining serological assessments via hemagglutination inhibition (HI) and microneutralization (MN) assays with detailed cellular immune response analysis. We utilized advanced flow cytometry techniques with recombinant hemagglutinin (HA) probes to evaluate both circulating T follicular helper cells (cTfh) and HA-specific B cells, providing a comprehensive view of vaccine-induced immune responses. The results revealed RIV's superior immunogenicity profile, demonstrating significantly elevated levels of both cTfh and HA-specific B cells compared to ccIIV and IIV. RIV's enhanced performance was particularly evident in its response to influenza A components, with notably higher immunogenicity against both A(H3N2) and A(H1N1) strains. This superiority was reflected in elevated HI titers and markedly increased HA-specific B cell induction. While RIV also demonstrated enhanced HA-specific B cell responses against influenza B components compared to ccIIV, interestingly, HI titers remained comparable across all vaccine groups for these strains. These findings underscore the critical importance of comprehensive immune response evaluation in vaccine assessment. The disparity between cellular and serological responses, particularly for influenza HA-specific B cells, highlights that traditional serological measures alone may not fully capture the breadth and depth of vaccine-induced immunity. This study provides compelling evidence for the inclusion of cellular immunity assessments in vaccine evaluation protocols, offering crucial insights into vaccine immunogenicity that may be missed by conventional serological analysis alone. |
| Femtosecond laser-ablative aqueous synthesis of multi-drug antiviral nanoparticles
Schmitt RR , Davidson BA , He D , He GS , Bulmahn JC , Sambhara S , Knight PR , Prasad PN . Nanomedicine (Lond) 2025 1-9 BACKGROUND: Nanomedicine offers a number of innovative strategies to address major public health burdens, including complex respiratory illnesses. In this work, we introduce a multi-drug nanoparticle fabricated using femtosecond laser ablation for the treatment of influenza, SARS-CoV-2, and their co-infections. METHODS: The SARS-CoV-2 antiviral, remdesivir; the influenza antiviral, baloxavir marboxil; and the anti-inflammatory, dexamethasone, were co-crystalized and then ablated in aqueous media using a femtosecond pulsed laser and subsequently surface modified with the cationic polymer, chitosan, or poly-d-lysine. Physical and chemical properties were then characterized using multiple complimentary techniques. Finally, a clinically relevant in vitro primary mouse trachea epithelial cell-air-liquid interface culture model was used to analyze the antiviral effect of our nanoparticles against Influenza Virus A. RESULTS: Our final nanoparticle exhibited a positive zeta potential with a diameter of ~73 nm. Remdesivir, baloxavir marboxil, and dexamethasone were all present in the nanoparticle suspension at a 1:1:1 ratio. Notably, these particles exhibited a potent anti-influenza effect, decreasing the viral titer by ≈ 4 logs in comparison to vehicle controls. CONCLUSION: Overall, these findings demonstrate great promise both for the use of laser ablation to generate multi-drug nanoparticles and for the anti-viral effects of our nanoformulation against respiratory illness. |
| Adenoviral vector-based vaccine expressing hemagglutinin stem region with autophagy-inducing peptide confers cross-protection against group 1 and 2 influenza A viruses
Wang WC , Sayedahmed EE , Alhashimi M , Elkashif A , Gairola V , Murala MST , Sambhara S , Mittal SK . Vaccines (Basel) 2025 13 (1)
Background/Objectives: An effective universal influenza vaccine is urgently needed to overcome the limitations of current seasonal influenza vaccines, which are ineffective against mismatched strains and unable to protect against pandemic influenza. Methods: In this study, bovine and human adenoviral vector-based vaccine platforms were utilized to express various combinations of antigens. These included the H5N1 hemagglutinin (HA) stem region or HA2, the extracellular domain of matrix protein 2 of influenza A virus, HA signal peptide (SP), trimerization domain, excretory peptide, and the autophagy-inducing peptide C5 (AIP-C5). The goal was to identify the optimal combination for enhanced immune responses and cross-protection. Mice were immunized using a prime-boost strategy with heterologous adenoviral (Ad) vectors. Results: The heterologous Ad vectors induced robust HA stem-specific humoral and cellular immune responses in the immunized mice. Among the tested combinations, Ad vectors expressing SP + HA stem + AIP-C5 conferred significant protection against group 1 (H1N1 and H5N1) and group 2 (H3N2) influenza A viruses. This protection was demonstrated by lower lung viral titers and reduced morbidity and mortality. Conclusions: The findings support further investigation of heterologous Ad vaccine platforms expressing SP + HA stem + AIP-C5. This combination shows promise as a potential universal influenza vaccine, providing broader protection against influenza A viruses. |
| Molecular features of the serological IgG repertoire elicited by egg-based, cell-based, or recombinant haemagglutinin-based seasonal influenza vaccines: a comparative, prospective, observational cohort study
Park J , Bartzoka F , von Beck T , Li ZN , Mishina M , Hebert LS , Kain J , Liu F , Sharma S , Cao W , Eddins DJ , Kumar A , Kim JE , Lee JS , Wang Y , Schwartz EA , Brilot AF , Satterwhite E , Towers DM , McKnight E , Pohl J , Thompson MG , Gaglani M , Dawood FS , Naleway AL , Stevens J , Kennedy RB , Jacob J , Lavinder JJ , Levine MZ , Gangappa S , Ippolito GC , Sambhara S , Georgiou G . Lancet Microbe 2024 100935 BACKGROUND: Egg-based inactivated quadrivalent seasonal influenza vaccine (eIIV4), cell culture-based inactivated quadrivalent seasonal influenza vaccine (ccIIV4), and recombinant haemagglutinin (HA)-based quadrivalent seasonal influenza vaccine (RIV4) have been licensed for use in the USA. In this study, we used antigen-specific serum proteomics analysis to assess how the molecular composition and qualities of the serological antibody repertoires differ after seasonal influenza immunisation by each of the three vaccines and how different vaccination platforms affect the HA binding affinity and breadth of the serum antibodies that comprise the polyclonal response. METHODS: In this comparative, prospective, observational cohort study, we included female US health-care personnel (mean age 47·6 years [SD 8]) who received a single dose of RIV4, eIIV4, or ccIIV4 during the 2018-19 influenza season at Baylor Scott & White Health (Temple, TX, USA). Eligible individuals were selected based on comparable day 28 serum microneutralisation titres and similar vaccination history. Laboratory investigators were blinded to assignment until testing was completed. The preplanned exploratory endpoints were assessed by deconvoluting the serological repertoire specific to A/Singapore/INFIMH-16-0019/2016 (H3N2) HA before (day 0) and after (day 28) immunisation using bottom-up liquid chromatography-mass spectrometry proteomics (referred to as Ig-Seq) and natively paired variable heavy chain-variable light chain high-throughput B-cell receptor sequencing (referred to as BCR-Seq). Features of the antigen-specific serological repertoire at day 0 and day 28 for the three vaccine groups were compared. Antibodies identified with high confidence in sera were recombinantly expressed and characterised in depth to determine the binding affinity and breadth to time-ordered H3 HA proteins. FINDINGS: During September and October of the 2018-19 influenza season, 15 individuals were recruited and assigned to receive RIV4 (n=5), eIIV4 (n=5), or ccIIV4 (n=5). For all three cohorts, the serum antibody repertoire was dominated by back-boosted antibody lineages (median 98% [95% CI 88-99]) that were present in the serum before vaccination. Although vaccine platform-dependent differences were not evident in the repertoire diversity, somatic hypermutation, or heavy chain complementarity determining region 3 biochemical features, antibodies boosted by RIV4 showed substantially higher binding affinity to the vaccine H3/HA (median half-maximal effective concentration [EC50] to A/Singapore/INFIMH-16-0019/2016 HA: 0·037 μg/mL [95% CI 0·012-0·12] for RIV4; 4·43 μg/mL [0·030-100·0] for eIIV4; and 18·50 μg/mL [0·99-100·0] μg/mL for ccIIV4) and also the HAs from contemporary H3N2 strains than did those elicited by eIIV4 or ccIIV4 (median EC50 to A/Texas/50/2012 HA: 0·037 μg/mL [0·017-0·32] for RIV4; 1·10 μg/mL [0·045-100] for eIIV4; and 12·6 μg/mL [1·8-100] for ccIIV4). Comparison of B-cell receptor sequencing repertoires on day 7 showed that eIIV4 increased the median frequency of canonical egg glycan-targeting B cells (0·20% [95% CI 0·067-0·37] for eIIV4; 0·058% [0·050-0·11] for RIV4; and 0·035% [0-0·062] for ccIIV4), whereas RIV4 vaccination decreased the median frequency of B-cell receptors displaying stereotypical features associated with membrane proximal anchor-targeting antibodies (0·062% [95% CI 0-0·084] for RIV4; 0·12% [0·066-0·16] for eIIV4; and 0·18% [0·016-0·20] for ccIIV4). In exploratory analysis, we characterised the structure of a highly abundant monoclonal antibody that binds to both group 1 and 2 HAs and recognises the HA trimer interface, despite its sequence resembling the stereotypical sequence motif found in membrane-proximal anchor binding antibodies. INTERPRETATION: Although all three licensed seasonal influenza vaccines elicit serological antibody repertoires with indistinguishable features shaped by heavy imprinting, the RIV4 vaccine selectively boosts higher affinity monoclonal antibodies to contemporary strains and elicits greater serum binding potency and breadth, possibly as a consequence of the multivalent structural features of the HA immunogen in this vaccine formulation. Collectively, our findings show advantages of RIV4 vaccines and more generally highlight the benefits of multivalent HA immunogens in promoting higher affinity serum antibody responses. FUNDING: Centers for Disease Control and Prevention, National Institutes of Health, and Bill & Melinda Gates Foundation. |
| Human monoclonal antibody cloning and expression with overlap extension PCR and short DNA fragments
Ende Z , Mishina M , Kauffman RC , Kumar A , Kumari R , Knight PR , Sambhara S . J Immunol Methods 2024 113768
Monoclonal antibodies are powerful therapeutic, diagnostic, and research tools. Methods utilized to generate monoclonal antibodies are evolving rapidly. We created a transfectable linear antibody expression cassette from a 2-h high-fidelity overlapping PCR reaction from synthesized DNA fragments. We coupled heavy and light chains into a single linear sequence with a promoter, self-cleaving peptide, and poly(A) signal to increase the flexibility of swapping variable regions from any sequence available in silico. Transfection of the linear cassette tended to generate similar levels to the two-plasmid system and generated an average of 47 μg (14-98 μg) after 5 days in 2 mL cultures with 15 unique antibody sequences. The levels of antibodies produced were sufficient for most downstream applications in less than a week. The method presented here reduces the time, cost, and complexity of cloning steps. |
| The frequency and function of nucleoprotein-specific CD8(+) T cells are critical for heterosubtypic immunity against influenza virus infection
Amoah S , Cao W , Sayedahmed EE , Wang Y , Kumar A , Mishina M , Eddins DJ , Wang WC , Burroughs M , Sheth M , Lee J , Shieh WJ , Ray SD , Bohannon CD , Ranjan P , Sharma SD , Hoehner J , Arthur RA , Gangappa S , Wakamatsu N , Johnston HR , Pohl J , Mittal SK , Sambhara S . J Virol 2024 e0071124
Cytotoxic T lymphocytes (CTLs) mediate host defense against viral and intracellular bacterial infections and tumors. However, the magnitude of CTL response and their function needed to confer heterosubtypic immunity against influenza virus infection are unknown. We addressed the role of CD8(+) T cells in the absence of any cross-reactive antibody responses to influenza viral proteins using an adenoviral vector expressing a 9mer amino acid sequence recognized by CD8(+) T cells. Our results indicate that both CD8(+) T cell frequency and function are crucial for heterosubtypic immunity. Low morbidity, lower viral lung titers, low to minimal lung pathology, and better survival upon heterosubtypic virus challenge correlated with the increased frequency of NP-specific CTLs. NP-CD8(+) T cells induced by differential infection doses displayed distinct RNA transcriptome profiles and functional properties. CD8(+) T cells induced by a high dose of influenza virus secreted significantly higher levels of IFN-γ and exhibited higher levels of cytotoxic function. The mice that received NP-CD8(+) T cells from the high-dose virus recipients through adoptive transfer had lower viral titers following viral challenge than those induced by the low dose of virus, suggesting differential cellular programming by antigen dose. Enhanced NP-CD8(+) T-cell functions induced by a higher dose of influenza virus strongly correlated with the increased expression of cellular and metabolic genes, indicating a shift to a more glycolytic metabolic phenotype. These findings have implications for developing effective T cell vaccines against infectious diseases and cancer. IMPORTANCE: Cytotoxic T lymphocytes (CTLs) are an important component of the adaptive immune system that clears virus-infected cells or tumor cells. Hence, developing next-generation vaccines that induce or recall CTL responses against cancer and infectious diseases is crucial. However, it is not clear if the frequency, function, or both are essential in conferring protection, as in the case of influenza. In this study, we demonstrate that both CTL frequency and function are crucial for providing heterosubtypic immunity to influenza by utilizing an Ad-viral vector expressing a CD8 epitope only to rule out the role of antibodies, single-cell RNA-seq analysis, as well as adoptive transfer experiments. Our findings have implications for developing T cell vaccines against infectious diseases and cancer. |
| Bolstering influenza protection for older adults
Sambhara S , Knight PR . Lancet Infect Dis 2024 |
| Redirecting antibody responses from egg-adapted epitopes following repeat vaccination with recombinant or cell culture-based versus egg-based influenza vaccines
Liu F , Gross FL , Joshi S , Gaglani M , Naleway AL , Murthy K , Groom HC , Wesley MG , Edwards LJ , Grant L , Kim SS , Sambhara S , Gangappa S , Tumpey T , Thompson MG , Fry AM , Flannery B , Dawood FS , Levine MZ . Nat Commun 2024 15 (1) 254 Repeat vaccination with egg-based influenza vaccines could preferentially boost antibodies targeting the egg-adapted epitopes and reduce immunogenicity to circulating viruses. In this randomized trial (Clinicaltrials.gov: NCT03722589), sera pre- and post-vaccination with quadrivalent inactivated egg-based (IIV4), cell culture-based (ccIIV4), and recombinant (RIV4) influenza vaccines were collected from healthcare personnel (18-64 years) in 2018-19 (N = 723) and 2019-20 (N = 684) influenza seasons. We performed an exploratory analysis. Vaccine egg-adapted changes had the most impact on A(H3N2) immunogenicity. In year 1, RIV4 induced higher neutralizing and total HA head binding antibodies to cell- A(H3N2) virus than ccIIV4 and IIV4. In year 2, among the 7 repeat vaccination arms (IIV4-IIV4, IIV4-ccIIV4, IIV4-RIV4, RIV4-ccIIV4, RIV4-RIV4, ccIIV4-ccIIV4 and ccIIV4-RIV4), repeat vaccination with either RIV4 or ccIIV4 further improved antibody responses to circulating viruses with decreased neutralizing antibody egg/cell ratio. RIV4 also had higher post-vaccination A(H1N1)pdm09 and A(H3N2) HA stalk antibodies in year 1, but there was no significant difference in HA stalk antibody fold rise among vaccine groups in either year 1 or year 2. Multiple seasons of non-egg-based vaccination may be needed to redirect antibody responses from immune memory to egg-adapted epitopes and re-focus the immune responses towards epitopes on the circulating viruses to improve vaccine effectiveness. |
| Enhancement of mucosal innate and adaptive immunity following intranasal immunization of mice with a bovine adenoviral vector
Sayedahmed EE , Elshafie NO , Zhang G , Mohammed SI , Sambhara S , Mittal SK . Front Immunol 2023 14 1305937
INTRODUCTION: Nonhuman adenoviral (AdV) gene delivery platforms have significant value due to their ability to elude preexisting AdV vector immunity in most individuals. Previously, we have demonstrated that intranasal (IN) immunization of mice with BAd-H5HA, a bovine AdV type 3 (BAdV3) vector expressing H5N1 influenza virus hemagglutinin (HA), resulted in enhanced humoral and cell-mediated immune responses. The BAd-H5HA IN immunization resulted in complete protection following the challenge with an antigenically distinct H5N1 virus compared to the mouse group similarly immunized with HAd-H5HA, a human AdV type 5 (HAdV5) vector expressing HA. METHODS: Here, we attempted to determine the activation of innate immune responses in the lungs of mice inoculated intranasally with BAd-H5HA compared to the HAd-H5HA-inoculated group. RESULTS: RNA-Seq analyses of the lung tissues revealed differential expression (DE) of genes involved in innate and adaptive immunity in animals immunized with BAd-H5HA. The top ten enhanced genes were verified by RT-PCR. Consistently, there were transient increases in the levels of cytokines (IL-1α, IL-1β, IL-5, TNF- α, LIF, IL-17, G-CSF, MIP-1β, MCP-1, MIP-2, and GM-CSF) and toll-like receptors in the lungs of the group inoculated with BAdV vectors compared to that of the HAdV vector group. CONCLUSION: These results demonstrate that the BAdV vectors induce enhanced innate and adaptive immunity-related factors compared to HAdV vectors in mice. Thus, the BAdV vector platform could be an excellent gene delivery system for recombinant vaccines and cancer immunotherapy. |
| The limit of detection of the BioFire FilmArray gastrointestinal panel for the foodborne parasite Cyclospora cayetanensis
Peterson A , Richins T , Houghton K , Mishina M , Sharma S , Sambhara S , Jacobson D , Qvarnstrom Y , Cama V . Diagn Microbiol Infect Dis 2023 107 (2) 116030
Cyclosporiasis is a foodborne diarrheal illness caused by the parasite Cyclospora cayetanensis. The BioFire® FilmArray® gastrointestinal (FilmArray GI) panel is a common method for diagnosing cyclosporiasis from clinical stool samples. The currently published limit of detection (LOD) of this panel is in genome equivalents; however, it is unclear how this relates to the number of C. cayetanensis oocysts in a clinical sample. In this study, we developed a technique to determine the LOD in terms of oocysts, using a cell sorter to sort 1 to 50 C. cayetanensis oocyst(s) previously purified from three human stool sources. We found the FilmArray GI panel detected samples with ≥20 C. cayetanensis oocysts in 100% of replicates, with varying detection among samples with 1, 5, or 10 C. cayetanensis oocysts. This method provides a parasitologically relevant LOD that should enable comparison among C. cayetanensis detection techniques, including the FilmArray GI panel. |
| Impact of Diabetes Status on Immunogenicity of Trivalent Inactivated Influenza Vaccine in Older Adults (preprint)
Spencer S , Chung JR , Belongia EA , Sundaram M , Meece J , Coleman LA , Zimmerman RK , Nowalk MP , Moehling Geffel K , Ross T , Carter CE , Shay D , Levine M , Liepkalns J , Kim JH , Sambhara S , Thompson MG , Flannery B . medRxiv 2021 2021.10.04.21264429 Individuals with type 2 diabetes mellitus experience high rates of influenza virus infection and complications. We compared the magnitude and duration of serologic response to trivalent influenza vaccine in adults aged 50-80 with and without type 2 diabetes mellitus. Serologic response to influenza vaccination was similar in both groups: greater fold-increases in antibody titer occurred among individuals with lower pre-vaccination antibody titers. Waning of antibody titers was not influenced by diabetes status.Competing Interest StatementKKM, MPN and RZ have received research funds from Merck & Co., Inc and Pfizer, Inc. KKM and RZ have received research funds from Sanofi Pasteur, Inc. LC is currently employed by Novartis. The remaining authors report no conflicts of interest.Funding StatementThis study was supported by cooperative agreements U01 IP000471 and U01 IP000467 from the Centers for Disease Control and Prevention. The findings and conclusions in this report are those of those authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Institutional Review Boards at the University of Pittsburgh and Marshfield Clinic approved this study.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesData are not publicly available at this time. |
| Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes in COVID-19 convalescent plasma (preprint)
Voss WN , Hou YJ , Johnson NV , Kim JE , Delidakis G , Horton AP , Bartzoka F , Paresi CJ , Tanno Y , Abbasi SA , Pickens W , George K , Boutz DR , Towers DM , McDaniel JR , Billick D , Goike J , Rowe L , Batra D , Pohl J , Lee J , Gangappa S , Sambhara S , Gadush M , Wang N , Person MD , Iverson BL , Gollihar JD , Dye J , Herbert A , Baric RS , McLellan JS , Georgiou G , Lavinder JJ , Ippolito GC . bioRxiv 2020 Although humoral immunity is essential for control of SARS-CoV-2, the molecular composition, binding epitopes and effector functions of the immunoglobulin G (IgG) antibodies that circulate in blood plasma following infection are unknown. Proteomic deconvolution of the circulating IgG repertoire (Ig-Seq (1) ) to the spike ectodomain (S-ECD (2) ) in four convalescent study subjects revealed that the plasma response is oligoclonal and directed predominantly (>80%) to S-ECD epitopes that lie outside the receptor binding domain (RBD). When comparing antibodies directed to either the RBD, the N-terminal domain (NTD) or the S2 subunit (S2) in one subject, just four IgG lineages (1 anti-S2, 2 anti-NTD and 1 anti-RBD) accounted for 93.5% of the repertoire. Although the anti-RBD and one of the anti-NTD antibodies were equally potently neutralizing in vitro , we nonetheless found that the anti-NTD antibody was sufficient for protection to lethal viral challenge, either alone or in combination as a cocktail where it dominated the effect of the other plasma antibodies. We identified in vivo protective plasma anti-NTD antibodies in 3/4 subjects analyzed and discovered a shared class of antibodies targeting the NTD that utilize unmutated or near-germline IGHV1-24, the most electronegative IGHV gene in the human genome. Structural analysis revealed that binding to NTD is dominated by interactions with the heavy chain, accounting for 89% of the entire interfacial area, with germline residues uniquely encoded by IGHV1-24 contributing 20% (149 Å (2) ). Together with recent reports of germline IGHV1-24 antibodies isolated by B-cell cloning (3,4) our data reveal a class of shared IgG antibodies that are readily observed in convalescent plasma and underscore the role of NTD-directed antibodies in protection against SARS-CoV-2 infection. |
| Immunogenicity of high-dose egg-based, recombinant, and cell culture-based influenza vaccines compared with standard-dose egg-based influenza vaccine among health care personnel aged 18-65 years in 2019-2020
Naleway AL , Kim SS , Flannery B , Levine MZ , Murthy K , Sambhara S , Gangappa S , Edwards LJ , Ball S , Grant L , Zunie T , Cao W , Gross FL , Groom H , Fry AM , Hunt D , Jeddy Z , Mishina M , Wesley MG , Spencer S , Thompson MG , Gaglani M , Dawood FS . Open Forum Infect Dis 2023 10 (6) ofad223 BACKGROUND: Emerging data suggest that second-generation influenza vaccines with higher hemagglutinin (HA) antigen content and/or different production methods may induce stronger antibody responses to HA than standard-dose egg-based influenza vaccines in adults. We compared antibody responses to high-dose egg-based inactivated (HD-IIV3), recombinant (RIV4), and cell culture-based (ccIIV4) vs standard-dose egg-based inactivated influenza vaccine (SD-IIV4) among health care personnel (HCP) aged 18-65 years in 2 influenza seasons (2018-2019, 2019-2020). METHODS: In the second trial season, newly and re-enrolled HCPs who received SD-IIV4 in season 1 were randomized to receive RIV4, ccIIV4, or SD-IIV4 or were enrolled in an off-label, nonrandomized arm to receive HD-IIV3. Prevaccination and 1-month-postvaccination sera were tested by hemagglutination inhibition (HI) assay against 4 cell culture propagated vaccine reference viruses. Primary outcomes, adjusted for study site and baseline HI titer, were seroconversion rate (SCR), geometric mean titers (GMTs), mean fold rise (MFR), and GMT ratios that compared vaccine groups to SD-IIV4. RESULTS: Among 390 HCP in the per-protocol population, 79 received HD-IIV3, 103 RIV4, 106 ccIIV4, and 102 SD-IIV4. HD-IIV3 recipients had similar postvaccination antibody titers compared with SD-IIV4 recipients, whereas RIV4 recipients had significantly higher 1-month-postvaccination antibody titers against vaccine reference viruses for all outcomes. CONCLUSIONS: HD-IIV3 did not induce higher antibody responses than SD-IIV4, but, consistent with previous studies, RIV4 was associated with higher postvaccination antibody titers. These findings suggest that recombinant vaccines rather than vaccines with higher egg-based antigen doses may provide improved antibody responses in highly vaccinated populations. |
| Antiviral Approaches against Influenza Virus.
Kumari R , Sharma SD , Kumar A , Ende Z , Mishina M , Wang Y , Falls Z , Samudrala R , Pohl J , Knight PR , Sambhara S . Clin Microbiol Rev 2023 36 (1) e0004022
Preventing and controlling influenza virus infection remains a global public health challenge, as it causes seasonal epidemics to unexpected pandemics. These infections are responsible for high morbidity, mortality, and substantial economic impact. Vaccines are the prophylaxis mainstay in the fight against influenza. However, vaccination fails to confer complete protection due to inadequate vaccination coverages, vaccine shortages, and mismatches with circulating strains. Antivirals represent an important prophylactic and therapeutic measure to reduce influenza-associated morbidity and mortality, particularly in high-risk populations. Here, we review current FDA-approved influenza antivirals with their mechanisms of action, and different viral- and host-directed influenza antiviral approaches, including immunomodulatory interventions in clinical development. Furthermore, we also illustrate the potential utility of machine learning in developing next-generation antivirals against influenza. |
| Effect of repeat vaccination on immunogenicity of quadrivalent cell-culture and recombinant influenza vaccines among healthcare personnel aged 18-64 years: A randomized, open-label trial
Gaglani M , Kim SS , Naleway AL , Levine MZ , Edwards L , Murthy K , Dunnigan K , Zunie T , Groom H , Ball S , Jeddy Z , Hunt D , Wesley MG , Sambhara S , Gangappa S , Grant L , Cao W , Liaini Gross F , Mishina M , Fry AM , Thompson MG , Dawood FS , Flannery B . Clin Infect Dis 2022 76 (3) e1168-e1176 BACKGROUND: Antibody responses to non-egg-based standard-dose cell-culture influenza vaccine (containing 15 µg hemagglutinin (HA)/component) and recombinant vaccine (containing 45 µg HA/component) during consecutive seasons have not been studied in the United States. METHODS: In a randomized trial of immunogenicity of quadrivalent influenza vaccines among healthcare personnel (HCP) aged 18-64 years over two consecutive seasons, HCP who received recombinant-hemagglutinin (RIV) or cell-culture-based vaccine (ccIIV) during the first season (Y1) were re-randomized the second season of 2019-2020 (Y2) to receive ccIIV or RIV, resulting in four ccIIV-RIV combinations. In Y2, hemagglutination inhibition (HI) antibody titers against reference cell-grown vaccine viruses were compared in each ccIIV-RIV group with titers among HCP randomized both seasons to receive egg-based, standard-dose inactivated influenza vaccine (IIV), using geometric mean titer (GMT) ratios of Y2-post-vaccination titers. RESULTS: Y2 data from 414 HCPs were analyzed per-protocol. Compared to 60 IIV/IIV recipients, 74 RIV/RIV and 106 ccIIV/RIV recipients showed significantly elevated GMT ratios (Bonferroni corrected P <.007) against all components except A (H3N2). Post-vaccination GMT ratios for ccIIV/ccIIV and RIV/ccIIV were not significantly elevated compared to IIV/IIV except for RIV/ccIIV against A(H1N1)pdm09. CONCLUSIONS: In adult HCPs, receipt of RIV two consecutive seasons or the second season was more immunogenic than consecutive egg-based IIV for three of the four components of quadrivalent vaccine. Immunogenicity of ccIIV/ccIIV was similar to that of IIV/IIV. Differences in hemagglutinin antigen content may play a role in immunogenicity of influenza vaccination in consecutive seasons. |
| Progress towards the development of a universal influenza vaccine
Wang WC , Sayedahmed EE , Sambhara S , Mittal SK . Viruses 2022 14 (8) Influenza viruses are responsible for millions of cases globally and significantly threaten public health. Since pandemic and zoonotic influenza viruses have emerged in the last 20 years and some of the viruses have resulted in high mortality in humans, a universal influenza vaccine is needed to provide comprehensive protection against a wide range of influenza viruses. Current seasonal influenza vaccines provide strain-specific protection and are less effective against mismatched strains. The rapid antigenic drift and shift in influenza viruses resulted in time-consuming surveillance and uncertainty in the vaccine protection efficacy. Most recent universal influenza vaccine studies target the conserved antigen domains of the viral surface glycoproteins and internal proteins to provide broader protection. Following the development of advanced vaccine technologies, several innovative strategies and vaccine platforms are being explored to generate robust cross-protective immunity. This review provides the latest progress in the development of universal influenza vaccines. |
| Heterogeneous Ribonucleoprotein A1 (hnRNPA1) Interacts with the Nucleoprotein of the Influenza a Virus and Impedes Virus Replication.
Kaur R , Batra J , Stuchlik O , Reed MS , Pohl J , Sambhara S , Lal SK . Viruses 2022 14 (2)
Influenza A virus (IAV), like other viruses, depends on the host cellular machinery for replication and production of progeny. The relationship between a virus and a host is complex, shaped by many spatial and temporal interactions between viral and host proteome, ultimately dictating disease outcome. Therefore, it is imperative to identify host-virus interactions as crucial determinants of disease pathogenies. Heterogeneous ribonucleoprotein A1 (hnRNPA1) is an RNA binding protein involved in the life cycle of many DNA and RNA viruses; however, its role in IAV remains undiscovered. Here we report that human hnRNPA1 physically interacts with the nucleoprotein (NP) of IAV in mammalian cells at different time points of the viral replication cycle. Temporal distribution studies identify hnRNPA1 and NP co-localize in the same cellular milieu in both nucleus and mitochondria in NP-transfected and IAV-infected mammalian cells. Interestingly, hnRNPA1 influenced NP gene expression and affected viral replication. Most importantly, hnRNPA1 knockdown caused a significant increase in NP expression and enhanced viral replication (93.82%) in IAV infected A549 cells. Conversely, hnRNPA1 overexpression reduced NP expression at the mRNA and protein levels and impeded virus replication by (60.70%), suggesting antagonistic function. Taken together, results from this study demonstrate that cellular hnRNPA1 plays a protective role in the host hitherto unknown and may hold potential as an antiviral target to develop host-based therapeutics against IAV. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
| Impact of diabetes status on immunogenicity of trivalent inactivated influenza vaccine in older adults
Spencer S , Chung JR , Belongia EA , Sundaram M , Meece J , Coleman LA , Zimmerman RK , Nowalk MP , Moehling Geffel K , Ross T , Carter CE , Shay D , Levine M , Liepkalns J , Kim JH , Sambhara S , Thompson MG , Flannery B . Influenza Other Respir Viruses 2021 16 (3) 562-567 Individuals with type 2 diabetes mellitus experience high rates of influenza virus infection and complications. We compared the magnitude and duration of serologic response to trivalent influenza vaccine in adults aged 50-80 with and without type 2 diabetes mellitus. Serologic response to influenza vaccination was similar in both groups: greater fold-increases in antibody titer occurred among participants with lower pre-vaccination antibody titers. Waning of antibody titers was not influenced by diabetes status. |
| Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections.
Elkashif A , Alhashimi M , Sayedahmed EE , Sambhara S , Mittal SK . Clin Transl Immunology 2021 10 (10) e1345 Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses. |
| Innate lymphoid cells (ILC) in SARS-CoV-2 infection.
Kumar A , Cao W , Endrias K , Kuchipudi SV , Mittal SK , Sambhara S . Mol Aspects Med 2021 80 101008 Innate Lymphoid Cells (ILCs) are a class of innate immune cells that form the first line of defense against internal or external abiotic and biotic challenges in the mammalian hosts. As they reside in both the lymphoid and non-lymphoid tissues, they are involved in clearing the pathogens through direct killing or by secretion of cytokines that modulate the adaptive immune responses. There is burgeoning evidence that these cells are important in clearing viral infections; therefore, it is critical to understand their role in the resolution or exacerbation of the disease caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). In this review, we summarize the recent findings related to ILCs in response to SARS-CoV-2 infections. |
| Quinazolin-derived myeloperoxidase inhibitor suppresses influenza A virus-induced reactive oxygen species, pro-inflammatory mediators and improves cell survival
De La Cruz JA , Ganesh T , Diebold BA , Cao W , Hofstetter A , Singh N , Kumar A , McCoy J , Ranjan P , Smith SME , Sambhara S , Lambeth JD , Gangappa S . PLoS One 2021 16 (7) e0254632 Superoxide radicals and other reactive oxygen species (ROS) are implicated in influenza A virus-induced inflammation. In this in vitro study, we evaluated the effects of TG6-44, a novel quinazolin-derived myeloperoxidase-specific ROS inhibitor, on influenza A virus (A/X31) infection using THP-1 lung monocytic cells and freshly isolated peripheral blood mononuclear cells (PBMC). TG6-44 significantly decreased A/X31-induced ROS and virus-induced inflammatory mediators in THP-1 cells (IL-6, IFN-γ, MCP-1, TNF-α, MIP-1β) and in human PBMC (IL-6, IL-8, TNF-α, MCP-1). Interestingly, TG6-44-treated THP-1 cells showed a decrease in percent cells expressing viral nucleoprotein, as well as a delay in translocation of viral nucleoprotein into the nucleus. Furthermore, in influenza A virus-infected cells, TG6-44 treatment led to suppression of virus-induced cell death as evidenced by decreased caspase-3 activation, decreased proportion of Annexin V+PI+ cells, and increased Bcl-2 phosphorylation. Taken together, our results demonstrate the anti-inflammatory and anti-infective effects of TG6-44. |
| Comparison of the Immunogenicity of Cell Culture-Based and Recombinant Quadrivalent Influenza Vaccines to Conventional Egg-Based Quadrivalent Influenza Vaccines among Healthcare Personnel Aged 18-64 Years: A Randomized Open-Label Trial
Dawood FS , Naleway AL , Flannery B , Levine MZ , Murthy K , Sambhara S , Gangappa S , Edwards L , Ball S , Beacham L , Belongia E , Bounds K , Cao W , Gross FL , Groom H , Fry AM , Hunt D , Jeddy Z , Mishina M , Kim SS , Wesley MG , Spencer S , Thompson MG , Gaglani M . Clin Infect Dis 2021 73 (11) 1973-1981 BACKGROUND: RIV4 and cell-culture based inactivated influenza vaccine (ccIIV4) have not been compared to egg-based IIV4 in healthcare personnel, a population with frequent influenza vaccination that may blunt vaccine immune responses over time. We conducted a randomized trial among HCP aged 18-64 years to compare humoral immune responses to ccIIV4 and RIV4 to IIV4. METHODS: During the 2018-2019 season, participants were randomized to receive ccIIV4, RIV4, or IIV4 and had sera collected pre-vaccination, 1 and 6 months post-vaccination. Sera were tested by hemagglutination inhibition (HI) for influenza A/H1N1, B/Yamagata, and B/Victoria and microneutralization (MN) for A/H3N2 against cell-grown vaccine reference viruses. Primary outcomes at 1 month were seroconversion rate (SCR), geometric mean titers (GMT), GMT ratio, and mean fold rise (MFR) in the intention-to-treat population. RESULTS: 727 participants were included (283 ccIIV4, 202 RIV4, and 242 IIV4). At 1 month, responses to ccIIV4 were similar to IIV4 by SCR, GMT, GMT ratio, and MFR. RIV4 induced higher SCRs, GMTs, and MFRs than IIV4 against A/H1N1, A/H3N2, and B/Yamagata. The GMT ratio of RIV4 to egg-based vaccines was 1.5 (95%CI 1.2-1.9) for A/H1N1, 3.0 (95%CI 2.4-3.7) for A/H3N2, 1.1 (95%CI 0.9-1.4) for B/Yamagata, and 1.1 (95%CI 0.9-1.3) for B/Victoria. At 6 months, ccIIV4 recipients had similar GMTs to IIV4, whereas RIV4 recipients had higher GMTs against A/H3N2 and B/Yamagata. CONCLUSION: RIV4 resulted in improved antibody responses by HI and MN compared to egg-based vaccines against three of four cell-grown vaccine strains 1 month post-vaccination, suggesting a possible additional benefit from RIV4. |
| Influenza Virus Infects and Depletes Activated Adaptive Immune Responders
Bohannon CD , Ende Z , Cao W , Mboko WP , Ranjan P , Kumar A , Mishina M , Amoah S , Gangappa S , Mittal SK , Lovell JF , García-Sastre A , Pfeifer BA , Davidson BA , Knight P , Sambhara S . Adv Sci (Weinh) 2021 8 (16) e2100693 Influenza infections cause several million cases of severe respiratory illness, hospitalizations, and hundreds of thousands of deaths globally. Secondary infections are a leading cause of influenza's high morbidity and mortality, and significantly factored into the severity of the 1918, 1968, and 2009 pandemics. Furthermore, there is an increased incidence of other respiratory infections even in vaccinated individuals during influenza season. Putative mechanisms responsible for vaccine failures against influenza as well as other respiratory infections during influenza season are investigated. Peripheral blood mononuclear cells (PBMCs) are used from influenza vaccinated individuals to assess antigen-specific responses to influenza, measles, and varicella. The observations made in humans to a mouse model to unravel the mechanism is confirmed and extended. Infection with influenza virus suppresses an ongoing adaptive response to vaccination against influenza as well as other respiratory pathogens, i.e., Adenovirus and Streptococcus pneumoniae by preferentially infecting and killing activated lymphocytes which express elevated levels of sialic acid receptors. These findings propose a new mechanism for the high incidence of secondary respiratory infections due to bacteria and other viruses as well as vaccine failures to influenza and other respiratory pathogens even in immune individuals due to influenza viral infections. |
| Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes.
Voss WN , Hou YJ , Johnson NV , Delidakis G , Kim JE , Javanmardi K , Horton AP , Bartzoka F , Paresi CJ , Tanno Y , Chou CW , Abbasi SA , Pickens W , George K , Boutz DR , Towers DM , McDaniel JR , Billick D , Goike J , Rowe L , Batra D , Pohl J , Lee J , Gangappa S , Sambhara S , Gadush M , Wang N , Person MD , Iverson BL , Gollihar JD , Dye J , Herbert A , Finkelstein IJ , Baric RS , McLellan JS , Georgiou G , Lavinder JJ , Ippolito GC . Science 2021 372 (6546) 1108-1112
The molecular composition and binding epitopes of the immunoglobulin G (IgG) antibodies that circulate in blood plasma following SARS-CoV-2 infection are unknown. Proteomic deconvolution of the IgG repertoire to the spike glycoprotein in convalescent subjects revealed that the response is directed predominantly (>80%) against epitopes residing outside the receptor-binding domain (RBD). In one subject, just four IgG lineages accounted for 93.5% of the response, including an N-terminal domain (NTD)-directed antibody that was protective against lethal viral challenge. Genetic, structural, and functional characterization of a multi-donor class of "public" antibodies revealed an NTD epitope that is recurrently mutated among emerging SARS-CoV-2 variants of concern. These data show that "public" NTD-directed and other non-RBD plasma antibodies are prevalent and have implications for SARS-CoV-2 protection and antibody escape. |
| Immunogenicity of standard, high-dose, MF59-adjuvanted, and recombinant-HA seasonal influenza vaccination in older adults
Li APY , Cohen CA , Leung NHL , Fang VJ , Gangappa S , Sambhara S , Levine MZ , Iuliano AD , Perera Rapm , Ip DKM , Peiris JSM , Thompson MG , Cowling BJ , Valkenburg SA . NPJ Vaccines 2021 6 (1) 25 The vaccine efficacy of standard-dose seasonal inactivated influenza vaccines (S-IIV) can be improved by the use of vaccines with higher antigen content or adjuvants. We conducted a randomized controlled trial in older adults to compare cellular and antibody responses of S-IIV versus enhanced vaccines (eIIV): MF59-adjuvanted (A-eIIV), high-dose (H-eIIV), and recombinant-hemagglutinin (HA) (R-eIIV). All vaccines induced comparable H3-HA-specific IgG and elevated antibody-dependent cellular cytotoxicity (ADCC) activity at day 30 post vaccination. H3-HA-specific ADCC responses were greatest following H-eIIV. Only A-eIIV increased H3-HA-IgG avidity, HA-stalk IgG and ADCC activity. eIIVs also increased polyfunctional CD4+ and CD8+ T cell responses, while cellular immune responses were skewed toward single-cytokine-producing T cells among S-IIV subjects. Our study provides further immunological evidence for the preferential use of eIIVs in older adults as each vaccine platform had an advantage over the standard-dose vaccine in terms of NK cell activation, HA-stalk antibodies, and T cell responses. |
| SARS-CoV-2 RBD Neutralizing Antibody Induction is Enhanced by Particulate Vaccination.
Huang WC , Zhou S , He X , Chiem K , Mabrouk MT , Nissly RH , Bird IM , Strauss M , Sambhara S , Ortega J , Wohlfert EA , Martinez-Sobrido L , Kuchipudi SV , Davidson BA , Lovell JF . Adv Mater 2020 32 (50) e2005637
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a candidate vaccine antigen that binds angiotensin-converting enzyme 2 (ACE2), leading to virus entry. Here, it is shown that rapid conversion of recombinant RBD into particulate form via admixing with liposomes containing cobalt-porphyrin-phospholipid (CoPoP) potently enhances the functional antibody response. Antigen binding via His-tag insertion into the CoPoP bilayer results in a serum-stable and conformationally intact display of the RBD on the liposome surface. Compared to other vaccine formulations, immunization using CoPoP liposomes admixed with recombinant RBD induces multiple orders of magnitude higher levels of antibody titers in mice that neutralize pseudovirus cell entry, block RBD interaction with ACE2, and inhibit live virus replication. Enhanced immunogenicity can be accounted for by greater RBD uptake into antigen-presenting cells in particulate form and improved immune cell infiltration in draining lymph nodes. QS-21 inclusion in the liposomes results in an enhanced antigen-specific polyfunctional T cell response. In mice, high dose immunization results in minimal local reactogenicity, is well-tolerated, and does not elevate serum cobalt levels. Taken together, these results confirm that particulate presentation strategies for the RBD immunogen should be considered for inducing strongly neutralizing antibody responses against SARS-CoV-2. |
| Influenza A virus nucleoprotein activates the JNK stress-signaling pathway for viral replication by sequestering host filamin A protein
Sharma A , Batra J , Stuchlik O , Reed MS , Pohl J , Chow VTK , Sambhara S , Lal SK . Front Microbiol 2020 11 581867 Influenza A virus (IAV) poses a major threat to global public health and is known to employ various strategies to usurp the host machinery for survival. Due to its fast-evolving nature, IAVs tend to escape the effect of available drugs and vaccines thus, prompting the development of novel antiviral strategies. High-throughput mass spectrometric screen of host-IAV interacting partners revealed host Filamin A (FLNA), an actin-binding protein involved in regulating multiple signaling pathways, as an interaction partner of IAV nucleoprotein (NP). In this study, we found that the IAV NP interrupts host FLNA-TRAF2 interaction by interacting with FLNA thus, resulting in increased levels of free, displaced TRAF2 molecules available for TRAF2-ASK1 mediated JNK pathway activation, a pathway critical to maintaining efficient viral replication. In addition, siRNA-mediated FLNA silencing was found to promote IAV replication (87% increase) while FLNA-overexpression impaired IAV replication (65% decrease). IAV NP was observed to be a crucial viral factor required to attain FLNA mRNA and protein attenuation post-IAV infection for efficient viral replication. Our results reveal FLNA to be a host factor with antiviral potential hitherto unknown to be involved in the IAV replication cycle thus, opening new possibilities of FLNA-NP interaction as a candidate anti-influenza drug development target. |
| Adenoviral vector-based vaccine platforms for developing the next generation of influenza vaccines
Sayedahmed EE , Elkashif A , Alhashimi M , Sambhara S , Mittal SK . Vaccines (Basel) 2020 8 (4) Ever since the discovery of vaccines, many deadly diseases have been contained worldwide, ultimately culminating in the eradication of smallpox and polio, which represented significant medical achievements in human health. However, this does not account for the threat influenza poses on public health. The currently licensed seasonal influenza vaccines primarily confer excellent strain-specific protection. In addition to the seasonal influenza viruses, the emergence and spread of avian influenza pandemic viruses such as H5N1, H7N9, H7N7, and H9N2 to humans have highlighted the urgent need to adopt a new global preparedness for an influenza pandemic. It is vital to explore new strategies for the development of effective vaccines for pandemic and seasonal influenza viruses. The new vaccine approaches should provide durable and broad protection with the capability of large-scale vaccine production within a short time. The adenoviral (Ad) vector-based vaccine platform offers a robust egg-independent production system for manufacturing large numbers of influenza vaccines inexpensively in a short timeframe. In this review, we discuss the progress in the development of Ad vector-based influenza vaccines and their potential in designing a universal influenza vaccine. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Aug 15, 2025
- Content source:
- Powered by CDC PHGKB Infrastructure




