Last data update: Dec 02, 2024. (Total: 48272 publications since 2009)
Records 1-30 (of 59 Records) |
Query Trace: Rowe LA[original query] |
---|
Complete genome sequences of Clostridioides difficile surveillance isolates representing the top 10 ribotypes from the Emerging Infections Program, United States, 2016
Adamczyk M , Vlachos N , Breaker E , Orazi G , Paulick AL , Rowe LA , McAllister G , Machado MJ , Korhonen L , Guh AY , Rasheed JK , Karlsson M , McKay SL , Lutgring JD , Gargis AS . Microbiol Resour Announc 2024 e0112823 Ten Clostridioides difficile isolates representing the top 10 ribotypes collected in 2016 through the Emerging Infections Program underwent long-read sequencing to obtain high-quality reference genome assemblies. These isolates are publicly available through the CDC & FDA Antibiotic Resistance Isolate Bank. |
A novel invasive Streptococcus pyogenes variant sublineage derived through recombinational replacement of the emm12 genomic region
Unoarumhi Y , Davis ML , Rowe LA , Mathis S , Li Z , Chochua S , Li Y , McGee L , Metcalf BJ , Lee JS , Beall B . Sci Rep 2023 13 (1) 21510 Group A streptococcal strains potentially acquire new M protein gene types through genetic recombination (emm switching). To detect such variants, we screened 12,596 invasive GAS genomes for strains of differing emm types that shared the same multilocus sequence type (ST). Through this screening we detected a variant consisting of 16 serum opacity factor (SOF)-positive, emm pattern E, emm82 isolates that were ST36, previously only associated with SOF-negative, emm pattern A, emm12. The 16 emm82/ST36 isolates were closely interrelated (pairwise SNP distance of 0-43), and shared the same emm82-containing recombinational fragment. emm82/ST36 isolates carried the sof12 structural gene, however the sof12 indel characteristic of emm12 strains was corrected to confer the SOF-positive phenotype. Five independent emm82/ST36 invasive case isolates comprised two sets of genetically indistinguishable strains. The emm82/ST36 isolates were primarily macrolide resistant (12/16 isolates), displayed at least 4 different core genomic arrangements, and carried 11 different combinations of virulence and resistance determinants. Phylogenetic analysis revealed that emm82/ST36 was within a minor (non-clade 1) portion of ST36 that featured almost all ST36 antibiotic resistance. This work documents emergence of a rapidly diversifying variant that is the first confirmed example of an emm pattern A strain switched to a pattern E strain. |
Reoccurring Escherichia coli O157:H7 strain linked to leafy greens-associated outbreaks, 2016-2019
Chen JC , Patel K , Smith PA , Vidyaprakash E , Snyder C , Tagg KA , Webb HE , Schroeder MN , Katz LS , Rowe LA , Howard D , Griswold T , Lindsey RL , Carleton HA . Emerg Infect Dis 2023 29 (9) 1895-1899 Genomic characterization of an Escherichia coli O157:H7 strain linked to leafy greens-associated outbreaks dates its emergence to late 2015. One clade has notable accessory genomic content and a previously described mutation putatively associated with increased arsenic tolerance. This strain is a reoccurring, emerging, or persistent strain causing illness over an extended period. |
Corrigendum: Characterization of a novel transitional group Rickettsia species (Rickettsia tillamookensis sp. nov.) from the western black-legged tick, Ixodes pacificus
Gauthier DT , Karpathy SE , Grizzard SL , Batra D , Rowe LA , Paddock CD . Int J Syst Evol Microbiol 2023 73 (8) In the published version of this article there was an error with the sequence data. Please see the corrected text below: | | | In the abstract | | Upon reanalysis with corrected 16S rRNA sequence, the closest full-length match to non-genome strains in Genbank at the time of this corrigendum was to ‘Candidatus Rickettsia senegalensis’ strain R184 (Genbank accession number OM311169) at 99.7 % identity. | | | In table 1 | | The 16S rRNA column analysis was performed with the chimeric 16S rRNA sequence and is thus in error. The top non-genome strain match and identity is as described for changes to the Abstract. The best match to a complete genome was to R. felis URRWXCal2 (Genbank CP000053) at 99.8 % identity. | | | In phylogeny | | 16S rRNA comparisons are in error and are corrected as for Abstract and Table 1. | | In summary, we have, through antibiotic clearance of Mycoplasma contamination of R. tillamookensis Tillamook 23T, ascertained that corrections need to be made to the published genome record for 16S and 23S rRNA sequences. Genbank records have been updated accordingly. These changes do not affect the status of R. tillamookensis as a distinct species or its phylogenetic placement among the transitional group of Rickettsia. | | The authors have provided a detailed explanation of this correction in the Supplementary File 1. | | The authors apologise for any inconvenience caused. | |
Genome Sequences of Hemolytic and Nonhemolytic Listeria innocua Strains from Human, Food, and Environmental Sources.
McIntosh T , Kucerova Z , Katz LS , Lilley CM , Rowe LA , Unoarumhi Y , Batra D , Burnett E , Smikle M , Lee C . Microbiol Resour Announc 2022 11 (12) e0072322 This report describes genome sequences for nine Listeria innocua strains that varied in hemolytic phenotypes on sheep blood agar. All strains were sequenced using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) chemistry; overall, the average read length of these sequences was 2,869,880 bp, with an average GC content of 37%. |
The first complete genome of the simian malaria parasite Plasmodium brasilianum.
Bajic M , Ravishankar S , Sheth M , Rowe LA , Pacheco MA , Patel DS , Batra D , Loparev V , Olsen C , Escalante AA , Vannberg F , Udhayakumar V , Barnwell JW , Talundzic E . Sci Rep 2022 12 (1) 19802 Naturally occurring human infections by zoonotic Plasmodium species have been documented for P. knowlesi, P. cynomolgi, P. simium, P. simiovale, P. inui, P. inui-like, P. coatneyi, and P. brasilianum. Accurate detection of each species is complicated by their morphological similarities with other Plasmodium species. PCR-based assays offer a solution but require prior knowledge of adequate genomic targets that can distinguish the species. While whole genomes have been published for P. knowlesi, P. cynomolgi, P. simium, and P. inui, no complete genome for P. brasilianum has been available. Previously, we reported a draft genome for P. brasilianum, and here we report the completed genome for P. brasilianum. The genome is 31.4 Mb in size and comprises 14 chromosomes, the mitochondrial genome, the apicoplast genome, and 29 unplaced contigs. The chromosomes consist of 98.4% nucleotide sites that are identical to the P. malariae genome, the closest evolutionarily related species hypothesized to be the same species as P. brasilianum, with 41,125 non-synonymous SNPs (0.0722% of genome) identified between the two genomes. Furthermore, P. brasilianum had 4864 (82.1%) genes that share 80% or higher sequence similarity with 4970 (75.5%) P. malariae genes. This was demonstrated by the nearly identical genomic organization and multiple sequence alignments for the merozoite surface proteins msp3 and msp7. We observed a distinction in the repeat lengths of the circumsporozoite protein (CSP) gene sequences between P. brasilianum and P. malariae. Our results demonstrate a 97.3% pairwise identity between the P. brasilianum and the P. malariae genomes. These findings highlight the phylogenetic proximity of these two species, suggesting that P. malariae and P. brasilianum are strains of the same species, but this could not be fully evaluated with only a single genomic sequence for each species. |
Complete Genome Sequence of Rickettsia parkeri Strain Black Gap.
Karpathy SE , Paddock CD , Grizzard SL , Batra D , Rowe LA , Gauthier DT . Microbiol Resour Announc 2021 10 (44) e0062321 A unique genotype of Rickettsia parkeri, designated R. parkeri strain Black Gap, has thus far been associated exclusively with the North American tick, Dermacentor parumapertus. The compete genome consists of a single circular chromosome with 1,329,522 bp and a G+C content of 32.5%. |
Characterization of a novel transitional group Rickettsia species (Rickettsia tillamookensis sp. nov.) from the western black-legged tick, Ixodes pacificus.
Gauthier DT , Karpathy SE , Grizzard SL , Batra D , Rowe LA , Paddock CD . Int J Syst Evol Microbiol 2021 71 (7) A previously unrecognized Rickettsia species was isolated in 1976 from a pool of Ixodes pacificus ticks collected in 1967 from Tillamook County, Oregon, USA. The isolate produced low fever and mild scrotal oedema following intraperitoneal injection into male guinea pigs (Cavia porcellus). Subsequent serotyping characterized this isolate as distinct from recognized typhus and spotted fever group Rickettsia species; nonetheless, the isolate remained unevaluated by molecular techniques and was not identified to species level for the subsequent 30 years. Ixodes pacificus is the most frequently identified human-biting tick in the western United States, and as such, formal identification and characterization of this potentially pathogenic Rickettsia species is warranted. Whole-genome sequencing of the Tillamook isolate revealed a genome 1.43 Mbp in size with 32.4 mol% G+C content. Maximum-likelihood phylogeny of core proteins places it in the transitional group of Rickettsia basal to both Rickettsia felis and Rickettsia asembonensis. It is distinct from existing named species, with maximum average nucleotide identity of 95.1% to R. asembonensis and maximum digital DNA-DNA hybridization score similarity to R. felis at 80.1%. The closest similarity at the 16S rRNA gene (97.9%) and sca4 (97.5%/97.6% respectively) is to Candidatus 'Rickettsia senegalensis' and Rickettsia sp. cf9, both isolated from cat fleas (Ctenocephalides felis). We characterized growth at various temperatures and in multiple cell lines. The Tillamook isolate grows aerobically in Vero E6, RF/6A and DH82 cells, and growth is rapid at 28 °C and 32 °C. Using accepted genomic criteria, we propose the name Rickettsia tillamookensis sp. nov., with the type strain Tillamook 23. Strain Tillamook 23 is available from the Centers for Disease Control and Prevention Rickettsial Isolate Reference Collection (WDCM 1093), Atlanta, GA, USA (CRIRC accession number RTI001(T)) and the Collection de Souches de l'Unité des Rickettsies (WDCM 875), Marseille, France (CSUR accession number R5043). Using accepted genomic criteria, we propose the name Rickettsia tillamookensis sp. nov., with the type strain Tillamook 23 (=CRIRC RTI001=R5043). |
Chromosome-Level Genome Sequence of Leishmania (Leishmania) tropica Strain CDC216-162, Isolated from an Afghanistan Clinical Case.
Unoarumhi Y , Batra D , Sheth M , Narayanan V , Lin W , Zheng Y , Rowe LA , Pohl J , de Almeida M . Microbiol Resour Announc 2021 10 (20) PacBio and Illumina MiSeq platforms were used for genomic sequencing of a Leishmania (Leishmania) tropica strain isolated from a patient infected in Pakistan. PacBio assemblies were generated using Flye v2.4 and polished with MiSeq data. The results represent a considerable improvement of the currently available genome sequences in the GenBank database. |
Systematic Process Framework for Conducting Implementation Science Research in Food Fortification Programs
Teachout E , Rowe LA , Pachon H , Tsang BL , Yeung LF , Rosenthal J , Razzaghi H , Moore M , Panagides D , Milani P , Cannon MJ . Glob Health Sci Pract 2021 9 (2) 412-421 Food fortification has proven to be an effective approach for preventing micronutrient deficiencies in many settings. Factors that lead to successful fortification programs are well established. However, due to the multisectoral nature of fortification and the added complexities present in many settings, the barriers to success are not always evident and the strategies to address them are not always obvious. We developed a systematic process for identifying and addressing gaps in the implementation of a food fortification program. The framework is composed of 4 phases: (1) connect program theory of change to program implementation; (2) develop an implementation research agenda; (3) conduct implementation research; and (4) analyze findings and develop/disseminate recommendations for next steps. We detail steps in each phase to help guide teams through the process. To our knowledge, this is the first attempt to outline a systematic process for applying implementation science research to food fortification. The development of this framework is intended to promote implementation research in the field of food fortification, thus improving access to and effectiveness of this key public health intervention. |
Draft Chromosome Sequences of a Clinical Isolate of the Free-Living Ameba Naegleria fowleri.
Ali IKM , Kelley A , Joseph SJ , Park S , Roy S , Jackson J , Cope JR , Rowe LA , Burroughs M , Sheth M , Batra D , Loparev V . Microbiol Resour Announc 2021 10 (15) We present the chromosome sequences of a Naegleria fowleri isolate from a human primary amebic meningoencephalitis (PAM) case. The genome sequences were assembled from Illumina HiSeq and PacBio sequencing data and verified with the optical mapping data. This led to the identification of 37 contigs representing 37 chromosomes in N. fowleri. |
Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris.
Muñoz JF , Welsh RM , Shea T , Batra D , Gade L , Howard D , Rowe LA , Meis JF , Litvintseva AP , Cuomo CA . Genetics 2021 218 (1) Candida auris is an emerging fungal pathogen of rising concern due to global spread, the ability to cause healthcare-associated outbreaks, and antifungal resistance. Genomic analyses revealed that early contemporaneously detected cases of C. auris were geographically stratified into four major clades. While Clades I, III, and IV are responsible for ongoing outbreaks of invasive and multidrug-resistant infections, Clade II, also termed the East Asian clade, consists primarily of cases of ear infection, is often susceptible to all antifungal drugs, and has not been associated with outbreaks. Here, we generate chromosome-level assemblies of twelve isolates representing the phylogenetic breadth of these four clades and the only isolate described to date from Clade V. This Clade V genome is highly syntenic with those of Clades I, III, and IV, although the sequence is highly divergent from the other clades. Clade II genomes appear highly rearranged, with translocations occurring near GC-poor regions, and large subtelomeric deletions in most chromosomes, resulting in a substantially different karyotype. Rearrangements and deletion lengths vary across Clade II isolates, including two from a single patient, supporting ongoing genome instability. Deleted subtelomeric regions are enriched in Hyr/Iff-like cell-surface proteins, novel candidate cell wall proteins, and an ALS-like adhesin. Cell wall proteins from these families and other drug-related genes show clade-specific signatures of selection in Clades I, III, and IV. Subtelomeric dynamics and the conservation of cell surface proteins in the clades responsible for global outbreaks causing invasive infections suggest an explanation for the different phenotypes observed between clades. |
Complete and Circularized Bacterial Genome Sequence of Gordonia sp. Strain X0973
Gulvik CA , Batra D , Rowe LA , Sheth M , Nobles S , Lee JS , McQuiston JR , Lasker BA . Microbiol Resour Announc 2021 10 (9) Gordonia sp. strain X0973 is a Gram-positive, weakly acid-fast, aerobic actinomycete obtained from a human abscess with Gordonia araii NBRC 100433(T) as its closest phylogenetic neighbor. Here, we report using Illumina MiSeq and PacBio reads to assemble the complete and circular genome sequence of 3.75 Mbp with 3,601 predicted coding sequences. |
Complete and Circularized Genome Assemblies of the Kroppenstedtia eburnea Genus Type Strain and the Kroppenstedtia pulmonis Species Type Strain with MiSeq and MinION Sequence Data.
Gulvik CA , Batra D , Rowe LA , Sheth M , Humrighouse BW , Howard DT , Lee J , McQuiston JR , Lasker BA . Microbiol Resour Announc 2020 9 (44) Kroppenstedtia eburnea DSM 45196(T) and Kroppenstedtia pulmonis W9323(T) are aerobic, Gram-positive, filamentous, chemoorganotrophic thermoactinomycetes. Here, we report on the complete and circular genome assemblies generated using Illumina MiSeq and Oxford Nanopore Technologies MinION reads. Putative gene clusters predicted to be involved in the production of secondary metabolites were also identified. |
Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas , eleven species to the genus Kaistella , and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens.
Nicholson AC , Gulvik CA , Whitney AM , Humrighouse BW , Bell ME , Holmes B , Steigerwalt AG , Villarma A , Sheth M , Batra D , Rowe LA , Burroughs M , Pryor JC , Bernardet JF , Hugo C , Kämpfer P , Newman JD , McQuiston JR . Int J Syst Evol Microbiol 2020 70 (8) 4432-4450 The genus Chryseobacterium in the family Weeksellaceae is known to be polyphyletic. Amino acid identity (AAI) values were calculated from whole-genome sequences of species of the genus Chryseobacterium, and their distribution was found to be multi-modal. These naturally-occurring non-continuities were leveraged to standardise genus assignment of these species. We speculate that this multi-modal distribution is a consequence of loss of biodiversity during major extinction events, leading to the concept that a bacterial genus corresponds to a set of species that diversified since the Permian extinction. Transfer of nine species (Chryseobacterium arachidiradicis, Chryseobacterium bovis , Chryseobacterium caeni , Chryseobacterium hispanicum , Chryseobacterium hominis , Chryseobacterium hungaricum, Chryseobacterium molle , Chryseobacterium pallidum and Chryseobacterium zeae) to the genus Epilithonimonas and eleven (Chryseobacterium anthropi, Chryseobacterium antarcticum, Chryseobacterium carnis, Chryseobacterium chaponense, Chryseobacterium haifense, Chryseobacterium jeonii, Chryseobacterium montanum, Chryseobacterium palustre, Chryseobacterium solincola, Chryseobacterium treverense and Chryseobacterium yonginense) to the genus Kaistella is proposed. Two novel species are described: Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. Evidence is presented to support the assignment of Planobacterium taklimakanense to a genus apart from Chryseobacterium, to which Planobacterium salipaludis comb nov. also belongs. The novel genus Halpernia is proposed, to contain the type species Halpernia frigidisoli comb. nov., along with Halpernia humi comb. nov., and Halpernia marina comb. nov. |
Multispecies Outbreak of Verona Integron-Encoded Metallo-ß-Lactamase-Producing Multidrugresistant Bacteria Driven by a Promiscuous Incompatibility Group A/C2.
de Man TJB , Yaffee AQ , Zhu W , Batra D , Alyanak E , Rowe LA , McAllister G , Moulton-Meissner H , Boyd S , Flinchum A , Slayton RB , Hancock S , Spalding Walters M , Laufer Halpin A , Rasheed JK , Noble-Wang J , Kallen AJ , Limbago BM . Clin Infect Dis 2020 72 (3) 414-420 BACKGROUND: Antibiotic resistance is often spread through bacterial populations via conjugative plasmids. However, plasmid transfer is not well recognized in clinical settings because of technical limitations, and health care-associated infections are usually caused by clonal transmission of a single pathogen. In 2015, multiple species of carbapenem-resistant Enterobacteriaceae (CRE), all producing a rare carbapenemase, were identified among patients in an intensive care unit. This observation suggested a large, previously unrecognized plasmid transmission chain and prompted our investigation. METHODS: Electronic medical record reviews, infection control observations, and environmental sampling completed the epidemiologic outbreak investigation. A laboratory analysis, conducted on patient and environmental isolates, included long-read whole-genome sequencing to fully elucidate plasmid DNA structures. Bioinformatics analyses were applied to infer plasmid transmission chains and results were subsequently confirmed using plasmid conjugation experiments. RESULTS: We identified 14 Verona integron-encoded metallo-ss-lactamase (VIM)-producing CRE in 12 patients, and 1 additional isolate was obtained from a patient room sink drain. Whole-genome sequencing identified the horizontal transfer of blaVIM-1, a rare carbapenem resistance mechanism in the United States, via a promiscuous incompatibility group A/C2 plasmid that spread among 5 bacterial species isolated from patients and the environment. CONCLUSIONS: This investigation represents the largest known outbreak of VIM-producing CRE in the United States to date, which comprises numerous bacterial species and strains. We present evidence of in-hospital plasmid transmission, as well as environmental contamination. Our findings demonstrate the potential for 2 types of hospital-acquired infection outbreaks: those due to clonal expansion and those due to the spread of conjugative plasmids encoding antibiotic resistance across species. |
Conserved Patterns of Symmetric Inversion in the Genome Evolution of Bordetella Respiratory Pathogens.
Weigand MR , Peng Y , Batra D , Burroughs M , Davis JK , Knipe K , Loparev VN , Johnson T , Juieng P , Rowe LA , Sheth M , Tang K , Unoarumhi Y , Williams MM , Tondella ML . mSystems 2019 4 (6) Whooping cough (pertussis), primarily caused by Bordetella pertussis, has resurged in the United States, and circulating strains exhibit considerable chromosome structural fluidity in the form of rearrangement and deletion. The genus Bordetella includes additional pathogenic species infecting various animals, some even causing pertussis-like respiratory disease in humans; however, investigation of their genome evolution has been limited. We studied chromosome structure in complete genome sequences from 167 Bordetella species isolates, as well as 469 B. pertussis isolates, to gain a generalized understanding of rearrangement patterns among these related pathogens. Observed changes in gene order primarily resulted from large inversions and were only detected in species with genomes harboring multicopy insertion sequence (IS) elements, most notably B. holmesii and B. parapertussis While genomes of B. pertussis contain >240 copies of IS481, IS elements appear less numerous in other species and yield less chromosome structural diversity through rearrangement. These data were further used to predict all possible rearrangements between IS element copies present in Bordetella genomes, revealing that only a subset is observed among circulating strains. Therefore, while it appears that rearrangement occurs less frequently in other species than in B. pertussis, these clinically relevant respiratory pathogens likely experience similar mutation of gene order. The resulting chromosome structural fluidity presents both challenges and opportunity for the study of Bordetella respiratory pathogens.IMPORTANCE Bordetella pertussis is the primary agent of whooping cough (pertussis). The Bordetella genus includes additional pathogens of animals and humans, including some that cause pertussis-like respiratory illness. The chromosome of B. pertussis has previously been shown to exhibit considerable structural rearrangement, but insufficient data have prevented comparable investigation in related species. In this study, we analyze chromosome structure variation in several Bordetella species to gain a generalized understanding of rearrangement patterns in this genus. Just as in B. pertussis, we observed inversions in other species that likely result from common mutational processes. We used these data to further predict additional, unobserved inversions, suggesting that specific genome structures may be preferred in each species. |
Draft Genome Sequences of Leishmania ( Leishmania ) amazonensis , Leishmania ( Leishmania ) mexicana , and Leishmania ( Leishmania ) aethiopica , Potential Etiological Agents of Diffuse Cutaneous Leishmaniasis.
Batra D , Lin W , Narayanan V , Rowe LA , Sheth M , Zheng Y , Loparev V , de Almeida M . Microbiol Resour Announc 2019 8 (20) We present here the draft genome sequences of Leishmania (Leishmania) amazonensis, Leishmania (Leishmania) mexicana, and Leishmania (Leishmania) aethiopica, potential etiological agents of diffuse cutaneous leishmaniasis (DCL). Sequence data were obtained using PacBio and MiSeq platforms. The PacBio assemblies generated using Canu v1.6 are more contiguous than are those in the available data. |
PacBio Genome Sequences of Eight Escherichia albertii Strains Isolated from Humans in the United States.
Lindsey RL , Rowe LA , Batra D , Smith P , Strockbine NA . Microbiol Resour Announc 2019 8 (9) Escherichia albertii is an emerging pathogen that is closely related to Escherichia coli and can carry some of the same virulence genes as E. coli. Here, we report the release of Illumina-corrected PacBio sequences for eight E. albertii genomes. Two of these strains carry Shiga toxin 2f. |
First Draft Genome Sequence of Leishmania (Viannia) lainsoni Strain 216-34, Isolated from a Peruvian Clinical Case.
Lin W , Batra D , Narayanan V , Rowe LA , Sheth M , Zheng Y , Juieng P , Loparev V , de Almeida M . Microbiol Resour Announc 2019 8 (6) We present here the first draft genome sequence of Leishmania (Viannia) lainsoni strain 216-34, sequenced using PacBio and MiSeq platforms. PacBio contigs were generated from de novo assemblies using CANU version 1.6 and polished using Illumina reads. |
Conjugal Transfer, Whole Genome Sequencing, and Plasmid Analysis of Four mcr-1 -bearing Isolates from U.S. Patients.
Zhu W , Lawsin A , Lindsey RL , Batra D , Knipe K , Yoo BB , Perry KA , Rowe LA , Lonsway D , Waters MS , Rasheed JK , Halpin AL . Antimicrob Agents Chemother 2019 63 (4) Four Enterobacteriaceae clinical isolates bearing mcr-1 gene-harboring plasmids were characterized. All isolates demonstrated the ability to transfer colistin resistance to E. coli; plasmids were stable in conjugants after multiple passages on non-selective media. mcr-1 was located on an IncX4 (n=3) or IncN (n=1) plasmid. The IncN plasmid harbored 13 additional antimicrobial resistance genes. Results indicate the mcr-1-bearing plasmids in this study are highly transferable in vitro and stable in the recipients. |
Complete Genome Sequence of Nocardia farcinica W6977 T Obtained by Combining Illumina and PacBio Reads.
Gulvik CA , Arthur RA , Humrighouse BW , Batra D , Rowe LA , Lasker BA , McQuiston JR . Microbiol Resour Announc 2019 8 (3) The complete genome sequence of the Nocardia farcinica type strain was obtained by combining Illumina HiSeq and PacBio reads, producing a single 6.29-Mb chromosome and 2 circular plasmids. Bioinformatic analysis identified 5,991 coding sequences, including putative genes for virulence, microbial resistance, transposons, and biosynthesis gene clusters. |
Draft Genome Sequences of Eight Vibrio sp. Clinical Isolates from across the United States That Form a Basal Sister Clade to Vibrio cholerae.
Liang K , Islam MT , Hussain N , Winkjer NS , Im MS , Rowe LA , Tarr CL , Boucher Y . Microbiol Resour Announc 2019 8 (3) We sequenced the genomes of eight isolates from various regions of the United States. These isolates form a monophyletic cluster clearly related to but distinct from Vibrio cholerae. Phylogenetic and genomic analyses suggest that they represent a basal lineage highly divergent from Vibrio cholerae or a novel species. |
Draft Genome Sequence of French Guiana Leishmania ( Viannia ) guyanensis Strain 204-365, Assembled Using Long Reads.
Batra D , Lin W , Rowe LA , Sheth M , Zheng Y , Loparev V , de Almeida M . Microbiol Resour Announc 2018 7 (23) We present here the draft genome sequence for Leishmania (Viannia) guyanensis. The isolate was obtained from a clinical case of cutaneous leishmaniasis in French Guiana. Genomic DNA was sequenced using PacBio and MiSeq platforms. |
Complete Genome Sequence of Streptacidiphilus sp. Strain 15-057A, Obtained from Bronchial Lavage Fluid.
Arthur RA , Gulvik CA , Humrighouse BW , Lasker BA , Batra D , Rowe LA , Igual JM , Nouioui I , Klenk HP , McQuiston JR . Microbiol Resour Announc 2018 7 (19) Streptacidiphilus sp. strain 15-057A was isolated from a bronchial lavage sample and represents the only member of the genus not isolated from acidic soils. A single circular chromosome of 7.01 Mb was obtained by combining Illumina and PacBio sequencing data. Bioinformatic analysis detected 63 putative secondary biosynthetic gene clusters and recognized 43 transposons. |
PacBio Genome Sequences of Escherichia coli Serotype O157:H7, Diffusely Adherent E. coli , and Salmonella enterica Strains, All Carrying Plasmids with an mcr-1 Resistance Gene.
Lindsey RL , Batra D , Smith P , Patel PN , Tagg KA , Garcia-Toledo L , Loparev VN , Juieng P , Sheth M , Joung YJ , Rowe LA . Microbiol Resour Announc 2018 7 (14) We report here Illumina-corrected PacBio whole-genome sequences of an Escherichia coli serotype O157:H7 strain (2017C-4109), an E. coli serotype O[undetermined]:H2 strain (2017C-4173W12), and a Salmonella enterica subsp. enterica serovar Enteritidis strain (2017K-0021), all of which carried the mcr-1 resistance gene on an IncI2 or IncX4 plasmid. We also determined that pMCR-1-CTSe is identical to a previously published plasmid, pMCR-1-CT. |
Detection of minority drug resistant mutations in Malawian HIV-1 subtype C-positive patients initiating and on first-line antiretroviral therapy.
Zhou Z , Tang K , Zhang G , Wadonda-Kabondo N , Moyo K , Rowe LA , DeVos JR , Wagar N , Zheng DP , Guo H , Nkengasong J , Frace M , Sammons S , Yang C . Afr J Lab Med 2018 7 (1) 708 Background: Minority drug resistance mutations (DRMs) that are often missed by Sanger sequencing are clinically significant, as they can cause virologic failure in individuals treated with antiretroviral therapy (ART) drugs. Objective: This study aimed to estimate the prevalence of minor DRMs among patients enrolled in a Malawi HIV drug resistance monitoring survey at baseline and at one year after initiation of ART. Methods: Forty-one plasma specimens collected from HIV-1 subtype C-positive patients and seven clonal control samples were analysed using ultra-deep sequencing technology. Results: Deep sequencing identified all 72 DRMs detected by Sanger sequencing at the level of >/=20% and 79 additional minority DRMs at the level of < 20% from the 41 Malawian clinical specimens. Overall, DRMs were detected in 85% of pre-ART and 90.5% of virologic failure patients by deep sequencing. Among pre-ART patients, deep sequencing identified a statistically significant higher prevalence of DRMs to nucleoside reverse transcriptase inhibitors (NRTIs) compared with Sanger sequencing. The difference was mainly due to the high prevalence of minority K65R and M184I mutations. Most virologic failure patients harboured DRMs against both NRTIs and non-nucleoside reverse transcriptase inhibitors (NNRTIs). These minority DRMs contributed to the increased or enhanced virologic failures in these patients. Conclusion: The results revealed the presence of minority DRMs to NRTIs and NNRTIs in specimens collected at baseline and virologic failure time points. These minority DRMs not only increased resistance levels to NRTIs and NNRTIs for the prescribed ART, but also expanded resistance to additional major first-line ART drugs. This study suggested that drug resistance testing that uses more sensitive technologies, is needed in this setting. |
Review of grain fortification legislation, standards, and monitoring documents
Marks KJ , Luthringer CL , Ruth LJ , Rowe LA , Khan NA , Maria De-Regil L , Lopez X , Pachon H . Glob Health Sci Pract 2018 6 (2) 354-369 OBJECTIVE: Analyze the content of documents used to guide mandatory fortification programs for cereal grains. METHODS: Legislation, standards, and monitoring documents, which are used to mandate, provide specifications for, and confirm fortification, respectively, were collected from countries with mandatory wheat flour (n=80), maize flour (n=11), and/or rice (n=6) fortification as of January 31, 2015, yielding 97 possible country-grain combinations (e.g., Philippines-wheat flour, Philippines-rice) for the analysis. After excluding countries with limited or no documentation, 72 reviews were completed, representing 84 country-grain combinations. Based on best practices, a criteria checklist was created with 44 items that should be included in fortification documents. Two reviewers independently scored each available document set for a given country and food vehicle (a country-grain combination) using the checklist, and then reached consensus on the scoring. We calculated the percentage of country-grain combinations containing each checklist item and examined differences in scores by grain, region, and income level. RESULTS: Of the 72 country-grain combinations, the majority of documentation came from countries in the Americas (46%) and Africa (32%), and most were from upper and lower middle-income countries (73%). The majority of country-grain combinations had documentation stating the food vehicle(s) to be fortified (97%) and the micronutrients (e.g., iron) (100%), fortificants (e.g., ferrous fumarate) (88%), and fortification levels required (96%). Most (78%) stated that labeling is required to indicate a product is fortified. Many country-grain combinations described systems for external (64%) monitoring, and stated that industry is required to follow quality assurance/quality control (64%), though detailed protocols (33%) and roles and responsibilities (45%) were frequently not described. CONCLUSIONS: Most country-grain combinations have systems in place for internal, external, and import monitoring. However, documentation of other important items that would influence product compliance to national standard, such as roles and responsibilities between agencies, the cost of regulating fortification, and enforcement strategies, are often lacking. Countries with existing mandatory fortification can improve upon these items in revisions to their documentation while countries that are beginning fortification can use the checklist to assist in developing new policies and programs. |
High-Quality Whole-Genome Sequences for 77 Shiga Toxin-Producing Escherichia coli Strains Generated with PacBio Sequencing.
Patel PN , Lindsey RL , Garcia-Toledo L , Rowe LA , Batra D , Whitley SW , Drapeau D , Stoneburg D , Martin H , Juieng P , Loparev VN , Strockbine N . Genome Announc 2018 6 (19) Shiga toxin-producing Escherichia coli (STEC) is an enteric foodborne pathogen that can cause mild to severe illness. Here, we report the availability of high-quality whole-genome sequences for 77 STEC strains generated using the PacBio sequencing platform. |
High-Quality Whole-Genome Sequences for 59 Historical Shigella Strains Generated with PacBio Sequencing.
Kim J , Lindsey RL , Garcia-Toledo L , Loparev VN , Rowe LA , Batra D , Juieng P , Stoneburg D , Martin H , Knipe K , Smith P , Strockbine N . Genome Announc 2018 6 (15) Shigella spp. are enteric pathogens that cause shigellosis. We report here the high-quality whole-genome sequences of 59 historical Shigella strains that represent the four species and a variety of serotypes. |
- Page last reviewed:Feb 1, 2024
- Page last updated:Dec 02, 2024
- Content source:
- Powered by CDC PHGKB Infrastructure